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Abstract

Just as many of us, I am also prone to handle engineering achievements as being a construction built
from solid, reliable, brick-like components. Naturally, this not true in all senses. However, just like
living species of mother Nature, electrical systems may not require perfect predictability in all aspects to
operate correctly but only in the important ones. Hence, the central questions are ”"what is important?”
and "how to design systems for it?”.

In this aspect, the stability of the systems we use, is a must; the applicability is a need; the noise
tolerance is a desire.

In the light of these findings, I concentrated on these questions in my work with special regard to a non-
conventional computational paradigm, named Cellular Neural/Non-linear Networks Universal-Machine
(CNN-UM) paradigm.

First, in response to the question how we can use this constuction, I dealt with questions of stability of
a newly invented version of the CNN-UM. Then, answering the quesion what it can be used it for, I applied
the CNN to calculate a computationally heavy task, by the application of which it was accellareted by
several orders of magnitudes. Finally, I dealt with the question whether it can be made noise robust, and
I found that the system can even produce the so called stochastic resonance phenomena in which it can

be optimized against noise by the assistance of the noise itself.
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Chapter 1

Introduction

The field of non-linear science rises a lot questions that we are not ready to solve and we are left without
any hope of solving them in the near future. There are certain equations that received much higher
respect than others. In the past 15 years, many efforts has been spent on understanding and exploiting
the capabilies of one of them called Cellular Non-linear /Neural Network (CNN). The main driving force
of these works was the hope that the construction is simple enough to get implemented in analog very
large scale integrated circuitry (aVLSI) but complex enough to be able solve general, parallel, computing
problems and several computationally hard (e.g. NP) tasks quickly (in P) and efficiently. Here, I am
not to answer the question whether it was successful or not but I hope that I contributed to the world’s
knowledge on this particular equation with my work both in application and in theoretical directions.

According to this I have covered three topics.

The first topic covers stability analysis of the a multi layered version of CNN which aims to clarify
that which parameter constellations can this particular version of CNN be used for any purpose. The
main problem here is to ensure, with proof, that stable and reproducible output of the circuitry can be
reached. This requirement is a natural expectation for any device, but analog circuitry sometimes have

hard time to meet this criterion.

Opposed to the first topic, which is a rather theoretical issue, the second topic focuses on much
more application oriented questions. Namely, I have discovered, an interesting formalism that lets us
to calculate optical-flow estimation on aVLSI circuitry in which multi-scale information is incorporated.
Interestingly enough, the algorithm I proposed provides sub-pixel accuracy that is currently unbeatable
in the aVLSI community and is comparable to very complex, cca. 10 years old algorithms on digital

platforms.

Thirdly, I introduce a phenomena called ”smooth stochastic resonance”. Stochastic resonance (SR)
occurs when the signal-to-noise-ratio (SNR) at output of a non-linear device is maximized by additional
noise at the input. Stochastic resonators (SRT) known before, were able to demonstrate this behavior
only with abrupt jumps at the output. However, it resulted in the maximization of the SNR, it was
inconvenient enough to apply for anything. Hence it was desirable to obtain an easy-to-use solution for
this.

In the following sections I give very short summary of the findings that are detailed longer in the

subsequent chapters and at the same time serves as a summary of theses.

13



14 CHAPTER 1. INTRODUCTION

1.1 First Thesis: Stability of MLCNN

Since the introduction of the Universal Machine (UM) on Cellular Neural/Non-linear Networks, many
works has been devoted to the analysis of the principle and the circuitry. Inspired by biology, namely
retina, the multi-layer architecture was also designed and fabricated in analog VLSI (aVLSI). Although,
there were not much works published on the stability of these type of networks. Hence, there was a need
to set up bounds on parameters in which engineers can search for useful constellations (or templates).

I was able to give a formalism that lets us to generalize most of theorems claimed on single-layer-CNN
to multi-layer-CNN. Being able to use this tool, I presented several new theorems and made a strong
conjecture in the circle of networks with two and arbitrary number of layers. Theorems were selected
with special regard to the applicability.

For the sake of readability let us define single layer Full-Range CNN as

Ti=—g(@#)+ Ax i+ Bxti+2 (1.1)

>

where * denotes convolution operation and its multi-layer counterpart (MLCNN) as

L
Ty = —g(&,) + Z Agp % &0+ By * 1y + 2, (1.2)
o=1
where p is the layer number, L is number of layers, 7, is the time constant of layer p, Ao;m Bp are
the feedback template from layer o to layer p and feed forward templates to layer p, respectively. The
matrices &, 4, Z, are the ’state’, 'input’ and ’bias’ . Finally, function g is a non-analytic and defined as

R 0 R lf‘(i‘)z]|<1
9((@)i) =4 . . )

limm— oo (I(2)ij] — 1) - m-sgn((2);;) ,else.

Once we found the way to generalize equ. 1.2 in form of equ. 1.1 (see chapter 2), we can transfer
theorems from single layer to two and multi-layer CNNs. (i.e. 2LCNN, MLCNN). Being armed with such
a tool, I have generalized 7 theorems and 1 strong conjecture. The criteria of the theorems that maintain
stability in case of a 2 layer CNN with 3x3 templates, can be sloppily below.

A two layer CNN is completely stable in the

o Symmetric templates case: if not only templates operating each layers (i.e. intra-layer template)
are symmetric, but those that are operating among layers (i.e. inter-layer template) are symmetric

to each other (i.e. cross-symmetric),

e T-cross symmetric case: if intra-layer template elements are symmetric and inter-layer template
elements are cross-symmetric up to a constant multiplicative factor. (i.e. so called layer time-

constant 7)

o Non-symmetric case: if items of the templates follow a pattern of geometric series (i.e. the ratio
of the neighboring elements are constant) in both horizontal and vertical directions, and similar

mirroring rule as above applies to the inter-layer templates,
e T-non symmetric case: the theorem above holds, for any ratio of intra layer time-constant

o Sign symmetric case: if the sign pattern of the intra-layer templates are strictly sign-symmetric

and follow the same sign pattern, and the inter-layer templates are equal to that or are their inverse
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e 7Sign patterns for larger templates” case: if the sign alteration frequency of the inter-layer template
elements in both, horizontal and vertical, directions is either 0 or 1, while the intra-layer sign patter

is equal to that or is the inverse of that.
In case of a CNN with arbitrary number of layers in the

e "Sign patterns of large templates for more than 2 layers” case: if the sign alteration frequency of
the inter-layer template elements in both directions is either 0 or 1, while the matrix describing the

inversions compared to that (i.e. sign modifier matrix) is a so-called chess-board type.

Several numerical and symbolical computations support the conjecture that the CACE architecture
(e.g. 2LCNN with inter-layer templates that have only a central non zero element) is stable in the

staturated region in the

e "Non-reciprocal 1D CACE” case: if both inter-layer, intra-layer templates are sign anti-symmetric

and the central element of the intra-layer feedbacks are greater than one.

This is detailed in chapter 2.

1.2 Second Thesis:Analog-VLSI, Array-Processor Based, Bayesian,
Multi-Scale Optical Flow Estimation

Optical flow (OF) estimation aims to derive a motion-vector field that characterizes the motion in a
video sequence of images. Since the motion cannot be deterministically derived, I turned the problem
into a stochastic optimization framework, in which multiple-scale view of the subsequent images is used
at once. This was done to reduce the effect of the error prone cases (also known as blank wall or aperture

problem), which are main source of the artifact in OF estimation.

1.2.1 A CNN friendly stochastic multi-scale Optical Flow estimation model

A fundamentally a new multi-scale OF model was designed in which I showed two ways of formalizing
the Bayesian incorporation of multiple scales, leading essentially to the same equations to compute in the
model. The new algorithm was found to be optimally fitting to the architecture of the CNN-UM by the

application of which it was accelerated by 3 orders of magnitudes compared to digital architectures.

1.2.2 On-chip tests

Due to the resolution (128x128) and reliability of the CNN-UM implementation (ACE16k), first in the
history, the new general-purpose, aVLSI-based OF estimator was tested on a standard image sequence
(Yosemite) that is used as the main performance indicator in the computer vision community. However
the new solution performs with fair accuracy compared to the digital sequential competitors (i.e. sub-
pixel absolute error and average angular error (AAE) ~ 100), but it runs at 100 frames per second (fps)
on-chip, and the on-chip tests relax well to simulations (AAE ~ 3.50). On pixel-per-second basis, the
new method outperforms any aVLSI solutions with at least one maginitude difference, while the accuracy

is comparable to digital solutions, which is unique.
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1.3 Third thesis: Smooth Stochastic Resonance

Stochastic Resonance (SR) is a phenomenon in which a system with input signal and noise shows a well
defined peak in the signal-to-noise (SNR) characteristic at the output as the function of the noise (RMS)
at the input.

I have invented a new class of stochastic resonator (SRT) and Stochastic Resonance phenomena. The
new SRT consist of a classical SRT, one or more time derivative circuits and the same number of time
integrators. First, the incoming signal with additive noise is time derivated, then it passes through a
classical SRT, and, finally, it is time integrated. This is the Integro-Differential SRT (IDSRT). The
resulting SR phenomena show a well defined SR. The main virtue of the new system is the ability to
produce arbitrary smooth output which was unprecedented before. Interestingly, the signal transfer and
SNR are the best at the high frequency end.

I have also showed that the same phenomena can be produced in 2D images where the terms of

”derivation” and ”integration” correspond to inverse-diffusion (deblur) and diffusion (blur) operation.

1.3.1 The analysis of IDSRT

First, I clarified the analysis of the stochastic resonator called Level Crossing Detector (LCD) and repro-
duced the results the corresponding experiment, then I gave the analysis of the IDSRT with symmetric
and asymmetric LCD. Furthermore, I showed the model’s ability of transferring the SR characteristics of
the LCD to IDSRT but the later one can produce arbitrary smooth output.

1.3.2 The experimental results on IDSRT

Simulation results confirmed the calculations mentioned above.



Chapter 2

Stability of Multi-Layer Cellular

Neural /Non-linear Networks

2.1 Brief

We have found a formalism that lets us present generalizations of several stability theorems (see [CR9O0,
CC92, Gil93, For02]) on Multi-Layer Cellular Neural/Non-linear Networks (MLCNN) formerly claimed
for Single-Layer Cellular Neural/Non-linear Networks (CNN). The theorems were selected with special
regard to usefulness in engineering applications. Hence, in contrast to many works considering stability
on recurrent neural networks, the criteria of the new theorems have clear indications that are easy to
verify directly on the template values. Proofs of six new theorems on 2-Layer CNNs (2LCNN) related
to symmetric, T-symmetric, non-symmetric, 7-non-symmetric, and sign-symmetric cases are given. Fur-
thermore, a theorem with a proof on a MLCNN with arbitrary template size and arbitrary layer number
in relation to the sign-symmetric theorem is given, along with a conjecture for the one-dimensional,

two-layer, non-reciprocal case.

2.2 Notation and Symbols

2 Layer CNN

compact vector form

matrix form

transpose of matrix and vector

recurrent part of the template of CNN in concatenated form
feed forward part of the template of CNN

Cellular Neural/Non-linear Network

CNN Universal Machine

Chua and Yang Model of CNN

a diagonal matrix composed of vector in the argument
transfer function of the CNN

Full-Range Model of CNN

17



18 CHAPTER 2. STABILITY OF MLCNN

JE sign modifier matrix

MLCNN Multi-Layer CNN

PWL Piece Wise Linear function

sgn signum function

Tp layer time constant

ft invese of function f

( ~ij)kl element at position k,! of the sub-matrix at position 5 of matrix A
T time derivative of x

® diadic multiplication

® Kronecker matrix multiplication

2.3 Introduction

The analysis of the stability of Multi-Layer Cellular Neural/Non-linear Networks (MLCNN) [CY88a,
CR90] is motivated by the appearance of a new 2-Layer CNN Universal Machine (CNN-UM) architecture
called CACE (Complex cell Analog-and-logic non-linear Computing Engine) [RFR"02], that has already
been manufactured. Interestingly, the region of stable operation (i.e. template values) of Multi-Layer
architetures has not been analyzed as intimately as its Single-Layer counterpart which is still far from
being entirely clarified.

However they are not completely discovered yet, several important spatio-temporal phenomena have
been experimentally tested and its relevance in modeling has been demonstrated ref. [CTTAO00].

Our papers main virtue is a formalism that enables us to treat Multi-Layer architectures as simple as
a Single-Layer CNN.

The main results refer mostly for a 2-Layer CNN. Namely, we show that a 2LCNN is stable

e if the inter-layer feedback templates are symmetric, and the intra-layer feedback template is cross-

symmetric or 7-cross symmetric (i.e. weighted with the corresponding layer time constant),

e ifin the class of non-symmetric templates, the so-called constant-ratio rule holds among the template

entries,

e if all of the templates match to a single sign pattern in which sign alteration frequency is a fixed
one or zero in both horizontal and vertical directions and the phases of the two inter-layer feedbacks

are equivalent while the inter-layer feedbacks may vary upto a constant phase compared to them.

Similarly to that, MLCNN with arbitrary layer number is stable with arbitrary template size if a similar
hypothesis holds with the extension that the matrix of the phase changes is in the class of chess board
type matrices.

In the following, the CACE architecture is described step-by-step (Sec. 2.4) starting from the Chua
Yang model of CNN, then its compact vector form is reviewed with the extension to multi-layer equivalent
equations that made the generalization of the formerly known theorems possible (Sec. 2.5), and new
theorems are presented in Sec. 2.6. The appendix recalls the known and the new proofs with our unified

formalism to help the reader, however our contribution can be found in the main part.
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2.4 Multi-Layer and CACE Architectures

2.4.1 Chua-Yang Model [CY88a]

A CNN operates on a lattice-structured set of state variables (%), i € {1,..., N};j € {1,..., M}! input
(@;;) and bias map (Z;;) influenced by each other via a small set of local connection variables, called
template (fl and B) Both the variables and the templates are arranged in matrix form. In hardware
implementations the size of the templates usually does not extend beyond the neighborhood of radius

r =1, which mean a 3 x 3 template size (ie. r =1 F(A) #0 : k1€ {-1,0,1}).

The system is governed by the following differential equation,

(@) = =@+ Y, Dr- @O)ivkgr+ Y, (B (@1))irrj + (2(6)i

kleS,(ij) kleS,(i7)
or in short
Th=—i+Axj+Bri+2 (2.1)
where * symbolizes the convolution operator. Note that capitals are constants.

X . (@i + el = [(£)ij — )
(@) = £((@)yy) = 1A
c
where c is usually chosen to be 1.
This model was introduced by Chua and Yang in ref. [CY88a] therefore it is called Chua-Yang model

(CYCNN).

(2.2)

2.4.2 Full-Range Model [ERVDVC94]

For practical reasons, different types of non-linearities were introduced. One of them is the so-called
Full-Range model, which limits the operational range of state variables (Z);;, rather than limiting the

output as in Eq. (2.2),

Ti=—g(@)+ Axi+Bxi+2 (2.3)
where

. . ) (2.4)
UM — oo (I(@)i;] — 1) - m-sgn((Z)s5) ,else.

9((2)i;) = {
Since the majority of the stability works was made on CYCNN model and almost exclusively FRCNN
model was implemented, one might asks the question whether the stability theorems claimed for CYCNN
holds for FRCNN too? Some important aspects of the differences between the two models (i.e. CYCNN
and FRCNN) were examined in ref. [CGO03], where it was observed that even the trajectories of the two
models might depart qualitatively, the convergence criteria of all the stability theorems that have been
known so far are still intact.
The function g() is a limit function because of its asymptotic definition. A definition like this, indeed,

imposes difficulties in numerical tractability and in functional analysis but it is easier to implement and

'We index and use brackets of matrices as (m;;(t))x;, where (ij) refers to the submatrix in the ith row jth column of
the hypermatrix (m) at time (¢) and (kl) refers to the matrix element in kth row ith column.
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it speeds up the operation (either convergence or instability) compared to the CY model. Furthermore,

it reduces noise sensitivity in the analog implementations.

2.4.3 Multi-Layer Architectures

Even though Multi-Layer CNN (MLCNN) architectures have been known since 1991 [CS91], it did not
generate as many publications as the Single-Layer architerures did since, which is probably due to its
increased complexity in the analysis.

Multi-layer architectures consist of two or more sets of indexed state variables influenced via (121)01,
kernels where o and p refer to the so-called from and to layers, respectively. Disregarding the technical
difficulties in VLSI implementations, MLCNNs could be defined as,

L
Ty = —g(p) + Y Agp #do + By x iy + 2
o=1
where L defines the number of layers (p € {1,...,L}).
One should note that the entries in vector 7 might vary from layer to layer. For a simple case like
L =2 (i.e. 2LCNN), one can get,

7'15%1 = —g(&1) +A11 * 2 Jrz‘i21 *532+B1 * Uy + 2

. R . . (2.5)
Tgi‘g = —g(ii‘z) + A12 * j1 + A22 * 532 + BQ * ’&2 + 22.
Defining the same architecture with respect to Chua-Yang model,

Tidy = —&1 + Ay x 1+ Ay %G+ Bk iy + 5
Tolty = — &g + A1g * §1 + Agg * o + Ba x tip + %o

2.4.4 CACE Architecture

In ref. [RFRT02] the CACE architecture with a complete CNN-UM core is defined as
719291:*9(@1)+/111 %81 + Qo1 - Bo + by -t + 51 (2.6)
7—2%2:—9(‘%2)"_&12'@1 —‘rfigg*i‘g-i-i)z-ﬁg-‘rfg. .

One can define CACE architecture with respect to Chua-Yang model as

71501:*531+A11*Q1+5121'Q2+31"&1+21

Tody = —&g + d1g - §1 + Agg * Gz + by - G + Zo.

In Eq. (2.6) lower case da1, G12, 51, 52 refer to scalar values which are multiplied by the state and the
input vectors, rather than convolved with them. This simplification is due to the costs of implementation
belonging to the fully connected inter-layer feedback templates. Nevertheless, interesting spatio-temporal
dynamics can evolve in this structure.

In Fig. 2.1 one can compare differences between a 2-layer and a CACE architecture.
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ol e
A

(a) General 2-layer CNN (2LCNN) architecture ) The CACE architecture

Figure 2.1: The fully inter-connected MLCNN and the sparsely interconnected CACE architectures are
depicted on the left and right, respectively. Intra-layer feedback templates (All and Azz) are symbolized
by self-closing arrows on the layers (1 and &3), intra-layer feedback templates are symbolized by arrows
between the layers. The differences between CACE and 2-layer architectures are emphasized by the width
of the arrows referring to the size of convolution kernel

Note that in contrast to former CNN implementations 7 and 7 time constants are programmable.

2.5 Compact Vector Form

At the first sight, the parts most difficult to handle in the system of equations are the convolutions. To

get rid of them, a standard rewriting method is used.

Consider a state equation of an M x N CNN. In the compact form, new vectors (Z, g, @) are introduced

by repacking variables by an invertible rearrangement
(@)itrrj = (@)i5- (2.7)

In order to be able to write the equivalent system of equations, the form of the kernels needs to be

reformulated as well, resulting in a Block Toeplitz matrix shown in Fig. 2.2.

So the equivalent system of equations may be written as

N
=

T# = —g(&) + AZ + Ba+ 2

Applying this to a 2LCNN, one can write Eq. (2.5) as

a1 = —g(&1) + And + A @ + Biig + 5 28)
ToZg = —g(F2) + A19%1 + AgoFa + Bailg + 2.

By packing the state, the output, the input and the bias map vectors of the two layers in single

vectors, as 21 = (1, 21),yT = (1, 7%) etc., one can write

TE = —g(x) + Ar+ Bu+ 2 (2.9)
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Aw Qs
a a O O
2 s/
Qnw Ay Asw
an a as
Bne/ % 8/ O
A= 2
8n Bsy
0 %
B/
3w A
O O ) &
. ane A
[ [an [ ane ’
A= ay Qe Qe L J
Asw ag Qge (b) The same kernel in compact matriz representation form

(a) Entries in the kernels are denoted by the
capitals of compass points (i.e. n for north,e
for east,etc.) plus c for central

Figure 2.2: To transform the convolution in Eq. (2.1) to vector-matriz multiplication, a matriz-to-vector
repacking described by Eq. (2.7) was used therefore, the matriz of kernels needed to be converted to the
so-called compact matriz form having Block Toeplitz structure as shown on the right-hand side.

where hypermatrices 7, A, B were created by similar concatenation as

I Ay A B
o (M0 4o (An Ay g (B 0 (2.10)
0 7'2[ A12 A22 0 B2

where I denotes the identity matrix. Each hypermatix is of size 2M N x 2M N. Note that, the compact
vector form of CNN is exactly the same as Eq. 2.10. It can easily be extended for arbitrary number of
layers with arbitrary size of templates. The form still holds.

However it needs to be remarked that there is one order of magnitude difference in the degree of
freedoms of the convolution kernels (df(A;;) — 4 x 9) and their counterpart matrices (df(A;;) —
2MN x 2MN). Naturally, not all stable solutions for matrix A can be transformed to a kernel. The
main constraint on the matrix structure is the principle of spatial invariance.

The obtained form provides a powerful tool, by which many of the known theorems claimed for Single-
Layer CNNs can be generalized to MLCNN architectures. All we need to do is to carefully revise all steps
that might touch the degree of freedom of matrix A and explore all the new possibilities inherent to its

greater being.

In the next sections we give a far not complete list of theorems that can be extended in this manner.

Definition 1. If in network none of the cell’s state depends explicitly on the cell’s position (or site index)

then the network is called spatially invariant.

In the definition above, implicit dependence might refer to dependence on index differences.
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Disregarding boundary conditions the definition can be formulated for a Single-Layer CNNs as,
(A)ij = function(i — j) (2.11)

(read as: the entries of matrix A depend exclusively on a function of the difference of the entries’ horizontal
and vertical indexes), which is equivalent to the definition of Toeplitz matrices. Similar constraints apply
to MLCNNSs,

(Agt)ij = function(kl,i — j). (2.12)

Definition 2. The definition of the locality can be formulated as
(Dij =0 [li, 4l > 7 = Agqrasigy = 0: [l > 7

where ¢ is an invertible mapping of state variables from A to A.

Remark 1. The Bidirectional Associative Memory (BAM) neural network resembles a 2LCNN to a certain
extent. This network was introduced by Kosko [Kos88] as,

> (Av)ji - (2); + (1)
j=1

> (Ag)ji - (G1); +

=1

J

—(k1)i(Z1): +
(#2); = —(Ko)i(@2); +

which is equivalent to,

(2.13)

1 '(572)1- = —(22); + @ Z(A2>ji ()5 + (d2)

This network can be regarded as a one dimensional, two-layer, fully connected, heteroassociative network.

With the matrix concatenation formalism provided above the Eq. (2.13) can be rewritten as,

X =—i+Aj+o
where y = %1 composed of y; = diag{1/(k1)1,1/(k1)2,...,1/(k1)p} and
X2
x2 = diag{1/(k2)1,1/(k2)2,...,1/(k2)p}) denotes the neuron charging time constant, 7 = (27,21
N 0 -A
and A = A X 0 "] denotes the connection matrix. §7 = (¥, yd) is given by (§); = si(z4(t))
X2 A2

where s; represent the neural activation function with the well-known sigmoid characteristics and finally
T = ((x101)7, (x202)7) is a constant additive term.
It looks clear that the only difference between 2LCNN and BAM is manifested in spatial invariance

and locality criteria of A. Apart from this, the two networks’ dynamical behaviour is equivalent.

In sections (Sec. 2.6.1, 2.6.3 ) we start from the 71 = 72 = 1 case and develop toward the 71 # 7o
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case in (Sec. 2.6.2, 2.6.4), while theorem 5 is left unaffected by the modification of temporal parameters

(layer time constants) but spectacular extension for larger template size is detailed in Sec. 2.6.5.

2.6 Main Results

Probably the most widely used approach for concluding systems’ stability is done by means of Lyapunov
functions. Sometimes it is particularly difficult to write an appropriate Lyapunov functional for a given
system since its definition is not constructive. Fortunately, several Lyapunov functions have been intro-
duced for CNN versions but other stability considerations coexist. In the following sections, several of

them will be introduced.

2.6.1 Symmetric Case

The root of the following theorem can be found in ref. [CR02] for Single-Layer CNNs, where perfect
central symmetry is assumed for the template elements. Our new theorem is a logical extension to that,

and proposes relation for interconnecting template elements.

Definition 3. Cross symmetry is defined as centrally mirrored equivalence of template elements in Aps
and As;. (i.e. (A12)k = (Aa1)—g—; or see Fig. 2.3(b)).

Definition 4. A dynamical system (¢ = f(z(t)),z(to) = 20, * € R, f : R" — R") is said to be
completely stable if for Vxy € R™:
tlim x(t, z9) = const
(ref. [Gil93])
Theorem 1. A 2-layer CNN is completely stable® if

o The template values are central symmetric for intra-layer feedback sub-template elements (An,
Ass),

The template values are cross symmetric for inter-layer feedback sub-template elements (12112, Agl),

Layer time constants are unity (1, = 70 = 1),

o f() is continuously differentiable, bounded and f'() > 0,

All equilibrium points are isolated.

The interpretation of the criteria: The first criterion was probably the very first known by the CNN
community known as central symmetry. In Fig. 2.3 arrows point to template elements are need to be
equal to satisfy central symmetry (Fig. 2.3(a)) and cross symmetry (Fig. 2.3(b)).

The example below meets both criteria above.

2Here we restrict ourself to non autonomous systems hence constant u(t) and z(t) are assumed.
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-
A

/

7{

N A
An’ Azz “
Arp
(a) First criterion: Central-symmetry must hold for (b) Second criterion: Cross-symmetry must hold
intra-layer feedback template elements for inter-layer feedback template elements

Figure 2.3: Arrows point to kernel entries needed to be equal to satisfy the first two criteria of Theorem 1

2135 1].5].2
Ap=| 4| 24| Ap=|2|1].2
51.31].2 3134
41.31].3 11213

Agy=| 2| 12| Ap=|1]2]|1
2151 3121

Later we will recall the trajectory limit length theory of Forti et al in ref. [For02] which enables us
to drop the last two hypotheses of this theorem as well.

Proof: Assume a continuously differentiable and bounded bijective function y(x), then the equilibrium
points of Eq. (2.9) are isolated.

In the case of symmetric, spatial invariant templates, the compact matrix is symmetric (A = A7),

which lets us write a Lyapunov function of the form,

2MN Ly,
V(z) = —%yTAy +) [/9 f‘l(v)dv] —y"Bu—1y"z (2.14)
=1

which is the first Lyapunov function introduced for CNNs in [CY88a].

In ref. [CY88a] it is proved that z(t) is bounded (3X; : |z(¢)| < X}, Vt) which means the boundedness
of V(z). Having a bounded V() and being its time derivative along the trajectory negative (see appx.
A.1), V() is an appropriate Lyapunov function of the system.

By applying LaSalle’s invariant principle [LaS67], one can conclude that all trajectories are convergent
to the invariant set defined by M = {z : V(z) = 0} Vx € R". In fact, complete stability derives from
the connectedness of the w-limit set of each trajectory.

Corollary: In the case of Single-Layer CNNs, the symmetric property of matrix (A = AT) implies the
symmetry of the A template ((A)n = (A)_x ;). In the case of 2LCNN this property implies slightly
different rules, as well.

Obviously, the symmetry is repeated for Ay; and Ao intra-layer feedback templates ((flu)kl =
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(A“,)_k _11 € {1,2}), since their spatial arrangement in hypermatrix A is identical to that of the original
CNN from at least the symmetric point of view (i.e. diagonal matrix positions). The only difference

arises in case of inter-layer feedback matrices for which the following rule can be concluded,

Ay =Af, = (A= (A21)—k_.
This relation is called cross-symmetry between inter-layer feedback sub-template elements.

Remark 2. It must be noted that the case of perfectly symmetric intra-layer feedback and perfectly anti-
symmetric inter-layer feedback case ((/112) b= —(12121), % —1) has already been studied in ref. [FLMMO93].

2.6.2 7-Symmetric Case

The case of non-unity 7 was neglected in the former sections. Now, the model to be examined is extended
and by relying on a theorem proposed in ref. [For02] a new theorem is given. The method overcomes
the problem of non-invertible input/output activation function f() in Eq. (2.14), which therefore can be
piecewise linear (PWL) or piecewise analytic. Furthermore the theorem proofs the stability in case of

non-isolated equilibrium points, too. (see appx. A.2)
Theorem 2. A 2-layer CNN is completely stable if the template values are

o (entral symmetric for intra-layer feedback sub-templates elements (12111, Agg)

o T-cross symmetric for inter-layer feedback sub-templates elements (/112, /121)

o f() is continuously differentiable, bounded and f'() > 0

o All equilibrium points are isolated.

Due to the methodology of the proof, the theorem can be extended to the Absolutely Stable class of
global pattern formation, similarly to the theorem of M. Forti, which means complete stability for any
choice of parameters defining Aij, éi, U, 2; 1,7 € {1,2} satisfying the symmetry criteria given above.

The interpretation of the new criterion: Compared to the previous theorem, a modification appears

in the 7-cross symmetric criterion which is depicted in Fig. 2.4 by using the same symbols.

Proof: Let us rearrange the equations of a 2-layer CYCNN

n¥ = —%1 + Ani + Aaife + Brig + 5
ToZg = —&g + A1ai1 + Agalia + Baily + %
as
i = *%151 + %Allgl + %1/121172 + % (Blﬂl + 51)
By = —EF+ LA+ 2 Anih+ £ (32712 + 52)

Again, by the concatenation of equations (as in Eq. (2.8)), one can obtain,

&t=—-1x+ A*y+ B*u+ 2" (2.15)
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Vi
7{

T,Ap,

Figure 2.4: 7-cross symmetric rule: The figure should be interpreted as fig. 2.3 but here templates are
multiplied by the corresponding time constant (7).

where

and

% %21 7'1'[ 0
z = L), T= .
?122’2 0 TQ'I

Consequently, we obtained original CYCNN equation again with the exception of matrix 7. The Lyapunov
function introduced in appx. A.2 implies strict symmetry requirement on A*. This requirement implies
symmetric Ay; and Ass which is the same as in the hypothesis of the previous theorem. Hence compared

to the previous theorem, the only modification this matrix 7 multiplication leads to can be written as

1-\" 1.
<A21> = *A12
T1 T2

72(A12)kl = 7'1(1421)—k—l, (2~16)

or

which is the 7-cross symmetric rule. This rule is depicted in Fig. 2.4.

2.6.3 Non-Symmetric Case

Being armed with the new formalism, another Lyapunov function can be rewritten, which again implies
a specific relation of intra- and inter-layer template values. This case can be regarded as an extension of

the case given in ref. [Gil93] which considers single-layer networks only.
Theorem 3. A 2-layer CNN is completely stable if
e The constant ratio rule holds for intra-layer feedback sub-template elements (12111, 12122)

e The constant ratio rule holds between inter-layer feedback sub-template elements (Alg, Agl)
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e Zero additive term (B x 0+ 2 = 0) is present

Layer time constants are unity (11 = 170 = 1)

o f() is continuously differentiable, bounded and f'() > 0

All equilibrium points are isolated.

The interpretation of the criteria: The so-called constant ratio rule is a term for the rule specified
by M. Gilli, et al. It explains the stability criterion as a ratio of template elements. We say a template
is conform to the rule, if the ratio of the northern and southern template elements multiplied by the
ratio of the eastern and western elements is equal the ratio of north-southern and south-western elements
(see Fig. 2.5 for explanation). Similarly, in a 2LCNN, the same rule must hold for intra-layer feedback
sub-template elements, too.

With the same symbolism used in Fig. 2.5, the constant ratio rule between the two layers is displayed

in Fig. 2.6(a) which is articulated in terms of the inter-layer feedback sub-template elements.

N

N
A A

Figure 2.5: The constant ratio rule of template elements holds if the ratio of the northern and southern
template elements (vertical gray arrows) multiplied by the ratio of the eastern and western elements
(horizontal gray arrows) is equal to the ratio of north-southern and south-western elements (black arrow).
Or in short Z# = fnle gpg Sow — Slw Jp cgse of a 2-Layer CNN (2LCNN), intra-layer feedbacks

as aw Ase as Qe

(i.e. Ay and /122) must possess this property.

N\ 7|
) .Y All A21
All AZl
_ As
A12
(a) Eq. (2.20) (b) Eq. (2.21)

Figure 2.6: The required constant ratio rule between inter-layer feedback template elements

The example below satisfies the criteria of the theorem in question:
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4 8 1.2 12|24
Apn=| 40| 8] Ao=|12] 3 |24
1].1].2 11 3] 6
41418 1.6 | 1.6 | 3.2
Ayy=| 41| 8] Ap=|16]| 0 |32
1112 41 4| 8

Proof: Assume a Lyapunov function in the following quadratic form,

1
V(z) = —5y" Py, (2.17)
where P = D(A — I) is symmetric and consists of non-negative entries only. If there exists a D =
diag{d;,ds,...,dprnv} diagonal matrix which satisfies the symmetry criterion for P, the network is com-
pletely stable. (for the proof see appx. A.3)

Let us introduce a formalism,

A1 i i—j
az-j{()J e (2.18)

(A)ij ,else .

From the diagonality assumption on D, one can write P;; = d;a;;, and from the symmetricity as-
sumption on P, Py, = Py; < dija;, = dipag;.
From the principle of spatial invariance we have a Toeplitz type restriction on matrix A, (see Fig.
2.2(b)) The neighboring elements of D must obey the following relation,
d; Qi1 Qe

= —. 2.19
dit1  Giiy1  Qw (2.19)

Consequently, every Nth neighboring elements are in relation

d; _ Qi4Nyi _ OGn

diyn Q4N G

Since the above holds for all ¢, the d;/d; 41 constitute a geometrical series along the diagonal of D.
(ie. di/diyn = (di/dir1)N 2 ¢V ). As a consequence,

d; di di  QitNt1i _ 8ne _ an Qe

di+N+1 di+N di+1 Qi i+N+1 Asw as aw

di di di _ ai4N-1 _ 8nw _ anaw

ditN-1 ditn di—1 Aj54+N—1 Ase as Ae

These relations describe the constant ratio rule. By writing A instead of A (i.e. extension from one
single layer to double layer), the consequences for 2LCNN can be examined.

The same rule applies for A;; independently of the other submatrix element in the hypermatrix.
Having a geometrical series in D= {d1,...,dyN,dyNt1, - d2pn } it leads to the following similar, but
much trickier rules,

21
di  aiymMN; G

dismMN  QiirmN  al?

Consequently,
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21 11 .21
d; d; d;  aiyNtMNg Ay a;- ag

disNtMN  digN ditMN  GiieN+My a2 all al?

21 11 .21
d; d; d; G414 MN,i _ ag ag™ ag

dit1+mn  diy1 dixmMN  Giit1+mn a2 all al?

For diagonal compass points (i.e. south-western, south-eastern, north-western, north-eastern),

d; di d; di @iy N414+MN

dixNt14MN  dit1 digN disMN Qi i+ N+1+MN

21 11,11 .21 11 .21
_ ane _ n a’e C _ ane aC (2 20)
T al12 T 11 411 412 T 511 512 '
aSW aS aw aC aSW aC
di _di di  di Gy N-1+MNi
dign—14+MN  di—1 diyN iy MN Qi N—1+MN
21 11 11 ,21 11 21
_ 8w _ 4y Gy Qe Apw
= o112 T 11 411 412 11 ,12°
ase aS a‘e aC ase aC
The relation of Eq. (2.20) is depicted in Fig. 2.6(a)
By similar considerations one can get,
21 11 21 21 11 21
Ase _ Age Qg Qs _ Qg A
12— 11 12 12— 411 412°
anw anw aC a’ne ane aC

And from similar rearrangements, it is easy to show that

21,12 11 .11 11

asease _ an aw _ anvv

21 412~ 511 511 ~ 511
a’nwa’nw aS ae ase (2 21)
a2l 12 all 11 all :
swUsw  __ n e ne

214,12 o1l 511 — 511

aneane aS aW aSW

which can be depicted as in Fig. 2.6(b).

By examining the Block Toeplitz structure of A, one can conclude that the spatial invariance criterion
that lead to the conclusions above, do not imply any relation between dp;ny and dasny41. This would
be particularly interesting so as to conclude whether D can be divided into two parts in which two

independent geometrical series are formed or if it must form a single one.

To answer this controversial question, let us write what we used in the deduction of the rules above
a bit more formally. The first step (Eq. (2.19)) can be written as
d; Qitc,i c

= = 2.22
dive  Qiite ¢ (222)

which must hold regardless of the following substitution (j =i+ ¢),

jme _ Yize _ o

(2.23)
dj  Gj—c;

Roughly, if ¢ > M N then Eq. (2.22) (see Fig. 2.7(a)) leads to Eq. (2.21) and Eq. (2.20), while Eq.
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(2.23) (see Fig. 2.7(b)) implies symmetric rules

21 22 21
ne ane ac

a

12 7 422 127
a’sw aSU) aC

which completes the contant ratio rule in general.

(a) Eq. (2.22) (b) Eq. (2.23)

Figure 2.7: The ratio of the elements pointed to by arrows in matrix (fl) are in relations that are described
by the corresponding equations

2.6.4 7-Non-Symmetric Case

Similarly to the theorem in Sec. 2.6.2, here we examine the effect of using non-unity layer time constants

(1), summarized in the following theorem as,

Theorem 4. Theorem 3 holds for any ratio of layer time constants.

Theorems which define a larger than zero set measure of region of parameters in which stability holds
could only have importance in engineering practise. From this aspect, Theorem 4 significantly contributes
to Theorem 3.

Proof: A Lyapunov function similar to Eq. (2.17) is used, but here H = (A* — 7) which modifies Eq.
(2.18) as,

A%y — (M) it =3
ay = ( *)” ()i ! (2.24)
(A*)s5 ,else .
Let’s map matrix elements as a™/* — a¥ as
1 1

Gl — =10 a2l — =2t
711 711 (2.25)

Q12 — = 12 022 — = 22
T2 T2

Hence, the rule above transforms Eq. (2.20) to
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N'_"H

Figure 2.8: The matrix A* first used in Eq. (2.15) and later in Eq. (2.24) has this structure. Its
submatrices are multiplied by 1/71 and 1/72 where they are gray and white, respectively. In the proof of

Theorem 4 this matriz must be symmetrized by multiplying it by D in order to satisfy the corresponding
hypothesis.

21* 11 21%
ne Ape A

a

12% — 11% ,12%
asw as’w aC

1421 Lgl1 1,21 21 11 .21

1 Qe T Ape o) Q. - Ao B e aA¢ (2 26)
1,12 7 1,11 1,127 gl2 = g1l gl12 :

T2 sw T1 sw T C SW SW C

which means that the mapping does not change the original statements.
The reason is simply as follows: during the mapping, A is modified as in Fig. 2.8 and depending

on the magnitude of ¢, this leads to two distinct cases in the equations which can be derived from the

symmetry criterion on matrix P*:

1. The 1 < ¢ < MN case leads to rules, where the matrix elements referred to as a; ;4. and a;y.; are
in the same hypermatrix partition, so their ratio will not change by multiplying the elements of the

partition by an arbitrary non-zero constant (i.e. aj,,./ai,.; = Giitc/Gite,i)-

2. The MN < ¢ < 2MN case leads to rules which simplify the ratio exactly the same way as in Eq.
(2.26).

Hence, one can see that 7 values always simplify, which validates the theorem.

2.6.5 Sign Symmetric Case

The theorem introduced in ref. [CR90] and later used in ref. [CC92], prescribes the sign relation of
template elements rather than the perfect relation of template values, which defines a much larger class

of stable templates. Now, these findings are generalized to multi-layers.
Theorem 5. A 2LCNN is stable almost everywhere if,

e Intra-layer feedbacks (/111,/122) are strictly sign-symmetric (see Fig. 2.10)
sgn(Ar)ij = (—1)"7 or
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Sgn(z‘:lkk)ij = (=1)" or
Sgn(z‘}kk)zj = (=1) or
sgn(Ag)i; = (-1)° Vk e {1,2}

e The sign of both of the inter-layer feedbacks are equal to that of the intra-layer feedbacks or its
inverse (see Fig. 2.11)
sgn(fl;w,k) = —sgn(Ag) or
Sgn(fimfk) = Sgn(Akk)

The following template is an arbitrary example for the first template group in the second row of Fig.
2.11.

“1].1|-1 2| =2 2
An=| 11| 1 A= —2| 2 | =2
“1].1|-1 2 | =2 2
3] -3].3 4| 4|4
A= 3] 3| -3| Ap=| a4 4
3 |-3|.3 —4 —4

Convergence almost everywhere is a weaker condition than the complete stability because it can refer
to unstable cases like equilibrium points, limit cycles and chaotic trajectories, though as a pathological
only. The consequences define a much wider class of solutions than the previous theorems (say, a class

of set of non-isolated solutions), which makes these theorems suitable for engineering purposes.

Definition 5. A dynamical system is stable almost everywhere if the set that does not converge to a

constant equilibrium point has a Lebesque measure zero® (see ref. [CC92]).

In the proof of Theorem 5 we will generalize the stability criterion given in ref. [CC92], following

Hirsch’s theorem in ref. [Hir85], claimed for cooperative/competitive systems.

Definition 6. A dynamical system i = F(x), F € C! is cooperative if

8xj

>0 Vi#j

which means that the Jacobian matrix possesses the non-negative off-diagonals only property at every

location.

Definition 7. A dynamical system & = F(z), F € C! is irreducible if a sequence of indexes from i to j

exists (3{n1 = i,n2,n3, ..., Nn—1, Ny, = j}) such that

AF(m)nlﬂll—1 7é 0’ \VIZL]

XY
where [ € {2,...,m} or equivalently, 3P permutation matrix such that, PAF (z)PT = ).
0 Z

3The definition of stable almost everywhere is used in Hirsch sense. [Hir85].
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Let us consider it in case of a 2LCNN,

OF (x); . Ofi(x)
o, (A)ij 5~

where
t=F(z)=—-z+ Ay + Bu+ z.

By finding a suitable transformation, our dynamical system can be transformed into a co-operative sys-
tem. A solution is given by changing variables © — Jz/, where J is chosen to be diag{(—1)", (—=1)"2, ..., (=1)"M~ }

and n; € (0,1). Consequently, we get

Ji' = —Jx' + Af(Jx')+Bu+2 | JL (2.27)

i’ = F'(2') = -2’ + J YAf(J2’) + T 'Bu+J 'z
As a consequence, the Jacobian matrix of F’ is
AF' (2) = J *AAf(J2 )T -1

where Af();; = 6;;f/() and I = d;;. Since they are diagonal, they commute and by a A’ = J~1AJ

substitution one can get,
AF' (2 =J YAT Af(J2') — T = A" Af(J2') — I

Note that J = J~! which will ease the considerations later. The Jacobian matrix at every off-diagonal

18,
aFi/(m/) _ ( I)_ )
oar Vi

If A’ is irreducible, non-negative at every off-diagonal position, the system is stable almost everywhere.
Hence, we are looking for all appropriate J matrices, which might lead to an irreducible A’ with non-
negative off-diagonals. The task is now to find a methodology that generates all the possible solutions.

Note that irreducibility is intact under a JAJ affine transformation.

In general, rewriting an ODE equation into a compact form as it was done in case of the CNN (in
Eq. (2.9), resulting in a matrix A), will not code all the constraints that the original system (i.e. CNN)
had. These constraints include the principle of spatial invariance or diverse type of boundary conditions.
As long as the principle of spatial invariance considerably decreases the degree of freedom of the matrix,
the later constraint may alter only the structure of the Block Toeplitz matrix.

As a result of this investigation, we present all the possible solutions where Dirichlet boundary con-

dition is assumed.

Every J;; = (—1) will result in a sign inversion of the corresponding (i.e. ith) column and (i.e. ith)
row as depicted in Fig. 2.9.

Matrix A is not only Toeplitz but also sparse, which means that non-zero entries are located exclusively
at diagonal and co-diagonal positions of the diagonal and co-diagonal blocks of the matrix. In case

of a 2LCNN, the same applies to the intra-layer feedback and the inter-layer feedback blocks in the
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Al

Figure 2.9: The sign inversion of A under a JAJ transformation caused by a single negative entry (i.e.
(=1)) in the diagonal of matriz J at the ith position, where black regions refer to the sign-inverted part
of the matrix.

hypermatrix. For a template size larger than 3 x 3, co-diagonals are filled up to the rth order.

First, for the sake of simplicity, we collected the solutions for a CNN of size MxN. In order to get
spatial invariant solutions, realize that invariant co-diagonals must appear in the matrix A. In order to
get this structure in A, we must have a periodic sign series in J (i.e. periodic n;, too). The periodicity
may be zero, unity, N or mixture of them (call it a composite later) which results in diverse but invariant,
sign inverted blocks in matrix A.

One can conclude that only a few possibilities remain for J:

e Identity cases: ny = 0,ng = 0,...,nyny =0 = J = {-1,-1,...,—1} which is equivalent to
n=1ny=1,...,nyny=1 = J={1,1,...,1} since both projects A onto A" without any effect

e Alternating cases: J = {1,—1,1,...,(=1)MN} or J = diag{—1,1,—1,...,(—1)M"} leads to chess

table sign arrangement in A’ which correspond to the vertically striped structures in the template

e N block cases: J =diag{1,1,....,1,—1,—1,...,—1,1,1,....1,....  (=1)M~1} and its inverse
—_———— — ———
J = diag{-1,-1,...,—1,1,1,...,1,—-1,~1,....—1,...,  (=1)M} where multiple series of ones and
—_—

minus ones follow each other in blocks of Ns. These Js produce chess table arrangements in the A’
as well but with square sizes of N. These cases correspond to the horizonally striped structures in

the template

e Composite of block N and alternating cases: Any multiplication of the alternating cases and the
block cases leads to new solutions. These cases form the class of stable templates with chess table

sign patterns.

The systematic sign-inversions in A correspond to sign inversions at the template sign patterns. We
can visualize the rules above. If the sign pattern of a template matches to one of the sign patterns
depicted in Fig. 2.10, the template belongs to the class of stable almost everywhere templates.

The transformation of the found configurations of Js to the case of 2LCNN leads to a larger set of
stable template sign patterns which are given as follows.

The use of two independent layers (Alg = 0 and Agl = 0) recalls the Single-Layer CNNs’ cases
and implies the stability criteria specified above. Interesting questions arise whenever the two layers

inter-connect via non-zero inter-layer feedback templates.
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==l -

Figure 2.10: These are the template sign symmetries of the spatially invariant solutions of (JAJ);; >0,
where J;j = (—=1)"8;;. The black regions refer to the sign-inverted part of the template. Non-negative,
non-positive and arbitrary values are at black positions, white positions and gray positions respectively.

While seeking for all possible configurations of Js of 2LCNNs, we will point out that one more case

exists which multiplies the number of solutions of those found in the case of the Single-Layer CNNs’ class.

e MN block case: ny = 0,ny = 0,..nyn = 0,nyn+1 = Lnynge = 1,..noyny = 1 or its in-
verse. Both have the same influence. They result in an inversion on the off-diagonal matrices in

hypermatrix A which corresponds to a sign inversion in the inter-layer feedbacks.

Next, for the generalization of the solutions given above, the parity of the CNNs size (MN) has to be
fixed, since it affects the sign inversion patterns for inter-layer feedbacks (A;; ¢ # j).

As long as the even parity case prescribes the same patterns for both inter-layer feedbacks (Azl, /112)
and for the intra-layer feedback (AH, /122) patterns, the odd case inverts the sign patterns of the inter-
layer feedbacks.

It may be easier to describe the sign inversions in J as a composition of waves. (e.g. >_; sgn(sin(w;i))).

Considering the question above in this frame, we can describe it as a phase shift between the two
halves of Js or an addition of a new wave the sum in the odd case. The wavelength of this wave should
be 2MN.

Remark 3. The mixture of inversions where the first half of matrix J follows one pattern (or periodicity
w;), while the other half follows another, does not lead to spatially invariant patterns in Ayp and in Ao,
consequently they cannot result in a realizable inter-layer feedback template. For this reason these types

of patterns must be excluded.

Remark 4. The class of stable sign patterns which can be generated from the considerations above results
in templates that follow the same sign periodicity in both intra-layer and inter-layer feedback templates.

Note that, they can be inverses of each other.

However, the odd case of M N inverts our claim for the inter-layer feedback, the parity of the size

itself has no effect on this stability criterion at all. (see Fig. 2.11).

Remark 5. So far we have not considered the role of the layer time constants (7) in this theorem with
respect to its unity or non-unity. In fact, there is no need for any consideration since time constants can

be only positive, hence no modification can have an effect on this theorem.

Invariant Topologies

In ref. [CRO2], we can find two more solutions (see Fig. 2.12) that are hard to prove with the given

formalism, however, can be generated by topologically invariant transformations.
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Figure 2.11: The set of stable sign patterns. 2 by 2 groups refer to the intra-and inter-layer feedback
templates’ signs. Within each group, the templates are arranged in the following order: ( A1y As1 ; Al

A22 )
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Figure 2.12: Two sign patterns from the class of stable templates

Considering the topological structure of the network of what these patterns seemingly assume, equiv-
alence may be found between the displayed patterns and the sparse but sign symmetric CNNs. (see Fig.
2.13).

(a) A stable CNN sign-pattern (b) An equivalent but sparse net- (¢) A topologically equivalent
from Fig. 2.10 work realization of same sign network obtained by rotation of
pattern (b)

Figure 2.13: The steps of transformation needed to get the patterns shown in Fig. 2.12.

Without mentioning all the possible combinations of topologically invariant transformations applied
on CNN and alike networks (see ref. [Rad00]), the rotated, but sparse version of stable patterns that can
be obtained by the trick presented above are displayed in Fig. 2.14.

0 0 0 0 0 0 0 0
o o] o o ollo o ollof o] |o ol o
0 0 0 0 0 0 0 [ 0]
0 0 0 0 0 0 0 0]
o o] ol o 0|0 o o|loff o] o ollo o
0 0 0 0 0 0 (o] || [o]

Figure 2.14: All sign patterns generated by rules depicted in Fig. 2.13.

Sign Patterns for Larger Templates

In the former sections, we restricted ourselves merely to double-layer architectures (2LCNN) with 3 x 3

template size. By assuming larger template sizes, the matrix responsible for describing dynamics of the



38 CHAPTER 2. STABILITY OF MLCNN

CNN in the first role will gradually lose its relative sparseness, hence it would complicate the deduction of
most of the rules summarized in the theorems above. Due to the simplicity of the application of Hirsch’s
theorems and the wide range usability of the matrix concatenation technique in Eq. (2.10), theorems
may be extended in the direction of even more layers and larger template sizes, resulting in rules which
are still not too complicated to check against the templates.

The logic we follow will be roughly that
JAJ = funcion(i —j) = J=diag{(-1)",(=1)",(=1)",...,(=1)"V }. (2.28)

In other words, we seek all solutions of Js composed of any series of power of (—1)s which is resulted
by the Toeplitz, or more precisely Toeplitz like, conditions on JAJ.

Due to the Einstein formalism,
sgn(JAJ) = sgn(Ji;Ajp i) = sgn(i;J; Aji o)) = JiJy = (@ ¢

where vector (T = [Jy, Ja, ..., J,] and ® symbolizes the diadic multiplication operator.

Since J;J; = J1J;, ¢ ® ¢T is always symmetric, hence Eq. (2.28) may be written as,

¢ ®¢T = sgn (function(|i — j|)) (2.29)

Definition 8. A matrix with a chess board type sign pattern is defined as a matrix composed of rectangles
of the same sign (zero included) from which none of the these rectangles are in contact with another of

the same sign.

Lemma 1. There exists a constructive way to determine ¢ from ¢ ® ¢7T, if and only if ¢ @ ¢T is sign

symmetric, has positive diagonal and has chess board type signs exclusively.

No proof is required.

Only symmetric chess board type sign patterns in ¢ ® (7' satisfy the left-hand side of the Eq. (2.29)
since any sign inversion in J causes sign inversion in the corresponding row and column at one time. Only
diagonal sign patterns satisfy the right-hand side of the same equation. The two patterns that meet both
of the statements above are the homogeneous one and the chess board signed one which are produced by
constant (e.g. J = diag{1,1,1,...,1}) or alternating series (e.g. J = diag{—1,1,—1,...,1}), respectively,
or their inverse (already shown in Sec. 2.6.5).

Note that these special chess board types of matrices resemble to chess boards since the used rectangle
size is unity.

To be more precise, one can realize that the constraint (i.e. right-hand side of the Eq. (2.29) above
applies for a single-layer one-dimensional network exclusively where the matrix A is Toeplitz.

Concluding remarks on non one-dimensional structures involves Block Toeplitz matrices which extend

the degree of freedom of ¢ and of J as

horizontal dependency vertical dependency

—~ ———
(@ ¢ =sgn | function( i = J » /N =[5/N11)

where [.] denotes the integer truncation. The terms [¢/N],[j/N] refer to partitions in A that are

needed to have homogeneous sign field.
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Indeed, the searched unknown function() is depending on [i/N] — [j/N], which explains Toeplitz like
sign alterations just like it was required for matrix elements in the one-dimensional case. This leads to

the case that has already been shown in Sec. 2.6.5.

Continuing this methodology toward two-layers, one might write the MN block case as

¢®¢" = sgn (function(|i — j|,|[i/N] — [j/N]|,|[i/MN] = [j/MN]|)) (2.30)

which points much further in a constructive way.

For example the alternating and the N block alternating cases correspond to the alternating signs in
templates in horizontal or in vertical directions that can be expanded for larger than 3 x 3 templates,
like 5 x 5.

Later we will see Eq. (2.30) is only a special case which holds for two-layers only but not for larger

networks.

Due to the concatenation technique introduced in Sec. 2.5, as the degree of freedom of function()

gradually increases, the number of solutions for J multiplies.

Now, we can claim our next theorem,
Theorem 6. A 2LCNN with an arbitrary template size is stable almost everywhere if,

e The horizontal sign alteration frequency in all the templates are equal to one or zero up to the

exception of the intra-layer feedback’s central element,

e The vertical sign alteration frequency in all templates are equal to one or zero up to the exception

of the intra-layer feedback’s central element,

e The phase of the alteration are equal in groups sgn(Aq1) = sgn(Asz) and sgn(Ais) = sgn(As)

but may vary between groups.

For better understanding the expression alteration frequency see Fig. 2.15.

T B | T B |
[ N [ N I I

Figure 2.15: Sign alteration frequencies of 5 x 5 templates are depicted. On the left-hand side, both
the horizontal and the vertical sign alteration frequency are equal to one. In the center, horizontal sign
alteration frequency is equal to one while vertical sign alteration frequency is zero. The one on the right-
hand side is just opposite of the previous one.

Below an example is given for the theorem above,
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—1|1|-1|1]-1 1|-1|1]-1]1
—1|1|-1|2]|-1 1|-1|1]-2]1
Ap=|-1]1| 1 |3|-1| Ap=|1]|-1|1]-3]1
11| -1]4]| -1 1l -1|1]-4]1
—12|-314] -5 1|-213]-4|5
1| —1[1]-1]1 11| -1]1]|-1
1| -1]1]-2]1 11| -1]2]|-1
App={1|-1|1]-3[1]| Ap=|-1|1]-1]3]-1
1| —1[1]-4]1 —1| 1] -11]4]|-1
1]-2[3|-4]|5 —1|2| -3|4|-5

Sign Patterns for More Layers

Considering it for more than two layers, the Toeplitz constraint does not hold as in Eq. (2.30) but we

can write as,

¢® ¢" = sgn(function(li — j|. [[i/N] — [j/N1|, |li/ MNIL,|[j/MN]))) (2.31)

The reason is that, the interaction of cells ¢ and j must be fixed and be a function of the difference
of the indexes (i.e. spatially invariant) as long as ¢ and j are located in the same layer, the interaction
of cells from the layer [i/M N] and [j/M N] may vary from layer-to-layer. For example, the interaction
of the 1st layer to the 2nd not needed to be the same as the 2nd layer to the 3rd one. According to the
given equation, they not even needed to be in a kind of sign-symmetric relation.

In relation to the identified multi-layer criteria, the left-hand side of Eq. (2.31) may be rewritten as
JroGed)=¢ac"

where ® denotes the Kronecker matrix multiplication of a "small” sign modifier matrix J* and the
single-layer interaction sign-matrix (¢; ® ¢{).

For example in a three-layer case, the sign modifier matriz may be

1 -1 -1

which explains that the interaction between layers 1,2 and 1,3 are in a kind of competitive (negative
feedback) relation, while all the rests are in a kind of cooperative (positive feedback) relation (for details
see [Hir85)).

Finally, summarizing this finding in a theorem:

Theorem 7. A CNN with arbitrary number of layers and with arbitrary but fized template size is stable

almost everywhere if,

e The horizontal sign alteration frequency in all the templates are equal to one or zero up to the

exception of the intra-layer feedback’s central element,

e The vertical sign alteration frequency in all templates are equal to one or zero up to the exception

of the intra-layer feedback’s central element,
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e Sign modifier matriz is chess board type, symmetric and positive diagonal (see the Lemma 1).

2.6.6 Non-reciprocal Case

Definition 9. When the template values of a CNN are sign-anti-symmetric, the CNN is called non-

reciprocal.

In ref. [CR90] the complete stability is conjectured and supported non-reciprocal CNNs. The studied
dynamics of opposite sign valued template system cover a column-wise (or row-wise) coupling of cells
exclusively, which means dynamics are row/column-wise independent of each other, thus it is called
one-dimensional CNN or 1IDCNN. For the summary, see appx. A.5.

Based upon very similar considerations on the structure of the Jacobian matrix, a new conjecture is
given, which extends the former stability theorem (complete stability conjecture) to a column-wise (or

row-wise) coupled 1D CACE architecture.

Definition 10. A one-dimensional CACE is composed of two inter-connected one-dimensional CNNs

with intra-layer feedback of neighborhood radius one, and with scalar inter-layer feedback.

Conjecture 1. A 1D CACE, will always settle in a saturated region and converge to stable equilibrium

point if
o Inter-layer feedbacks are sign anti-symmetric,
o Intra-layer feedbacks are sign anti-symmetric,

e The central element of the intra-layer feedbacks is greater than one. (Agx)e > 1.

which means the stability of a non-reciprocal CACE architecture.

The interpretation of the criteria: The criteria above defines the following template structure:
A AT
i - T

where a,b,c,j,k,l >0 and e- h < 0.

Similarly to the Single-Layer 1D CNNs case, if any cell (k) reaches the saturated region (3), it will
generate a —1 at kth (or at (k+ M L)-th if it is on the second layer) diagonal position in the concatenated
Jacobian matrix, and zeros above and below. A concatenated Jacobian matrix is constructed in a way
similar to that of matrix A and is constructed from A in Eq. (2.10). Having zeros in a column with the
exception of the diagonal, the corresponding eigenvalue can be explicitly given (= —1) and the system can
be reduced by a factor of one by neglecting the corresponding row and column. Chua, et al in ref. [CR90]
found a recursive method to calculate the determinant of the remaining band matrix (121)7 consequently
they could point out that only positive eigenvalues exist in the reduced system. This implies that at least

one cell will eventually reach the saturated region again from which it never returns.
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A similar consideration applies to the CACE case, but no generative solution like this has been found
so far for determinant calculation which is inevitable for a system of arbitrary size. Instead, we confirmed
all possibilities by a symbolic software package and we claim:

For having positive principal minors of all possible configurations with an assumption on Ay and Aoy
as given above, a non-contradictory solution may exist if and only if Asy and A;, are of opposite sign
scalars.

The example below generates the trajectory in Fig. 2.16.
- i
i - o {125 1]

Pattern Evolution on Layer #1 in a 1D CACE

160 o

Space i [cell]

Figure 2.16: The time evolution of the one-dimensional CACE structure with a non-reciprocal template.

2.7 Conclusion

A description of a complex cell CNN-UM architecture (CACE) along with the MLCNN is given. This is
motivated a survey on the possibilities of generalization of stability theorems from Single-Layer architec-
tures to Multi-Layer architectures.

The power of a new formalism was demonstrated by claiming several theorems and one conjecture on
multi-layer architectures inherently including the CACE architecture.

By means of constructed new Lyapunov functions the layer time constants dependence of the theorems
was made possible.

The inference of the formalism we developed is proved to be useful in gerenalization of many theorems
and Lyapunov functions. Its consequences are not completely explored, therefore, it is worth carrying

out further investigations in the class of multi-layer nerual architectures.



Chapter 3

Analog-VLSI, Array-Processor
Based, Bayesian, Multi-Scale Optical

Flow Estimation

3.1 Brief

Optical flow (OF) estimation aims at derive a motion-vector field that characterizes motions on a video
sequence of images. In this paper we propose a new multi-scale (or scale-space) algorithm that generates
OF on Cellular Neural/Non-linear Network Universal Machine (CNN-UM), a general purpose analog-
VLSI hardware, at resolution of 128x128 with fair accuracy and working over a speed of 100 frames per
second. The performance of the hardware implementation of the proposed algorithm is measured on
a standard image sequence. As far as we are concerned, this is the first time when an OF estimator

hardware is tested on a practical-size standard image sequence.

3.2 Notation and Symbols

AGC Automatic Gain Control

aVLSI Analog Very Large Scale Integrated devices
AAE Average Angular Error (degree)

AVE Average Vector norm Error (pixels)

BC Boundary Condition (of CNN)

BM Block Matching (criteria)

Ap displacement vector

At time difference between two subsequent frames
DFD Displaced Frame Difference

DFD, Displaced Frame Difference at scale ¢

DF Dgauss Displaced Frame Difference with Gaussian windowing function
EMD Elementary Motion Detector

FPGA Field Programmable Array

43
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fps frames per second (measure)

I Image

10 the ith Image in a sequence

OF Optical Flow

OFC Optical Flow Constraint

D Position in an image (measured in pixels)
PDE Partial Differential Equation
PDF Probability Distribution Function
T Radius

RI Region at p of scale ¢

SSD Summed Squared Difference
STDD STandarD Deviation

(x,y) position in an image

v Velocity

VSS Visual Sensory System

w Windowing function

* convolution operator

3.3 Introduction

In general, a visual sensory system (VSS) can be interpreted as a system that records light in a 2
dimensional (image) plane reflected by illuminated, 3 dimensional, real-world objects. The objects of the
environment that are subject to motion relative to the observer induce a motion-vector field in VSSs.
The objective of Optical Flow (OF) calculations is to estimate this vector field, which describes the
transformation of one image to the consecutive one.

Far from being exhaustive, a review on existing OF methodologies will be given along with relation
to the proposed method in sec. 3.4

In a simplistic approach one can classify techniques used in OF deduction depending on the basis
as optical flow constraint (OFC), gray value matching (e.g. block matching (BM)), correlation (ref.
[Ana89]), phase (cross correlation), higher order statistics (ref. [BJ96, SLO1]), or energy [Hee88, SRCIS|.

In spite of the fact that BM approaches possess considerable disadvantages such as relatively high
computational needs (i.e. quadratic in block size and quadratic in maximal vector size), BM has several
advantages.

Firstly, in case of large displacements (larger than the support used for calculating the OFC) the
validity of OFC is questionable since the higher order terms (H.O.T.) of the Taylor expansion becomes a
significant factor that is neglected in OFC. Secondly, it is very simple to be calculated and formulated.
Thirdly, it overcomes the OF ambiguities (only) within the applied block size (sec. 3.6) at the expense
of the vector field bandwidth. Forthly, it is more robust against local intensity flicker than differential or
variational techniques. Fifthly, it is essentially parallel, which might indicate the applicability an already
implemented general purpose, analog-VLSI network, the Cellular Neural/Non-linear Network Universal-
Machine (CNN-UM) (sec. 3.8.2) . Sixthly, unlike OFC based methods, it does not rely on non-neural
operations such as division or matrix inversion.

For these reasons we turned to the BM type of approaches and we have found that:
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e by the application of diffusion to multiple diffusional lengths (or equivalently time durations) a
multi-scale view can be generated which method involves a cheap (~ psec) CNN-UM operation

only

e these views are incorporated in a Bayesian optimal estimation (sec. 3.7) of the OF, which resolves
the trade-off between the spatial bandwidth and accuracy (sec. 3.6) and leads to sub-pixel accuracy

(sec. 3.9) outperforming many of the known models, as our simulation and measurements show.

It is difficult to compare the computational complexity of algorithms running on analog massively
parallel architecture versus ones running on digital sequential hardware but we made an effort and found
that: The powerfulness of the new computational model implemented on CNN-UM versus Neumann
computer architecture is pointed out. The performance gain is in the range of (O(N?3)), due to its
strongly parallel computing architecture (see appx. B.1, appx. B.2) which makes it competitive in this
aspect, too.

N.B. motion sensing and OF are essentially the same. Both aim at determining the motion vector
field but they can determine the optical flow only. OF is the perceivable vector field, while the motion
vector field is the projection of 3D motions onto the focal plane. Motion sensors were, usually, designed
considering local information only and are not designed to be able to cope with the blank wall or the
aperture problems. Contrary, OF solution are hoped to be able to, to a certain extent. There are
numerous aVLSI motion sensors available today (ref. [HKLMS88, HKSL90, KM96, ECASM97, KSK97,
Liu98, HS02, RF04]) and there only few OF chips (ref. [SRC98, SD04, MECO04]). There is also an FPGA
based soft solution implementing an old theory (ref. [MZC05]), published recently.

Opposed to the special-, single-purpose circuitry listed above, we used a general purpose aVLSI cir-
cuitry. The performance results are demonstrated in sec. 3.9. First in the history a VLSI solution is
tested on a standard optic flow test sequence (Yosemite) that is common in vision community. The sim-
ulations show performance not very high compared to elaborated numerical solutions such as variational
or differential methods but still, the solution seems to be satisfactory and is implementable on a parallel,
general purpose aVLSI hardware, which is a great advantage. Interestingly, the chip measurements nicely
converge to the theoretical limit that was given by simulations. The speed of the solution is above 100
frames per second (fps). By increasing the quality of the circuitry used, this may be increased by at least

one order of magnitude in the near future.

3.4 Problem formulation and solutions

The problem may be written in several forms. Depending on the formulation, diverse types of solutions
coexist that may solve the formalized problem effectively; however, they might diverge from the real OF.
Consequently the formulation and the solutions, usually, involve heuristics. Here, we wish to give a brief
summary based on a generic functional minimization.

The first and most inevitable assumption in the formulation is that exists a spatio-temporal persistency
and a continuity of the brightness values or patterns in the image. This may be coded in a term called
brightness constancy (BC),

Jazf] — 0 (3.1)

By keeping the first term of the Taylor expansion of equ. 3.1, it results in ||T)VI . %{ H — 0, where v and
t denotes the velocity and the time, respectively. This is, usually, referred to as OF Constraint (OFC) or
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the differential form of BC. Equ. 3.1 may be written in time-discretized form as [TV (p) — I (5+9)| — 0,
where § denotes the position in the subsequent images I™") = I(¢) and I(®) = I(t — At), respectively. This
last equation is commonly referred to as block-matching (BM) criteria.

Unfortunately, solving any form of equ. 3.1 for o, it does not give a unique solution in all cases due
to the fact that there is only one linear constraint on a two-dimensional vector field. For this reason,
regularized solutions were formalized with additional constraints ensuring smoothness and discontinuity
of the vector field: ¢(Vu) — 0 and ¢(Vv) — 0, where 7 £ (u,v), and ¢ : R? — R is a suitable non-linear
function' with this double objective.

In real-world measurements, noise is a limiting factor difficult to avoid. Methods derived from the
considerations above may suffer from noise sensitivity. They can be extended with noise rejective terms
¢(VI) which penalizes noise both in the image and as a result in the vector field, too.

The generic solution may be searched as minima (e.g. ¥ = argming E(7)) of an integral over the

image ()
B(o) = /Q

where o™ and o” are weighting constants.

UTVI—&-ZHdp—i—aT { /Q (V) dp + /Q ¢(Vv)dp] ol /Q VDIl (3.2)

A B C

In this functional, other functionals may be used as a plug-in replacement for terms meeting the
objective of the original term. Hence, term A may be replaced by the integral of BM instead of that
of the OFC, or term B may be extended with additional constraints too. In ref. [SJ96, GL96] authors
found it important to prevent vector field from rotation and divergence. (e.g. [, ¢(div(7),rot(7))dp )

In its generic form, it is nearly impossible to have a fast and uniquely converging minimization of equ.
3.2; however, most OF estimators, which we are currently aware of, can be fit in this equation.

Lucas and Kanade ([LK81]) provided the following form in early times of OF estimators

E(z‘;):/QW*

where a Gaussian convolution kernel W was used for providing smoothness of v, that has extended the

oI
T 1+ % \as
0" VI + OtH D,

regions in terms of p where unique solutions exist. While the solution can be given directly by a matrix
inversion (if non singular) the solution of the Horn Schunk model (i.e. E(0) = [, HT)TVI + %Hz dp +
o [, [IVul| +[|Vv]|dp) can be approached iteratively, only [HS81].

A comprehensive analysis on the properties of functions left open in equ. 3.2, on the set of admis-
sible solutions (existance, unicity) along with a high quality solution is given in ref. [ADK99, AKO02].
Unfortunately, there is still a very hard trade-off between OF quality and processing time. The partial
differential equations (PDE) dropping out from the analysis of the equations above, usually, converge
very slowly, hence they may not be applied in applications where real-time processing is a criterion by

means of limited power and in limited space. However, interesting simplifications may be made, which

I Different ¢’s were found to be effective in OF calculations. A short list of the well-known versions is given.

[ Author [ o(s) ]
Geman and Reynolds I:L%
Malik and Perona log(1 + s2)
Green 2log(cosh(s))

Aubert 2v1+s2 -2
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opens space for invention in analog chip design. Many motion- and OF-chips were fabricated in the past.

Without going into details, they share many common properties such as:
e they are made for special purpose,

e they are, usually, called bio-inspired or neuromorphic due to their on-chip photo-sensors and cellular
structure (only local connections exist in a matrix structure) resemble to the retina or the primary

visual cortex in most engineers’ perspective,
e they operate in discrete space and continuous time,

e sometimes even the off-chip communication is made asynchronously via Address Event Represen-
tation (AER),

e VLSI elements are used either in mixed or mainly in analog (non saturated) mode,

e they either realize the corresponding Euler-Lagrange equation that are in loose relationship with

considerations above or are simple ad-hoc motion sensors (e.g. Elementary Motion Detector)
e the results are rather noisy.

In fact, the circuitry we relied on (CNN) shares many of these charateristics. It is called ”bio-
inspired”, cellularly structured, implemented in analog VLSI, operates in continiuous time, it is compact.
But, in contrast to all of them, it is proved to be general purpose (via Turing equivalence) leaving space for
analogic programmability. At the first look, CNN may be perceived as a well parameterizable PDE solver.
The most straightforward approach would imply solutions that realize some of these PDEs on CNN-UM.
This can be done by decomposing the PDE based solution into CNN friendly system of equations. The
raising difficulties are, usually, two-fold. On the one hand, the non-linear terms of the resulted PDEs,
usually, require calculations of divisions and/or H.O.T. On the other hand, the convolutional structure
of the CNN (which involves the spatial invariant criteria) is, usually, broken by the PDEs resulted.

In our solution, we constructed a stochastic framework in which the maximum of the probability
distribution function (PDF) p(v|I™M), I(?)) was searched (i.e. © = arg max, p(v|[I"), I?))). This was done
to let multiple-scale view of the images cooporate in a non-deterministic way and lead to a Bayes optimal
resolution of the trade-off between spatial bandwidth and accuracy (see the next section).

Interestingly, the algorithm obtained by the considerations above uses very simple parallel operations
that can be executed on CNN-UM and exploits its fully parallel nature. The experiments show that it
is extremely accurate on simple tests (note the sub-pixel accuracy in fig. 3.6) and on standard tests it
remains fair (even on aVLSI) compared to complex digital implementations. Furthermore, it operates

over 100 fps, which reserves a unique place for it.

3.5 Block or Region Matching Based Techniques

The major advantages of using BM is the ability to successfully suppress image flicker and its simplicity

in hardware realization.

Definition 11. Region or block is a collection of pixels that are located within the boundaries of size r

around p.
R;% = {(m,y) : H(m,y) _ﬁHOO <r,r= 2q}7
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where q refers to the size of the region in logarithmic scale. Without loss of generality we may use

any type of norm but for practical reasons the applied norm is [*° or maximum norm.

Definition 12. The measure Summed Squared Difference of two images at p = (x,y) in a given region
is,

SSDUY. 19, 1Y) = 2 3 10 ~ 19 o
Pl gery

Without loosing most of the important characteristics of the squared differences, we can also use the
norm [!, which is particularly important in CNN implementation. Note that |R?| is not a norm but the
size of the set (i.e. the area of the region) which is, obviously, constant for a fixed q.

The simplest BM approach would mean a search for the best match or fit of a particular region in an
image (I") around a pixel (p) by offsetting the region by Aj = @ - At in the image (I?)). The measure
is called Displaced Frame Difference (DFD) (see fig. 3.1) and can be defined as

1

DFD(IM, 1 Ap, RY) = ] > IW(E+ Ap) — IP(E)). (3.3)
Pl Ry
Ao
P

Iy

Figure 3.1: Displaced Frame Difference between two frames at a certain position (p) at a given displace-
ment (Ap) of a region (R) is calculated as \Ril‘;,—l ZEeRg [T (€4 Ap) — I(€)|

To avoid aliasing effects windowing or pre-filtering is commonly applied. We used a Gaussian window

function in its simplest form so as to define the Gaussian DFD measure as,

— — - _|12
DFDgaues(IV, 1 Ap, RY) = ﬁ > IOE + ap) — 1) - ee el
Pl Ry
= [ID(p+ Ap) — I®(p)| =W, (3.4)

where « is a constant parameter to adjust.

Please note that [y norm becomes particularly useful since the equ. 3.4 can be written as
DFDéauss(I"V, 1%, Ap, RE) = |1V (5 + Ap) » W — 1) (p) « W|.
The objective of OF estimation is to find

0At = argmin DFDgauss (IM, 1%, Ap, RY),
p
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where v refers to velocity which can be determined as © = Ap/At. It simply means that the algorithm
should find the displacement of every pixel with the smallest cost. Here the cost should be meant in
terms of energy or DFD (above).

Block matching approaches sometimes use correlation maxima which has the advantage of being
less sensitive to illumination alterations compared to DFD methods but they have the disadvantage of
increased calculation needs involved the multiplication. In restricted circumstances we can claim that

seeking for the minima of DF Dgqqss expression maximizes the correlation (equ. 3.5) as well

1

o 3 TO(E+Ap)- 12 @) - IE715 = 10 (54 Ap)- 1O ()« W (3.5)

£eRY

Corraauss (I(l), JAS RY)

P

[

For this reason DFD based methods are, usually, referred to as correlation based techniques and we
will refer to them interchangeably.

For the sake of short writing, we will refer to the measure of matching (DFD) as DFD(IV, 1) Rl ©) <
DFD,(IM,1?) 7), where q refers to the scale that is exponentially related to the window size (R) (i.e.
with ¢ = 0,1, 2, ... refers to region of Rg = 121,222,424, ...) as mentioned in definition 11.

When larger Gaussian window (W in equ. 3.4) is applied, thanks to the averaging characteristics of
the window, will result in an image with degraded spatial bandwidth.

The blur caused by these integrating type of filters (such as window functions) is equivalent to applying
a bandwidth degrader or changing the view of an image to a larger scale (see appx. B.1). In the algorithm
we propose, we combine multi-scale (i.e. sections of the scale space ) information of a single image but

we will not estimate the optimal scales to use (see ref. [Wit83]).

3.6 Ambiguities in Optical Flow Techniques

The ambiguities that spoil the measurement of the OF may be explained in terms of block matching,
too; There are two typical cases of the ambiguities. In a thought experiment, assume a moving rectangle
as indicated in fig. 3.2(a)) which translates in the direction pointed by the arrow. Having a correlation
window (i.e. block) of size depicted in the figure one can conclude that correlation maxima will provide
correct information at the corners (1) of the rectangle. However, there is no correlation peak inside the
black rectangle (3) and the correlation maxima is not an isolated point but a line around the edges (2).
In the latter case, the normal flow might be calculated only, which seems to be the best guess based on
the local information but one can see it is not optimal in a global sense. These problems they are called
as blank wall problem and aperture problem, respectively.

Considering these error prone cases, the moving object can be partitioned into regions where 1) the
correct optical flow can be calculated (light grey area), 2) the aperture problem appears (dark grey area)
or 3) the blank wall problem appears (black area) (see fig. 3.2(b)).

To overcome these problems one might suggests to increase the correlation window size but it would
lead

e to the gradual decrease of bandwidth and,
e to the quadratic increase in computational needs (and time).

This dilemma is called the bandwidth/accuracy trade-off.
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(a) Assume a moving rectangle in the pointed di-
rection. Correlation maxima identifies the direction
of motion in the corners (1) but it is ambiguous at
the edges (2) and there is no maxima at all in the
center regions (3).

Correlation window size

Correlation regions:

Correct correlation

i Aperture problem
. Blank wall problem

(b) Partitions (slash, cross, filled patterns) around the hypothetic moving rectangle
(dashed) where no problem, aperture problem and blank wall problem appears,
respectively, depending on a given correlation window size (large on the left, small
on the right).

Figure 3.2: Identification of typical problems appearing in OF

In our model, the dilemma is hoped to be gradually removed. In the hierarchic calculation schema
(explained later in sec. 3.7) the CNN provides an alternative computational scheme that solves the
Gaussian shaping and correlation simultaneously in square root increase of time.

The similarity between this dilemma and equ. 3.2 should be noted. Equ. 3.2 is written in a form to

overcome the OFC ambiguities by means of the neighborhood while keeping the OFC term minimal.

3.7 Bayesian Incorporation of Scales

According to the considerations of the previous section, one can see that the main source of distortions in

the search for DFD minima (or correlation maxima) is rooted in the applied measurement technique. One
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has to note that using the differential form of the OFC does not help. The problem appears similarly, as
a singularity of the corresponding matrices. To overcome these problems, we propose a stochastic model

by associating a measure of fitness (DFD) with a similarity likelihood as,
P15, I x exp {—DFDq(I(l), I<2>,f;)} . (3.6)

There are several notes we have to make here:

e The form of the fitness (DFD) is somewhat arbitrary which could be appropriate in many other

forms.

e The only property we expect from the likelihood is to be inversely proportional to this particular

fitness.

e This likelihood defines a measure proportional to the likeliness of being the correct warp of a region

of size 29229 from one image to the other. (e.g. the normalization would be over the I(?)).

Based on this likelihood, by Bayes theorem for the aposterior we have,

135, 10) py (v M)
pq(I(2) |1(1))

pa(aIT), 1)) = 2ol o pa(TD]5, D) p, (o] 1)

Since the denominator does not depend on v for which we are to maximize this expression, we can drop
it. As it is common in Bayesian decisions, having a good prior hypothesis is crucial in making reasonable
decisions. This is the Ockham’s razor. In OF calculus, the question of good priors had left space for a
lot of debates in the literature too (ref. [AB86]).

Thinking in multiple scales, from the study of ambiguous situations, we might conclude that the
prior can be the larger scale (¢ + 1) estimation of the OF. This helps to reconstruct the OF at a given
(q) scale with propagating the information available at the larger scale. (i.e. associate py(v|I(M)) «
Pay1 (BT, 1)) as,

Pa(BI1D, 1) o p, (1[5, 1) pys (0]1D), 1),

This recursive scheme can be written in explicit form as,

p(17|1(1),1(2)) x po() H pq(I(2)\17,I(1)) = po(?) exp l_ Z DFDq(I(l),I(Q),U)] .
q q

Certainly, we are interested in the vector field (or OF) at the finest scale which is,

o = argmax p(o|IM, I?) = argmin

—logpo(v) + Y DFD (I, 1), 17)] . (3.7)

q

Note that, however, we formulated the problem is in the log-domain, by disregarding the constant
first term in equ. 3.7, the calculation to be done here remains as simple as addition of DFDs and an
extremum search.

An alternative formulation was suggested by Cs. Szepesvari in a personal communication leading
essentially to the same results (For details see appx. B.4).

The resulted calculation scheme defines a Bayesian incorporation of the multi-scale measurements.
(see fig. 3.3)
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Measurement at scale g+1 Null hypothesis
Best guess at scale g+1
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Figure 3.3: Bayesian incorporation of multiple scales: optimal PDF (probablity distribution function) at
scale ¢ + 1 becomes a hypothesis at scale ¢g. This, along with the likelihood (measurement) at scale g,
can give the posterior (best guess) at scale ¢ by Bayesian inference.

W

This figure explains how PDF's are propagated through scales.

Assume a null hypothesis (e.g. py(v) = const ), measure the fittness at every position with every
possible motion vector and associate it with the corresponding probability function (equ. 3.6). During
this measure, a window function (W in equ. 3.5) was used, which corresponds to the scale (¢). Multiply
these PDFs then assume it to be the hypothesis at next step. In the next step, use a smaller window for

the measurement. And repeat, until the predefined window size is reached.

In this induction-like rule, we will need a prior for the whole model. We choose a zero mean Gaussian
for this which biases for slow speed. Preference of such has been found to play role in human perception
[WAOS]. In most cases it is not necessary to have a well parametrized null hypothesis (covariance), since
it affects the results only marginally which is, in fact, quite a desirable characteristic of a model. Note
that, if Gaussian was chosen as a prior, then the calculation of the expression logp(7y) becomes simply
quadratic.

This model should optimally resolve the trade-off in sec. 3.6, where the term optimal is meant in
Bayesian sense.

The recursive calculation scheme above might recall ref. [WC99], in which the author got similar
conclusion to ours with respect to calculating the Bayesian optimal distribution. Noteworthly, he has
found that subsequent experiments (or measurements), even with a simplistic model of the ”world”
(prior), can gradually reinforce or refute hypotheses and, finally, they are incorporated in an optimal

estimation.
It has to be noted that numerous multi-scale (ref.[BB95, Ana89, BAK91, Enc86, Gla87, MP]) and
also Bayesian OF models (e.g. ref. [Zel04], [LM95]), are known in the literature. Furthermore, in ref.

[Sim99] a Bayesian multi-scale differential OF estimation by Simoncelli? was published.

2At surface level, it may seem that our model is similar to the one by Simoncelli, who also considered a probabilistic
multi-scale setup. However, Simoncelli’s assumption are rather different from ours. In particular, he worked with OFC-
based models where he made assumption on the distribution of the noise corrupting the images’ time derivative and the
flow field, whilst we do not introduce flow-field noise. He introduced multi-scale framework in which the mean and the
covariance of the estimation is propagated (updated and corrected) by a linear Kalman filter from higher scales to lower
scales.
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3.8 The Algorithm

3.8.1 The First Approach

First, let us overview the steps of the proposed algorithm.
e initiate the DFD with null hypothesis,
e measure DFD at a scale,
e accumulate the DFD in order to obtain the log of optimal PDF at the current scale,
e repeat the last two steps for all scales,
e finally, select a minima of the accumulated DFD.

Writing it in pseudo code see alg. 1.

Algorithm 1.

log PDF generation

Initial DFD is either even or zero mean Gaussian

Cycle for scale (q)
Cycle for position (p)
Cycle for displacement (7)

Cycle for DFD (£)

Accumulate for
DFD(5(p)) = iy Seps 1O (@ +8) — IP(&)] - W(€ —p)
End cycle DFD

End cycle (v)
End cycle (p)

End Cycle (q)
MAP selection

Cycle for position ()
Cycle for displacement (¥)
copy Uamap(p) = arg maxy p(v(p))
End cycle (o)
End cycle (p)

Due to the extreme size of calculations (O(N7)), for having results in reasonable time, optimization is
desirable. We have found that by means of CNN-UM the reduction of the need of operations is somewhere
in the magnitude of O(N?) (see appx. B.2).
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3.8.2 The Concept of CNN-UM

In the previous chapter I detailed several versions of the Cellular Non-Linear/Neural Network along with
the analysis of their dynamical behaviour. Here, indeed, I found it important to clarify the ways in
which one can exploit the power of the Universal Machine (i.e. CNN-UM). Hence a short review on the
structure of the architecture is given in order to let the reader capture the origin of the inherent power
of the structure that we are to exploit here. For further explanation, see ref. [CY88b, RC93].

The governing equation of the space invariant CNN core can be written in a convolutional form as,

& = —x4+Axy+Bxu+z (3.8)
1
Fa) = L1~ e 1)

Y

where A and B are called templates and are realized in a matrix form of size 3x3 in current imple-
mentations, x,y,u, z are called state, output, input and bias images, respectively, and are realized in a
matrix form of NxN. On the mixed signal VLSI implementation (ACE16K see ref. [ZDCE02]) we use
for demonstration purposes, N = 128. The CNN-UM is constituted by the CNN core as a workhorse
and other quasi peripheral components, which makes the CNN core programmable. It consists of local
and global analog memories (LAM, GAM), local and global logic memories (LLM, GLM respectively),
a local logic unit (LLU), etc. In the ACE16k implementation, there is also a binary masking possibility
that prevents any cell taking part in the transition of state (z), if the associated binary value in the mask
is set.

The advent of the analogue VLSI implementation of the CNN-UM is that, in principle, almost any
stable output can be reached in a fixed time independently of the vector (image) size. This is, usually, in
the magnitude of few psec. One of the most outstanding characteristics of the ACE chip series is its very
sensitive on-chip optical sensor that enables very high frame-rate image capturing (up to 30,000 frames
per second [ZR04]) and parallel processing in place of the focal plane sensors.

The CNN core being a recurrent network, its behavior can be extremely complex but we are interested
in region of parameters where a stable output can be reached. There is no need to mention that there is
an extremely long list of authors who dealt with the stability of CNN and recurrent networks, in general,
but we use only a simple-to-understand constellation of parameters.

In order to get deterministic result of the convolution defined in equ. 3.8 external cells (boundary
cells) must be assumed with definite values. The global boundary condition (BC) defines its type, which

can be fixed (or constant), periodic (or toroid), zero flux ( or Neumann ), gradient-flux.

3.8.3 The Exploitation of the CNIN Concept

To make the handling of the CNN core easier, one can decompose it into two parts. The first part is
the autonomous part (& = —x + A * ), the second is a fix term part (B * u + z) that contributes to the
evolution of the equation as a constant.

If, e.g., A = 0, called control mode, CNN simply copies the fix term into vector(image) x. Note the
usefulness of such a simple operation. It achieves a convolution and vector addition of an image of N?
pixels in a single step.

In the calculation of DF'D (see right hand side (RHS) of equ. 3.3) one can notice a term which is an

average of differences of a particular region (R}) around the point p. This difference (i.e. I M) —13)) can
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be calculated in control mode by a [By o = —1] 3 template. Naturally, a translation operator was applied
to generate the shift of images before the subsequent subtraction took place which can be achieved by a
single B template operation. By putting an image in u, applying [Bo,1 = 1] results in a translated image
copied into z.

The autonomous part of the CNN core can effectively calculate the average (ﬁ > éer) of a given
region as quick as, for example, a pixel-wise difference calculation by means of an isotropic diffusion op-
erator (i.e. A is central symmetric positive definite with B = 0) This equation asymptotically approaches
the average (i.e. z(t) — [2(0)]average) if conservative BC is applied.

If we apply a masking window of Rg that enables CNN to operate around a pixel p, then a diffusion
operator is able to calculate the average in this window. This recognition lets us spare the Cycle for

DFD and save O(N?) operations as shown below,

Algorithm 2.

log PDF generation

Cycle for scale (g)
Cycle for position (p)
Cycle for displacement (¥)
Generate mask (R%) for the next CNN operations
Template running: Diff(v) = Translate(IV), ) — I?)
Template running: average of Diff within R% by means of a mask.
End cycle (v)
End cycle (p)

End Cycle (¢)

Instead of calculating the simple DF D, the Gaussian windowed version (DF Dgqqs5) can be obtained
by dropping the masking window and applying a single diffusion with impulse response exactly the same
as the Gaussian windowing function. (see appx. B.1). This step spares 2 cycles for p and adds a diffusion
with few psec expense. The gain on the complexity of the algorithms is estimated in appx. B.2. See the

modified algorithm below,

Algorithm 3.

log PDF generation

Cycle for scale (q)

Cycle for displacement (¥)

Template running: Diff(v) = |Translate(I"),v) — I1?)].

Template running: Diffusion of Diff(¥) for 7,

End cycle (o)

3In general, template elements (i.e. Ai; and B;j), if not indicated otherwise, are assumed to be zero.
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End Cycle (q)

One can visualize the steps to be done as in fig. 3.4.

Displaced Frame Difference: 1 -
I(t+Dt)
=~ ) 7
s ¥ N
%7 diffusion
DFD at different scale Inverse of the most likely PDF Select Maximum APosterior|
= - (i.e. minima of the inverse)
— D= — OF
A _—
%7 diffusion
DFD at different scale
| |
! |
CNN operations DSP operations

Figure 3.4: Calculation scheme of the proposed algorithm: First, DFD in every direction is calculated
between the succeeding frames, then the corresponding log PDF is calculated. Second, diffusion is applied
to DFD then its PDF is calculated. It is repeated until the length of the repeated diffusion operations
produce the profile of the desired largest Gaussian window size. Finally, a pixel-wise addition of log PDF's
is aggregated in a single PDF in which the selection of the peaks gives the MAP decision.

Selecting the minima of ((20maz + 1) X (20mas + 1)) number of images at every pixel, can be achieved
optimally on CNN;, in principle, but unfortunately, not feasable yet. This is since, on the one hand,
the number of on-chip implemented LAMs is very small (specifically 8 LAMs on ACE16k ), therefore,
read-out and write-in operations from/to the chip gets unavoidable, so almost all the benefits we had by
on-chip processing is lost. On the other hand, analog memories fade by time passing, therefore, even if
one would have enough number of on-chip implemented LAMs, during repeated comparisons the noise
increases so much so that the results of these comparisions became useless. Hence, it is preferable to do
the maximum selection on a dedicated Neumann processor (DSP - digital signal processor) which, among
other calculation tasks, controls the otherwise passive ACE16k and maintains connection to the digital
”world”.

By analyzing the algorithm, one can realize that by increasing the scale, the average of a given region
is calculated repeatedly. Due to the commutativity of the summation operator in equ. 3.7, the order of
the calculations can be reversed, resulting in a significant contribution to the speed increase if performed
by CNN. This is due to the fact that calculating a diffusion can be interrupted at any time and continued
with no disturbance. After all, all we have to calculate is the sequence of the only temporal parameter 7;
for which the diffusion must be active in order to reach the next step. Thanks to this rearrangement, the
estimation of OF starts from small scale and progresses towards larger scales, while the PDFs multiply
in between.

In appx. B.3, we publish on-chip diffusion tests achieved for standard test functions such as the

Heaviside step function and the rectangular test function. These tests make possible to estimate the
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chip’s diffusion time constant by experience and give some heuristic analysis of the deterministic and

stochastic noise sources distorting the measurement of the DF Dgqyss-

3.9 Performance Analysis

In this section we detail the outcome of several experiments. The first and the second examples are made
by using an artificially ”panned” camera in order to have a good performance meter ( as a constant
motion vector at every pixel ) and for demonstrating the effect of the diffusion on single scales. For
the given purpose, we had set up a steady scene viewed by a low quality camera, then we picked two
subsequent frames and cropped them. The first image is done at the top left and the second one at
the bottom right (see fig. 3.5) by 3x3 pixels, each. This was to avoid random pattern (and shot noise)
noise-correlation between the frames, which would be a significant help for any OF algorithm, using a
single image, and cropped two times, similarly to ours. In this course, we were also faced with the pulse
noise of the un-switchable Auto Gain Control (AGC) of the camera, which significantly decreased the
quality of the correlation between frames, too. However, if one is to design an OF algorithm for real
life applications, he/she probably needs to cope with external, already existing built-in mechanisms and

global noise sources, like the AGC.

(a) Frame #1: Bottom-right band of 1 pixel width (b) Frame #2: Top-left band of 1 pixel width is
is sliced from the first image sliced from the second image

Figure 3.5: In order to get a vector field that is known at every pixel, an artificial translation (panning)
was introduced by slicing the frames of a video flow recorded from a steady scene.

As long as the first experiment that was produced by simulation, the second one was carried out
on-chip measurements, using the cropped images. The third and the fourth experiments’ input was the
standard Yosemite image sequence (ref. [Bla]), done by simulation and on-chip, respectively. Finally, the
last example is another multi-scale example that was made on-chip, grabbed by the optical sensor of the
chip at 10,000 fps.

3.9.1 Single Scale Analysis

In this series of experiments, we examined the effect of changing the diffusion length on the artificially
panned images. The model performs as one can expect. The measure displayed measure both the motion
vector’s absolute error and its degree error. Due to the artificial setup of the experiment, the error

decreases gradually, as scale increases (see fig. 3.6).
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(a) The relative error of the motion vectors’ absolute value is
depicted as the function of scale.
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(b) The relative error of the motion vectors’ degree is depicted
as the function of scale.

Figure 3.6: The relative error measured on images of fig. 3.5 is demonstrated. Note the increase of the
reliability by the increase of the scale.

Due to the similarity of fig. 3.6 and fig. 3.7, similar conclusions apply but, apart from the low
sampling rate of the later one, one might notice the increase of the error over 1 psec of diffusion time.
Without any in-depth analysis, we think that this is due to the strengthening offset drift of the chip,
which is more-or-less proportional to time.

Based on these graphs, two distinct and controversial claims can be stated:
e By decreasing the scale, the reliability of the measurements increases,
e As the diffusional length decreases, the spatial bandwidth of the motion vector information increases.

This is another form of the accuracy/spatial bandwidth dilemma. Hence, the combination of multiple
scales seems to be a ultimate trade-off.

However, in the proposed framework we unified the advantages of multiple scales and tried to bypass
the disadvantages, there are leftover questions . These mainly regard the selection of the cuts of the
scale-space. Currently, we did cuts in an evenly distributed fashion in the log domain with an arbitrary

chosen unit.
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(¢) The vector field by using 4 scales (diffusion to 0, 1, 0.5
and 2 us on-chip.)

Figure 3.7: The sub-figures (a) and (b) are, essentially, the same graphs as in fig. 3.6 but made on ACE16k
chip, using the standard test image Lenna. The resulted vector field is demonstrated in sub-figure (c).
N.B. The vector field is generated by 1282128 resolution but it is sampled for displaying only.

3.9.2 Multi-Scale Analysis

First simulations were made on the Yosemite standard test sequence* (fig. 3.8) for demonstrating the
quality of the algorithm, then that of a crop of size of 1282128 at coordinates of 100z50. Finally the
same was tested on-chip (fig. 3.9).

Tests was made with the on-chip sensor at extra high frame rate (fig. 3.10),t00. The pill on the image
is moving in south-south east direcetion.

In order to choose the right scales to use in the model, we made few simulations with focusing on the
combinations of the scales (fig. 3.11), and we have found that by gradually increasing the scale, the effect
of the multi-scale information reinforcement is getting more-and-more pronounced, while a low level of

information degradation is perceivable, too.

4Yosemite sequence is a well known synthetic image sequence for measuring performance of optical flow algorithms. The
motion of the camera is like flying above the valley in a way that upper-right corner of the valley remains fixed, while the
bottom-left corner moves about 4 pixels per frames. For this reason we used for motion vectors within {—4,4}x{—4,4}
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(a) The test image and vector field
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(b) The vector field only

Figure 3.8: Evaluation on the Yosemite standard test sequence by simulation.

3.9.3 The qualitative performance

Table 3.2 summarizes the qualitative performance of our method measured on the Yosemite sequence.

Lines marked with % in superscript indicate measurements made on the full size Yosemite image
(316x252), while the ones not marked were made in chip size (128x128) only. This a cropped version of
the Yossemite at coordinate 100,50.

The difference in the number of pixels, reasons why eventually the average angular error (AAE) of
chip vs. ground truth is better than sim vs. ground truth.

These results were obtained without any fine tuning of the used scales (i.e. diffusion lengths 7,’s and
Ag’s in equ B.5). It should also be noted that the model generates a 100% dense vector field. Due to the

range in this tests.
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Figure 3.9: The vector field of the Yosemite sequence using 4 scales (diffusion applied for 0, .5, 1 and 2
us on-chip). Strong noise diffuses from the left bottom corner of the chip (see last figure in appx. B.3).
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Figure 3.10: The vector field of a pill moving upward grabbed

(diffusions applied for 0, .5, 1 and 2 ps on-chip).

at speed of 10,000 frames per second

quantization of v, there is a theoretical limit on the angular error in the model ranging from 6.3402° to

22.5°. The model seems to perform in the tested range with a considerable variance (STDD). In order

to make comparisions fit to theoretical limitations of our model, the components of ¥ were rounded. In

Table 3.2 these lines begin with ”(int)”, while those measurements that were made with the original

performance meter begin with ”(float)”. This also explains why (int) measurements are considerably

better.

In Table 3.3, a far not complete list of methods are given capable of generating 100% dense vector

field.

Note that, no qualitative performance results were published on the very standard Yosemite sequence
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Table 3.2: Error performance on the ”Yosemite without clouds” sequence (100% dense) using only 2
frames. AAE stands for Average Angular Error (measured in degrees) and AVE stands for Average
Vector Norm Error (measured in pixels)

| Basis for comparison / errors | AVE | AAE. | STDD of AVE | STDD of AAE. |

(float) sim vs. ground truth* | 0.5 9.6 0.48 11
(float) chip vs. ground truth | 0.81 25 0.54 15
(float) chip vs. simulation 095 | 9.9 0.73 20
(int) sim vs. ground truth* 0.35 4.9 0.57 10
(int) chip vs. ground truth 0.41 | 3.8 0.55 14
(int) chip vs. simulation 0.43 1.3 0.63 10

in case of the few existing aVLSI OF solutions. Solutions with resoltion of 15x15 at 500 fps [SD04], or
with resolution of 95x52 at 30 fps [MECO04] publish performance measures on proof-of-concept kind of
tests (few geometric objects traslating in predefined directions).

In a recent paper [MZC'05] an FPGA based digital OF solution is given with resolution 256x256 at
60 fps implementing the original Horn & Schunk.

Table 3.3: Comparison of models (100% dense) on ” Yosemite without clouds” sequence. AAE stands for
Average Angular Error.

’ Model \ AAE ‘
Uras [UGVTSS| 10.44
Horn & Schunk (HS,original) 6.79
Lucas & Kanade (LK) 5.71
Black & Anandan 4.56
CLG (combined HS&LK)[BWS05] | 4.32
Simoncelli [Sim99] 3.55
Brox et al [BBPWO04] 0.89

It should also be noted that there are numerous high quality methods and as far as we are concerned,
the method of Brox et al [BBPWO04] and Aubert et al [ADK99] are far the best, but their computa-
tional requirements are tremendous, which postpones the possibility of using them in on-line, realtime

applications in the visible future.

3.10 Conclusion

Based on some of the known phenomena attributed to VSS (Bayesian inference, multi-scale view), we
have formulated a simple, but usable multi-scale OF algorithm that was shown to be applicable in a
mixed signal VLSI technique. As other experiments showed, simple ad-hoc approaches (such as edge
detection with center-surround filters) can easily improve the performance of the developed algorithm
but here we have concentrated on the formalism itself which proves to be powerful both in computational
complexity and in accuracy on a general purpose aVLSI hardware versus special purpose hardware with
the largest resolution. The resolution of the chip we used was enough to measure reasonable performance
meter on standard image sequence (Yosemite) over 100 fps. Formerly, the conducted simulations pointed
out a theoretical limit on the accuracy of the algorithm, which the analog on-chip results seem to get
close to, robustly. This is achieved as fast as none of the existing solutions exceeding our accuracy, even

in digital hardware at this resolution.
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Although the main disadvantage of the algorithm is the inevitably large memory needs, which increases
quadratically with the size of the motion vector but, as we have shown, it can be kept limited.

Further investigation should be made to determine the optimal distribution of scales on given images
(scale space analysis) what is currently made as a regular sampling only. It is also desirable to determine if
the aggregated PDF provides more information than a single vector field. We assume that this increased

information may be exploited easily in standard image processing tasks such as segmentation.
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(a) Frame #1 (b) Frame #2

Figure 3.11: An example: the camera is panned to follow the airplane; i.e. the background is moving
while the target is appearing steady.
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(c) Diffusion from 4 to 16 pixels is applied

Figure 3.12: The gradual reinforcement of the motion vector information by scale change is depicted.
Note the "smoothing” of the motion vectors in the background of the airplane, even in regions where no
measurable image gradient (i.e. local information) is present, whereas the area of the zero motion vectors
get the shape of the airplane.
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Chapter 4

Smooth Stochastic Resonance

4.1 Brief

A new class of stochastic resonator (SRT) and Stochastic Resonance (SR) phenomena are described.
The new SRT consist of a classical SRT, one or more time derivative circuits and the same number of
time integrators. The incoming signal with additive noise is first time derivated, then passes through
the classical SRT and finally it is time integrated. The resulting SR phenomena show a well defined SR.
Moreover the signal transfer and SNR are the best at the high frequency end. A particular property of
the new system is the much smoother output signal due to the time integration. Interestingly enough,

the phenomena can be observed in terms of CNN.

4.2 Notation and Symbols

1(t) step function

A signal amplitude in IDSRT

B amplitude of LCD’s output

) dirac delta

dif f(t) signal (and noise) after derivation in the IDSRT

DFT Discrete Fourier Transform

f frequency in IDSRT

FIR Finite Impulse Response filter

fe cut-off frequency

fs frequency of the signal

FT Fourier Transform

FD Fourier Domain

in(t) input of the IDSRT (signal + noise)

int(t) output of the integrator in IDSRT

H.O.T. Higher Order Terms (of the Taylor expansion for example)
IDSR Integro Differential Stochastic Resonance (phenomena)
IDSRT Integro Differential Stochastic Resonator (device)
LCD Level Crossing Detector

67
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led(t) output of the LCD in the IDSRT
! SNR gain

n(t) noise in IDSRT

Vo average mean firing rate

P Power of signal

PSD Power Spectral Density

RMS refers to the Root Mean Square (power of the noise)
s(t) signal in IDSRT

s FT of s

S(f) power Spectra

o rms of noise

SNR Signal to Noise Ratio (measure)
SR Stochastic Resonance (phenomena)
SRT Stochastic Resonator (device)

Te correlation time

TD Time Domain

Uy Threshold level

w rotational frequency

4.3 Introduction

Stochastic Resonators (SRTs) (see Refs. [BAS81, WM95, BV97]) are one of the most intensively studied
topic concerning noise assisted signal transfer. The particularity of these systems is that the signal
power and signal-to-noise-ratio (SNR) at the output expresses well defined maxima versus the input
noise strength.

Classical SRTs are threshold based devices. Therefore their output amplitude executes large abrupt
jumps. This behavior is often disadvantageous in practical signal processing systems.

The motivation of the present work is to introduce a new class of SRTs and stochastic resonance
(SR) phenomena which can produce arbitrary smooth amplitude while their SNR is as good as that of
classical systems. Another important property of the new system that, under practical conditions, it has
a frequency-resonance.

In the next sections, first the general integro differential stochastic resonator (IDSR) system is intro-
duced in Sec. 4.4; then one appropriate realization we used is introduced in Sec. 4.5; the theoretical
results are given in Sec. 4.6; and the simulation results are presented in Sec. 4.7.

Finally, according to the fact, that we rely on the findings of Ref. [Kis96] and it has not been published

in journal, we survey the main results of this article with respect to the signal in the linear response limit.

4.4 Integro-Differential Stochastic Resonators

The integro-differential stochastic resonator (IDSRT) is a classical stochastic resonator with a time-
derivation unit added before the output and a corresponding time-integration unit added at the output
(see Fig. 4.1). Most of known stochastic resonators produce “rough” output containing “discontinutities”,

such as sharp spikes, random telegraph signals, abrupt switchings between amplitude levels. In an IDSRT,
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the expected “roughness” is significantly less because of the time-integration. Higher-order IDSRTs, with
multiple derivators at the input and correspondingly multiple integrators at the output, will obviously
produce an even smoother output. It is important to note that the smoothing effect works only on
discontinuities added by the original SRT but not against discontinuities which may be found in the

input signal.

Input == | D"() | > | SR |—L>| 1"0) | == output

Figure 4.1: Integro-Differential Stochastic Resonator system architecture.

4.5 First order Integro-Differential SRT with a Level-Crossing-

Detector

Having a well understood stochastic resonator, the so-called Level Crossing Detector (LCD), we applied
it for the realization of the given model.

In general, an LCD emits spikes at its output whenever its input crosses a predefined threshold level.
These spikes are now integrated in the new model, so instead of spikes stair like function appears at the

output due to the integration. (see fig. 4.2)

Level Crossing Detector

Input —=> | D() | > 7& [ —I= | 10 | == Output

v

—_—=t

Figure 4.2: Integro-Differential LCD architecture.

With higher order derivatives and higher order integrations we can get parabolic approximations
which must be a “smooth” approach to the signal, particularly if it is sine wave function.

One might think that applying a simple linear at the output of an SRT would produce a sufficiently
smooth output. True, however the unpleasant phase shift would appear which does not happen if IDSRT
is used.

On the other hand, we need to consider the fact that not only the signal is integrated in the post
processing filter but the errors, too. In order to reduce its slowly varying component, not only the ideal
integrator (i.e. numerical sum called stepwise integrator) but the leaky integrator was tested, as well.

In the next section we show how these particular linear input/output transformations affect the SR

models in general.

4.6 Theoretical Results

In the processing line the derivator (D™()) of order of (n) processes its input (denoted by in) providing
the input for the LCD (denoted by dif f). The LCD’s output (denoted by lcd) is integrated (I™()) which
is the output (denoted by int = out) the entire process. (see fig. 4.3).
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_> @ —» D) —» LcD —» ") —»
signal
S(t)

noise

n(t)

v v v
diff(t) lcd(t) int(t)=out(t).

=
—
A

Figure 4.3: Nomenclature of the measurement points of the system we will refer to. The symbol '+’ in
the circle is an adder.

The SNR is calculated for sinusoidal input singals as

where P is the signal contribution to the power spectral density (PSD) to the noise power spectra (S(f))
at fs.
SNR,

The main purpose of the theoretical analysis is to specify %72+ (f) analytically and derive its absolute

maxima in explicit form.

4.6.1 Input

The input of the system (denoted by in(t)) consists of a hard limited white (S(f) = S) noise in the
frequency domain (denoted by n(t)) and a signal (denoted by s(t));

in(t) = s(t) + n(t).

The cut-off frequency of band limited white noise is f. (i.e. the noise correlation time f. ~ 1/7.).
The rms of noise is denoted by ;.

The signal is a sinusoidal wave with amplitude A and frequency f; = w,/27.

The sinus wave signal’s Fourier Transform (FT) can be written as §(f) = Ad(fs — f), thus the power

of such a signal is

1 [ . A?
Po=5 [ G0 =5 (11)
0
Since the white noise has uniform PSD, S;,, = ”J;i" holds. In this way,
A?%f.
SNR;, = = 4.2
202 (4.2)

4.6.2 Derivation

A derivation applied to in(t) does not change the SNR(f) albeit changes the PSD of Pyss(fs) and
Saiff(fs) compared to P;, and S;,, respectively.

In general, a derivation in time domain (TD) is a multiplication by jw in the Fourier domain (FD)

Sairf(f) =i2n fAS(fs — f) = jwAd(fs — f).
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For this reason, the power of the signal (or noise) becomes dependent on its frequency as

1 [~ 1 [ A?

Pags(F) =5 [ G =5 [ wAs(s = g =25 (13)

0 0

which applies to the PSD of the noise too as
Pairs(fs) = w3 Pu(fs) (4.4)
Sairr(fs) = w2 Sin(fs)-

For this reason, in their ratio w? always simplifies as

Pi s
SNRaiys(fs) = Fuugslfe) SN Rin(fs)- (4.5)

Saiff(fs)
While, the SN R is intact under this linear transformation, the rms of the noise changes as,

fe fe 472 . 472
U?jiff :/0 Sdiff(f)df:/o (27 f)2Sindf = ?ffsm =5 202 .

Note that, the noise of dif f(t) is not white.

4.6.3 Level Crossing Detector

Definition 1. An asymmetric level crossing detector (LCD) emits an impulse of amplitude (B) for
duration of 7y (uptime) on its output (y(t) = led(t)), whenever its input (x(t) = dif f(t)) crosses the

threshold level (Uy) in increasing direction at time (%;), i.e.

y(t) = LCDqsym(2(t)) = BY 1(t—t;) — L(t — (t; + 7))
where
z|,- <U; and x|+ > U,

The output of the LCD is a composed of impulses of size B for duration 75, whenever x (input) is less
then U, before t; but greater then U; after ¢;.

Definition 2. A symmetric level crossing detector (LCD) emits a positive impulse or a negative impulse
for duration of 7g on its output (y(t) = led(t)), whenever its input (z(t) = dif f(t)) crosses the positive
threshold level (U;) in increasing direction or crosses the negative threshold level (—U;) in decreasing

direction at time (¢;), respectively.
Y(t) = LCDgym (2(t)) = LODgsym (2(t)) — LCDggym (—x(1)).

The SNR gain of an LCD is detailed in Ref. [Kis96] and a brief is given in appx. C.1, regarding
the case when SNR is within the linear response limit. From there we recall the results we rely in the
calculation of SNR gain of IDSRT.

Unfortunately, in case of the IDSR, the LCD is fed by non-white noise, so the result cannot be applied
from there as a one-to-one replacement.

The average mean firing rate () of a one-directional zero-crossings can be written similar to Eq. C.1
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as

9 fe ) 2
vy = ; f=Saips(f)df | . (4.6)

Odif f

Because of the variation in the spectral characteristics (Sqiff(f) = (27 f)?Sin), the integral in Eq. 4.6
can be written as
fe f5 f4
f22nf)2Sidf = 47T2€C5m = 47T2€CO'Z-2R,
0

so Eq. 4.6 simplifies to
2 12 23
vy = 55— 2m== —

Oin =
%fcoin \/5 \/5

The SN Rj.q is similar to Eq. C.6 up to a substitution of the signal’s amplitude in the IDSR setup

Je-

which is wg A, so it gets

U2
SNRjcq = —Fv(Up)w? A%
g

in

Since Eq. 4.5 holds, by means of Eq. 4.2 the SNR gain (u) is,

Us U2\ 2v3 ¢ 42,2
_ SNRica EexP{?o?n} Vs LA 43R ~UZ\
M= SNRauyr A2, IR RN

in

. Uv? ., . .
Assuming o = 5o it simplifies to

_87\/§an —Q OJ2
p=—oexp {~a}w]. (4.7)

The extrema of Eq. 4.7 is at du/do = 0 which results in |aeqe| = 1.
Using the considerations given in appx. C.2 regarding the symmetric LCD case opposed to the

asymmetric, the maxima can be written as

_ 8z\/§w2
14 \/ge s

where z is 1 if asymmetric, or 2 if symmetric LCD is examined. One can conclude that the maxima of

(4.8)

the system became signal frequency dependent.

4.6.4 Integration

Considerations similar to Sec. 4.6.2 apply to the integration. The only difference is in Eq. 4.3, where
instead of multiplying by ws, division must take place. Just as in Eq. 4.5, w, it will cancel. This means
that by integrating the output of the LCD (led(t)), no SNR variation will appear;

SNRout = SNRlcd

so theoretically the Eq. 4.8 characterizes the overall performance.

It seems to be very attractive from the point of SNR gain since it provisions SN Rgqir, > 1. According
to the experiments, we have found that the IDSR hardly reaches the performance of the LCD because
the signal amplitude (at the input of the LCD) goes out of the linear response limit as the frequency

increases, however in the low frequencies regime the theory fits well to the experiments.
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Note that, after the input derivation, the sinusoidal signal amplitude will be proportional to the
frequency. So, if we increase the signal frequency, the signal gets greater at the LCD. However the noise
is constant. As it is well-known, the non-linear response limit is reached when the signal amplitude at
the input of the SRT is greater than the RMS noise. Exactly that happens in this case. This is another
important point which shows that not only the input noise is transformed but also the input signal by

this operation. We have a new system here which has a new behavior which is radically different from
the classical SRT's.

4.7 Simulations

4.7.1 Input - Gaussian White Noise Generation

Large number of uniformly distributed random variables added together according to central limit theo-
rem, provides accurate Gaussian process.

The rms of the noise was measured in every experiment rather than scaled after measuring in single
experiment as is common.

Since the analog LCD simulation in Ref. [Kis96], the fill factor of the impulse at the LCD’s output
was less than 10% in terms of the noise correlation time constant, first we built the experiment similar
to that.

In order to reproduce the circumstances of the analog experiment, we needed a noise source at least
10 times slower than the impulse we can generate in the system. Equivalently, the noise had to be
filtered by sharp low pass filter of 10th the cut-off frequency of the frequency corresponding to spike’s
uptime. While in TD, stepwise- (we refer to it as oversampling) and linear-interpolation was tested, in
FD, linear Finite Impulse Response filters were tested. By means of these techniques, we have found that
the measurements are non sensitive for this particular fill factor a up to 100% fill factor. However we
need to point out that aliasing type of errors might appear in simulations that has to be circumvented
in all cases. It can be done by buffers of size of least common multiples and/or filtering in FD. We used
the fastest case when the noise correlation time constant is equal to the uptime of the LCD, which means
that every item in the buffer corresponds to a random sample and the LCD emits an impulse for duration

of one sample.

4.7.2 SNR measurements

SNR measurement is based on separate signal and noise estimation.

Because of the structure of the experiment is such that we are in possession of the signal’s frequency
at the input (hence at the output), we can obtain the power of this particular frequency at the output
by a simple “read out” from the measured PSD.

The background noise estimation is not that obvious. The particularly interesting noise is in the
vicinity of the signal in the PSD. We measured it by simply averaging the PSD around the signal of a
given narrow region. Specifically, we used fixed number of +/ — 5 frequency samples excluding +/ — 1
samples around the signal. (NB: since DFT was used frequency resolution is predefined)

According to the findings of the Sec. 4.6, SN Rs were checked on in, dif f,lcd, out points of the system.
The graphs generated by in this way are the base of our experimental analysis. (see fig. 4.8 and fig. 4.9).
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PSD

background

Figure 4.4: The SNR measurement is based on the PSD. Signal’s power can be determined by a simple
“read out” at given frequency. The background noise is computed by averaging numerous samples of the
PSD in the vicinity of the signal’s frequency.
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Figure 4.5: SNR vs. signal frequency at different points in the system at a given rms. Theoretical SN R+
curve is fitted to the numerical results in the numerically stable region. Theory explains signal transfer
in the linear response limit which holds for up to 1500H z.

4.7.3 Derivation

According to the numerical instability of the numerical derivation, the numerical curve considerably
departs from the theoretical one in fig. 4.7(b). Hence the Eq. 4.5 must hold up to the point of breakdown
which implies that our measurement is supposed to be accurate no higher frequency than this. Thus Eq.
4.7 has at least the same high frequency limit. This can be justified in fig. 4.5 where the SN R;,, and

SN Rg; ¢y versus signal frequency fits well in this region.

4.7.4 Level Crossing Detector

Both asymmetrical and symmetrical LCD were tested with output impulse length equal to the noise
sampling time. It is worth noticing that however the input noise of the LCD is colored, the output of the
LCD is transformed to white noise in a considerable wide bandwidth which might have large potentialities

in signal processing applications.
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4.7.5 Integration

Achieving numerical integration in the TD leads to error prone results in the FD. Our experience supports
this unreliability of the power spectra already show on fig. 3.20 in Ref. [Ran87]. We have found that
this is due to the low representation degree of even conjugate signals with frequency lower than 1/7T in
the FD obtained by FT (including DC component). Unfortunately the stepwise integration biases the
spectra into this frequency range. In general, the integration formula widely used in FD, in case of non
analytical functions performs very badly with Discrete FT (DFT). There at least two ways to avoid this
numerical problem. Either windowing (e.g. Gaussian) or analog (or leaky) type of integration (with time
constant 7 < T'/2) of the data in the DFT’s buffer. We turned to leaky integration and tested the effect

varying the integration time constant at 7 = 50/ f. and 7 = 10/ f..

4.7.6 Experimental results

In this section we give all the graphs of the measured systems. First, time series are shown, then PSDs
are given, SNRs, SNR gain (SN R,,+/SNR;;,), signal power versus signal frequency and versus rms.

A short time course of an experiment is demonstrated in fig. 4.6.

Note the apparent positive tendency in fig. 4.6(d) in the range of 0...0.05s induced by the signal of
fs = 10H z which reflects the motivation of the IDSR setup, that is a smoother estimation of the signal
at input by the output.

In fig. 4.7, the PSD graphs of the same experiment is given in fig. 4.6.

In the experiments, we used the following parametrization: Noise cut-off: f. = 12000H z, signal
amplitude: A = 0.1, LCD threshold U; = 0.45, LCD impulse amplitude: B = 5, LCD uptime: 79 =
0.833. The scanned signal frequency range is {14Hz, ...,4500H z} The rms was varied within the range of
{0.01388...0.5625} in logarithmic steps (i.e. multiplied by 1.0559 in each step). Rms values were obtained
by measurements rather than scaling the noise according to a single measurement.

In fig. 4.8(a), SNRs are measured at different points in the system at a single rms using asymmetrical
LCD with stepwise integrator. According to the expectations the SN R;, and SNRgysy is equal for the
whole regime tested. Note that the equivalence holds even over the breakdown point (4500Hz) of the
derivator. The output of the LCD fits well to the theoretical quadratic curve (just as in fig. 4.5) but the
output of the integrator departs qualitatively from this. The reason is already detailed in Sec. 4.7.5. As
mentioned, the solution is twofold. Applying leaky integrator (see sub-figures ¢, d, e, f in fig. 4.8) (which
reduces the low frequencies in the spectra) and symmetrical LCD (which reduces the DC component)
(see sub-figures b, d, f in fig. 4.8).

Interestingly in the experimental setup we used in generating all figures, the SN R,,; reaches its
maxima at around rms = 0.04 at any signal frequency which would require further analysis. (see fig.
4.9(a)).

It is demonstrated in fig. 4.9(b) the maxima of the signal power and the maxima PSD at the same
frequency is not at the same point as function of rms which is the proof for the noise assistance in the
signal transfer.

Depending on the rms, the SNR gain increases rapidly in all experiments and reaches its maxima before
0.2. By further increasing the rms the SNR gain remain constant (see in fig. 4.9(c)) which means that
the SN R,.; becomes proportional to the SN R;,, at almost around the maxima. This absolute maxima
of all experiments goes just a little bit above (0.868) the well known LCD’s limit (0.849) although it
happens in the region where the derivation is declared to be unreliable. (see fig. 4.9 and the Appendix)
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Figure 4.6: Time course of noise+signal at different measurement points of the system within the same
experimental setup. The applied configuration was: Symmetric LCD, U; = 0.45, f, = 12000Hz, A =
0.1,B=5,79 =0.833us, fs = 10Hz.

4.8 SR in CNN

Interestingly, the phenomenon detailed above can be transfered to 2 dimensions. From this perspective,
CNN seems to be an appropriate image processing system to test it against noise robustness. The
significance of implementation on the phenomenon on a bio-motivated tool is underlined by the fact that
many have found that SR like processes may have significant role in neuro-transmission (ref. [BV97,
YYLO05]) or in celebral cortex (ref. [RDO1]).

However, the experiments detailed here are based on the phenomena that is analytically detailed in
the former section for 1D case, the proliferation of possibilities, when extending to spatial and temporal
directions in a biologically plausible way, did not let us to analyze all aspects of the theory. Indeed,

we have a good reason to assume that the theory transforms to these cases since dimensions (i.e. axes)
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Figure 4.7: PSD of 500 averaged experiments with U; = 0.45, f. = 12000Hz,A = 0.1,B = 5,79 =
0.833us, fs = 1800H z,rms = 0.2341. The number of samples used was N = 4096 that corresponds to
T = 0.341s time.

are linearly separable. For this reason, we conducted experiments that display the same phenomena, the

”smooth stochastic resonance” in 2D while using CNN compatible spatial-temporal operations exclusively.

4.8.1 Stochastic Resonance in Images

The receipt we followed in the experiment was the following: Assume an image at the input, then burden
it with noise, use an appropriate non-linearity and see what the optimal noise configuration is.

First, we used a simple threshold as a non-linearity with sub-threshold signal (image) and a Gaussian,
band-limited, white noise as noise source. This is probably the simplest SRT which can be asserted. The
original image (signal), along with the three different loads of noise with a fixed threshold is displayed in
fig. 4.10. It is fairly easy to prove that the power of the amplitude distribution of the Gaussian noise is
projected on the SNR versus RMS diagram (fig. 4.11).

4.8.2 Smooth Stochastic Resonance in Images

In the next series of experiment we showed that the spatial derivation and integration behaves similar
to the one that we have found in case of 1D signals. In terms of image processing, the derivation and
integration can be translated to different operations. In fig. 4.12, the diversity of possibilities for spatial

and temporal, derivation and integration is hinted.
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(e) The asymmetrical integro-differential system (f) The symmetrical integro-differential system
with leaky integration (7 = 10/f.). The maxi- with leaky integration (7 = 10/f.). The maxi-
mal measured SNR gain is 0.70. mal measured SNR gain is 0.866.

Figure 4.8: SN R,,; versus signal frequency at a single rms (0.19) The experimental setting was as in fig.
4.7.

For the single experiment we made, we used an invertible kernel for integration, its inverse for the
derivation and a Gaussian, band-limited, white noise, again, as a noise source. The three kernels that we

relied on can be interpreted as templates of size 5x5 in terms of CNN. These are as follows.

For spatial derivation
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Figure 4.9: The symmetrical integro-differential system with leaky integration (7 = 10/f.). The experi-

mental setting was as in fig. 4.8.

0.04 | 0.12 | 0.20 | 0.12 | 0.04
0.12 | 0.36 | 0.60 | 0.36 | 0.12
B =1]0.20 | 0.60 | 0.00 | 0.60 | 0.20
0.12 1 0.36 | 0.60 | 0.36 | 0.12
0.04 | 0.12 | 0.20 | 0.12 | 0.04

while A = 0, z = image.
For the thresholding Agg > 1, B = 1, z = image.

And finally for the integration
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(a) The original image (b) Noisy image with low (c) Noisy image with opti- (d) Noisy image with high
noise level mal noise level noise level

Figure 4.10: The simplest stochastic resonator is demonstrated. Whenever an image undergoes a thresh-
olding, then the SNR throughput can be maximized as a function of noise.
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Figure 4.11: SNR,,; is maximized as a function of noise (RMS)
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- Deblur - Threshold = Blur
— Center—Surround conv. — 1-exp(-x) — Gaussian conv.
- Inverse—diffusion — Schidtrigger — Diffusion
— Fourier domian deriv. - Fourier domain integr.

Temporal operations:  Temporal operations: Temporal operations:

- none - LCD (temporal) - none
— derivation - sigmoid - leaky integration
— Non-linearity

Complex Spat-Temp. dyn.
Combinations of the above

Figure 4.12: Possibilities for realizing the IDSRT in 2D.
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with B =1 and z = image.
Next, the theoretical limitation of the system without noise and nonlinearity (fig. 4.13) is displayed.
This simply shows the loss of information caused by the application of pre- and post- filters.

(a) The original test image (b) The test image (a) after (c) The integration of (b)
derivation

Figure 4.13: The noiseless reconstruction ability of the system without non-linearty.

When noise is applied and the signal is pushed under the non-linearity, this kind of single-shot recon-
struction makes non-sense. Hence the time integrated version is displayed in fig. 4.14(c).

It is worth noting that the whole system has some non-linear transmission characteristics in the
frequency domain as showed first in fig. 4.5 which causes the theoretical limit hard to approach when

natural signals are used as it happens in case of images.

(a) The test image after (b) The image after deriva- (c) And after long term time
noise load tion, thresholding and spa- integration

tial integration (blur opera-

tion)

Figure 4.14: The noisy reconstruction ability of the CNN based Spatio-Temporal SRT. The torsion of

the image is due to the variance of the frequency transmission ability of the IDSRT as displayed on fig.
4.9(a).

Interestingly enough, the system in this constellation shows SR behavior (see fig. 4.15), too.
Assuming an LCD in the temporal axis, which many has attributed to be the simplest model of
”integrate and fire” neuron model, we can obtain the same effect as it was measured in ref. [Kis96]. Since

axes are handled in a linearly separable manner (i.e. the spatial and temporal axes), results do it so, too.
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Figure 4.15: SNR,,: can maximized as a function of noise (RMS), hence the phenomena of ”smooth
SR” appears in CNN, too.

Here we do not aim to give comprehensive experiments with respect to spatial-temporal smooth SR

but to display the appearance of the effect which was successfully achieved.

4.9 Conclusion

We have introduced and demonstrated the viability of a new class of SR. An important characteristics
of the system is that, the signal and noise characteristics are the bests at the high frequency end, where
most Shannon Information is transfered. (see Ref. [BK02, Sha49, KHAO1]).

For the reason that many have hinted that SR mat have significant impact in visual and in cortical
processing, we have demonstrated that the phenomenon of IDSR can appear not only in single dimen-
sional systems, but for example in spatial-temporal systems. Being the CNN a bio-motivated device,
the application of CNN became a demonstrative example not only for the SR only, but for the new
phenomenon, the IDSRT, too.
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A.1 Proof of Symmetric Case

Proof for Lyapunov Function in Theorem 1[CR02] (rewritten here).

2MN

Viz) = z_; [/9 i f_l(v)dv} — %yTAy —y"'Bu—yTz

Since A is positive definite,

) 2M N
Viz)= > f W)@ — " Ay — " Bu—§"z
=1

By substituting f~(y) = =,

V(z) =gz —§" Ay —§"Bu—§"z
= —yT(—z+ Ay + Bu + 2)

=—yT%
By Af(z) = diag{f' ((x)1), f'(()2), ..., f'((x)2pn)} one can write g = A f(z)z, which results in
V(z) = —iTAf(x)

Since Af(z);; >0Vi,j = V(z)<0.
QE.D

A.2 Proof of 7 Symmetric Case

In the proof of Theorem 2 we relied on the stability of the Eq. (2.15).

Definition 13. A diagonal mapping H € P if and ouly if for i = 1,..., N, h;(z;) : R — R is a continuous,
non-decreasing bounded PWL function such that h;(0) = 0.

In ref. [For02] a fundamentally new approach is used for proving the theorem in which the author

claims that a neural network (N) written in the form,

& =—Dx+ Ah(z) + ¢ (A1)

is completely stable if h € P, where D is diagonal, ¢ is an arbitrary constant and A is symmetric.
The trajectory limit length theory which Mauro Forti et al develops ensures stability even in cases where
non-linearity (h) is totally not invertible caused piece-wise linear (PWL) with horizontal sections. These
horizontal sections lead to degenerate cases (where the infinitely many non-isolated equilibrium points
exist) hence, only non-strict Lyapunov function can be given. A Lyapunov function like this involves the
analysis by LaSalle’s invariant sets principle that may be rather complicated.

These horizontal sections play crucial role in increasing the networks learning capability (Vapnik-
Chervonenkis dimension) compared to sigmoid (tanh()) like neural input/output activation functions.
As the number of these horizontal sections increase, the pattern formation capability increases too, which

simply enriches the family of stable patterns.
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The following global Lyapunov function Eq. (A.2) is associated with Eq. (A.1) that overcomes the
problem of the assumption of invertible f(). It was assumed in Appendix A, too, indeed it is rooted in
the methodology of ref. [Hop84].

N Z; .
V() = 5" () Ah(x) " (a)e + 2 Di/o ”Cﬁl};

dp (A.2)

which holds for all the affine systems, too.

The steps of the proof are recalled from ref. [For02] with variables remapped to our system and with

standard Chua-Yang non-linearity (f()) applied instead of (h(x)) as,
1) A non-strict global energy function is introduced that overcomes the inversion of the non-invertible

(PWL) input/output activation function,

2MN

1 * * * i di
V(@) = =5 Ay =" (Bt )+ 3 0 [ 0T
i=1 0

The deduction of V(x) < 0 is, practically, equivalent to the one in Appendix A, but with Dini
derivatives at non-differentiable points of f().

2) The existence of a function like this is exploited to prove that the total length of the trajectory

t
L) = Jim [ () ador < o0

is finite which means that y(t) must be convergent,
3) which implies the convergence of x(t), as well.

Q.E.D

A.3 Proof of a Non-symmetric Case

A typical quadratic Lyapunov function (Eq. (A.3)) is assumed in Theorem 3 coming from ref. [Gil93]

and the proof is rewritten here with slight modifications.

1
V(z) = —5y" Py (A.3)
We rely on the same Lyapunov function, where the existence of a D matrix is hypothesed which will
symmetrize H = (A —1I) (I refers to the identity matrix) in order to get a symmetric P (i.e. P = DH =

HTDT), positive definite matrix. By Af(z) = diag{f’((z)1), f'((x)2), ..., f'((x)2arn)} one can write

V(z) —y" Py = —y" PAf(2)

= —y" PAf(z)(~z + Ay)
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Because Af(z)x = Af(x)y, by substitution,

V() —y" PAf(z)(—y + Ay)
—y" PAf(x)(A—1)y
= —y"PAf(z)Hy
—yTHTDTAf(z)Hy
= —y"H"(D"Af(x))Hy

Since (DTAf(z));; >0Vi,j = V(z)<0

Q.ED

Remark 6. In contrast to the original theorem, where D is assumed to be diagonal, we found that this
matrix property is not required to be met, at all. However, it can be proved that only Toeplitz matrices
may appear in such a role but resulting in no extra constraints on structure of matrix A. Consequently

it would make no sense to complicate the calculations with these cases.

A.4 Proof of the 7-non Symmetric Case

In the proof of Theorem / the quadratic Lyapunov function may be written as,

1
Viz) = —3 T py

associated to the non-unity 7 system with non-symmetric templates. Hence with assuming symmetric

P = DH where H = (A — 7), similar to that of in Appendix C, equations develop as,

V(z) = —y"Pj=—y"PAf(x)i
—yTPAf(:c)(—Tx + Ay)
—y" PAf(z)(—1y + Ay)
= —y"PAf(z)(A—T)y

= —y"H"(D"Af(x))Hy

Since (DTAf(z))i;; >0Vi,j = V(z)<0

Q.E.D
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A.5 The Conjecture

During the support of Conjecture 1 we relied the complete stability of a non-reciprocal 1D CNN in ref.

[CR9Y0]. In this case matrix A will have the following structure,

L -
00 0 s P 75
A=|s p = A= s
00 0 e
L Sp_

These types of matrices (A) belong to the class P, which possess the unique property that all of its
principle minors are strictly positive as well as the real part of their eigenvalues.

For similar reasons, simple cases when all cells are either in the linear region («) or in saturated region
(8), lead to a Jacobian matrix with either positive eigenvalues (Af(x) = A — I) only, or —1 eigenvalues
(Af(z) = —1I) only, respectively. While the calculation of the principal minors in the latter case is
obvious, the first one can be done by an elegant recursive rule proposed by Chua, et al.

Eigenvalue calculation when a single cell is in region 8 and the rest is in region «, may be decomposed

to the above cases, which enables the author to conclude the following remarks:

Remark 7. Regarding the trajectories of anti sign-symmetric CNNs,
e No trajectory can settle outside the saturated region,

e Any trajectory in the saturated region converges to a stable equilibrium point inside the same

region,
e All trajectory in the linear region tends to leave the region.

This support the conjecture of complete stability.
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B.1 The diffusion PDE and the corresponding IIR equivalence

B.1.1 Diffusion PDE

Next we brief the solution of a diffusion PDE, and compare it to the use of a Gaussian window function,
and ,finally, point out their equivalence.

The following differential equation describes a diffusion process

Of (x,t)
Y

D

Let the solution be f;(z,t), where j refers to the initial conditions. First, set it to
fi(z,t =0) = .0,

then solution is )

1 T
T,t) = ——expy—— . B.1
hit) = e {31 B.)
Now, having a vector composed of samples s(i) in discrete space as an initial condition as,

fg(x,t = O) = Z S(Z) (Swﬂ‘,

i

then the solution is,

folw,t) =Y s(i) fr(w +i,t) = s % fi(x,1), (B.2)

i
where ’x’ denotes the convolution operator, and i iterates through the discrete space.

B.1.2 Gaussian convolution window

Infinite Impulse Response (IIR) filtering means
y=s*IIR (B.3)

where y is the filter output, ITR is the filter and s is the input. If ITR is assigned to a certain Gaussian
function (e.g. equ. B.1), then equ. B.3 turns to be equivalent to equ. B.2 with a proper time step (i.e.
t = tg), which means, applying diffusion and using convolution of Gaussian filter provides the the same
result.

From equ. B.3, one can also conclude that if diffusion is done as an elementary operator, then Gaussian

window filtering is accelerated the by O(N?) orders of magnitude.

B.2 Algorithm Complexity

The complexity of algorithms is given in this section.

First, the alg. 1 is analyzed.
e It has to calculate the DFD at every pixel O(N?), for all possible vectors O(M?),

e then, the convolution for kernel size K at every scale (S), for O(N?%, M? K?2,8) cost.
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(a) Fix-pattern noise of ACE16k after diffusion (b) Attenuated fix-pattern noise of (a) with off-
of 10us, starting from a zero level input set = 139, gain = 11.0

Figure B.1: Fix-pattern noise characteristics

e Finally, get the maxima on a per pixel basis for O(N?2, M?) const.

Hence, the upper limit is O(N?, M2, K2, 9).
Second, the complexity of alg. 3 is given.

e The DFD is done in O(M?) time.
e The generation diffused versions for O(M?, K)
e Finally, get the maxima at every pixel on DSP O(N?, M?)

Note that, this solution has is only O(N?, M?) complexity since all the rests is done in CNN, in the
device that is essentially parallel and the speed of which does not depend on the number of pixels.

Probably, it is not fair to compare a sequential (Neumann) architecture to a fully parallel analog one
(CNN) in terms of complexity. For this reason, we might refer to the complexity term as a complexity in

CNN sense opposed to the traditional complexity concept; complezity in Neumann sense.

B.3 On-chip Diffusion

Unfortunately, analog circuits always face noise problems, hence implemented algorithms need tuned to be
robust against it. For this reason, we have recorded in-diffusion fix-pattern noise transfer characteristics
of the Heaviside step-function (fig. B.1) and the rectangular function on the ACE16k (fig. B.3).

Fix-pattern noise was measured by loading a zero level picture input into a LAM, then after a few
micro-seconds of diffusion, it was read-back from the same LAM.

We registered the following type of errors

e There was a bias towards white (in CNN terms it is referred to as -1 and associated with the negative
supply voltage) in the middle region of the chip that is probably due to the supply problems of the
chip. (see fig. B.2)

e Structured noise along the y axis; the source is probably the A/D converters’ unequalizedness

(narrow arrows in fig. B.2) which is associated to the cells on a per column basis,
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intensity

Figure B.2: 3d plot of section 0-50, 0-50 pixels (x,y) of B.1. The wide arrow points into the direction of
the offset bias, while the weak arrows point to a somewhat regular noise along the y axis.

e Cell bias which is probably the least significant factor,
e Shot-noise which is fairly suppressed as multiple experiences show.

Similar to this, in recording the step function characteristics, test images (fig. B.3(a),B.3(b)) were
loaded into a LAM, few micro-seconds of diffusion was applied then the image was read back. Along with

the considerable fix pattern noise, note the significant zero level error, too.

B.4 Alternative model background

An alternative formulation to multi-scaling was suggested by Cs. Szepesvari in a personal communication
leading, essentially, to the same results.

Let us define a multi-scale representation of the image:
I— {Ih IQa R Iq'm.u.:):}

where I, £ I. The images (I17 I,..., 1, ..—1) are generated by the respective operators fa, ..., fo....
[-1,1]™ — [-1,1]™) by fq( ¢) = I,—1 where ¢ = 2, ..., ¢ynar and where m is the number of pixels. We
call I, the image I at ¢'" scale. Here f; is a non-invertible scaling operator. In practice f; is a blur
operation.

We assume that 1(?)| the image of the next time-step depends stochastically on I, (the current

image) and the flow field ¥(v € R?*™). The following assumptions are made on this dependence.

All p(152)|lé2_)1, I 5) = p(I 2)|I(2 1) ) which means that the ¢'" scale of image I(?) depends

(2)

on image I") only through the ¢* scale of I, assuming I,”;, image IM and .

A1.2 Specifically, for ¢ =1, p(Il(2)|I(1),17) = p(IF)H1 ,U).

A2.1 suppp(Iy 12 = \1(2) 1 17) = f‘l(léz_)l) where the inverse of 1,52_)1 under f; is defined as
1,72 2 2)
) = {12 ) = 1 s
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(a) The Heaviside test function (b) The rectangular test function
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(c) The evoltion of the trajectory of CNN as a response to (d) The evoltion of the trajectory of CNN as a response to
Heaviside test function rectangular test function

Figure B.3: Evolution of the intensity profile (fig. B.3(c),B.3(d)) at the horizontal center line of the images
(fig. B.3(a),B.3(b)) when subject to diffusion. The maximal diffusion time applied in these experiments
was 10us. Within this period the full-length half-width (M) distance was 20 pixels.

A2.2 Forany Ij” € suppp(Iy” = 1P, IV, 5) and p(1P |17, I}V, ©) = exp (qu DFD(IP, 1V, @))
with Ay > 0.

A2.3 Specifically, for ¢ = 1,p(I£2)|Il(1), D) x exp (—)\q DFD(Il(Q), Ifl),@))

Our aim is to compute the MAP estimate of o given I, I and @, i.e. argmax, p(o|I), 1?)). By

Bayes theorem and dropping the normalization term,
p(O|1, 1W) oc p(IP 1M, ) p(0)

By the definition of Iéi)uw ,p(IN1M 5) £ p(I(z)

dmazx

[T, ). Let us define an expression for p(ng) 1M 7)), ¢ =

2, ..., Qmaz- By the properties of conditional likelihood, since 1152_)1 is a function of L§2),
pIPID, 5) = p(IP P, 1D, 5) p1i2, 11D, 9). (B.4)

The equation allows us to derive a recursive expression for p(I. 52) [T, 5). Recognize the recursion in this

expression (i.e. left hand side of the equation and the last term). From Al.1 and A2.2

q—1

pUPNIE, 10,0) = pIPIL, 1, 0) = exp (<A, DFD, (12, 1D),5))
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Hence, by equ. B.4 and using A1.2 and A2.3, we get

dmax
p(IP 1M 5) o exp <_ > DFD(I(I(Q)’I(I)’@O .

qg=1
Because we have no smoothness constraint on v, this becomes a separable expression of vy,...,Up,:
dmaz
> A DFD (1%, 1M, ;) (B.5)
q=1

hence, the MAP estimate of © can be obtained componentwise and is the same as equ. 3.7 extended with

the ability to weight scales with ;.
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C.1 Analysis of Level Crossing Detector

Here we brief the results of Kish from Ref. [Kis96] with respect to a signal in the linear response limit of

an LCD (see Def. 1. 2. ) fed by white noise and sinusoid signal.

The question of our interest is the maximal SNR gain (= SNR;,/SNR,,t) that can be obtained
from this system. SN R;,, can be formalized in a way as in Sec. 4.6.1 so Eq. 4.2 still holds.

To determine SN R, = SN Rj.q4, first, the mean impulse production frequency (v(U;)) is given as a
function of constant input s(t) = 0 with fixed threshold U, (see Rice formula in Ref. [Ric44, Ric45] for

zero crossings and its generalization, for example, in Ref. [Kis96] for non-zero threshold levels) as

W) =2 ( / " fQSm(f)df) e { ;f} (1)

adding a signal s(t) to the noise is essentially the same as modulating the threshold U; as U7 = U, — s(t),

hence

fe 2 o s 2
v(Up) = - ( f?ShL(f)df) -exp{w}. (C2)
0

2
Tin 20,

Yo
As a part of the expression, 1y denotes the mean uni-directional zero crossing frequency of the input

noise.

Assuming a white PSD for the noise (Sin(f) = Sin = 02,/ f.), Vo can be written as,

_ 1 . fe 2 %_ 1 / Q. fg’ _ fc
vy = Tin (Sz A f df) - Tin S’L’ﬂ ? - \/g (03)

and the Taylor expansion of Eq. C.2 around U, is

v(Uf) = (1 + ;%gjts(t) +...F h.o.t.) v(Uy)
~ (U + (_gtu(Ut)) 5(t) = v(U2) + vgain(U)s(2) (C.4)
Vgain(Ut)

where h.o.t. refers to higher order terms. Note that, the contribution of the signal is merely the last term.
Since the signal is very slow compared to the mean firing rate of the Poisson process. (i.e. fs < v)), the

time average of the impulse sequence emerged by reason of the modulation can be approximated as
Uav = B’T’ol/gain(Ut)S(t). (05)

A device like this can be interpreted as an impulse-width modulator where the modulation is a sinus

wave, which has the power
~Plcd = (BTOVgain(Ut)A)2~

Not like this is the background noise, which is a steady Poisson process with v(U;) mean repetition rate.
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Campbell’s theorem (for f > 0) applies to this as

(sin(wTg))? .

Sica(f) = v(U;) B? 2

In the low frequency range, sin(z)/z — 1 so
Slcd = V(Ut)B2Tg

which leads to )
Vgain (Ut )

2
V(Ut) A ’

SNRcq =

By substituting vgqin,

Uf V(Ut)2A2 Ut2

SN Biea = = v(Us) ol

Z/(Ut)AQ. (CG)
Finally with Eq. 4.2 in the denominator, the SNR gain () is

SNRica _ (Uf/o},) v(U)A* 2 U}
- SNR;,, = tAch/(QUizn) = ﬁél/(Ut). (C.?)

I

By substituting Eq. C.1 (i.e. ¥(U;)) in this by means of Eq. C.3,
_2U e S U2 U2 U
"= fC 0—1‘271 \/g P 20—1271 B \/g Uz2n P 201271 .

This means that the SNR gain is independent of the applied signal frequency. Indeed, it seems to be

independent of signal amplitude, too, but this is only due to linearization we made in Eq. C.4, so it is

dependent but only up to the higher order terms effect.

2

. . . U
To get the maxima consider using o = 5% so

in

1
w= 7 aexp {—a}

from which it can be seen that dyp/da = 0 — |aert| = 1, hence the maxima is

SNRieq\| 4
max{ SNR,, } = o3 (C.8)

C.2 Symmetric Level Crossing Detector

Symmetric LCD’s SNR can be concluded by assuming two asymmetric LCDs with U;” = U; and U, =

—U,; in Eq. C.3, so the positive (¢*) and negative threshold crossing rates (v~) are,

—(Ui - S(t))z}

202

n

VR = -exp{

v (UF) = Z/O-exp{_(_Ut_s(t))z} (C.9)

202

in
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After linearization as in Eq. C.4,

vHU) = v(U) + Vgain(Ur)s(
l/i(Ut) = V(Ut) - Vgain(Ut)s(t)'

o~
~

Since the positive and negative impulses,

U;Z = BTOVgain(Ut)S(t)
Uyp = (—B)1oVgain(Ur)(—s(t))

are summed in the time domain, the average value
Usvm = U + U =2Uq,

in terms of Eq. C.5, which means the signal power is P%"™ = 4P,.q4, while the background noise power
is doubled only (i.e. S;%"™ = 25j.q) since the two independent Poisson processes’ power can be added.
Thus their ratio, the SNR, is doubled compared to the asymmetric case (SNR}Y" = 2SN R;cq) which
means the SNR gain is doubled, as well. By Eq. C.8, the maximal SNR gain, can be written in general

max SNRlCd - 4z
SNRi, | eV3

form as,

where z is 1 in asymmetric and 2 in symmetric LCD case.
This result is important since the this is the first time, as far as we are concerned, to get real SNR

gain in the small signal limit with sinusoidal signals.
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