Tudományos projektek

2015. okt. 1. – 2018. szep. 30.

A projekt átfogó célja az egészségipar területén hasznosuló kutatás és fejlesztés erősítése, a hazai és külföldi kutatási eredmények hasznosítása, valamint az innovációs infrastruktúra és annak körébe tartozó szolgáltató tevékenység fejlesztése, a Széchenyi 2020 programban meghatározott célkitűzésekkel összhangban. Ezen belül szakmai társadalmi célja a szív- és érrendszeri, valamint daganatos megbetegedések visszaszorítása, demográfia javítása, alap- és ipari kutatási eredményekre támaszkodó, korszerű orvosi műszerek, valamint klinikai diagnosztikai módszerek és eszközök fejlesztésével.

2015. szep. 22. – 2017. jún. 30.

A jelenleg alkalmazott sebességmérő eszközök jellemzően RADAR vagy LIDAR alapúak, melyek aktív érzékelési technológiákon alapulnak. Ezek a berendezések áruk és méretük miatt nem alkalmasak a Smart City koncepció részeként egy elosztott szenzorhálózatban való alkalmazásra. A projekt keretei között kifejlesztésre kerülő CMOS képalkotó szenzor képes egyidejűleg ellátni a hasonló eszközökkel szemben támasztott követelményeket (sebességmérés, képkészítés a járművek azonosításához) kis méret, alacsony bekerülési költség és fogyasztás mellet.

2015. júl. 1. – 2017. jún. 30.

A projekt vezetője és a kutatás-fejlesztés irányítója az MTA Számítástechnikai és Automatizálási Kutató Intézet (MTA SZTAKI) volt. Az Intézet a hazai irányításelmélet és járműirányítás kiemelkedő intézményeként vállalhatta el és látta el ezt a feladatot.

2015. júl. 1. – 2017. jún. 30.

A projekt vezetője és a kutatás-fejlesztés irányítója az MTA Számítástechnikai és Automatizálási Kutató Intézet (MTA SZTAKI) volt.  Az Intézet a hazai irányításelmélet és járműirányítás kiemelkedő intézményeként vállalhatta el és látta el ezt a feladatot. 

2015. jún. 1. – 2018. nov. 30.

Az európai repülőgépipar tíz jelentős képviselője az MTA SZTAKI vezetésével, egy konzorciumban kutatja azokat a közös kihívásokat, melyek a repülés gazdaságosabbá tételét hivatottak biztosítani. A FLEXOP konzorcium tagja a legnagyobb európai repülőgépgyártó Airbus-on kívül a Német Űrkutatási Központ, több nagy múltú európai egyetem (Bristol, München, Delft, Aachen), valamint a repülőipar fontosabb beszállító cégei (az osztrák FACC és a görög INASCO).

2015. ápr. 1. – 2019. ápr. 1.

A SYMBIO-TIC projekt az európai gyártás rugalmasabbá, hatékonyabbá és biztonságosabbá tételét tűzte ki maga elé célul. Legfőbb újítása a munkás és a robot közös térbe helyezése a kollaboráció hatékonyabbá tétele érdekében. Ennek megvalósítása során különös hangsúlyt kap a biztonság. A munkás testi épségének védelmében, az ütközés elkerülésért a rendszer folyamatosan érzékeli a munkás helyét és ez alapján befolyásolja a robot viselkedését. Az optimális munkamegosztás megvalósításához fontos a munkafolyamatok körültekintő megtervezése és a változásokhoz való alkalmazkodás képessége.

2015. feb. 1. – 2018. jan. 31.

A projekt keretében a kutatások fő célja a virtuális gépeket megvalósító lemezképek optimális kezelése, mind a felhasználók, mind a szolgáltatok szempontjából. Az optimalizáció célja többek között a lemezképek készítésének egyszerűsítése, a méret csökkentése, a darabolás és a darabok számos szempont szerinti (teljesítmény, költség, méret, stb.) tárolása elosztott tárolókban, illetve a lemezképek visszaépítése darabokból.

2015. jan.

A "látni és elkerülni" (angolul: sense and avoid, angol rövidítéssel: S&A, a továbbiakban ezt használjuk) képesség létfontosságú a jövő pilóta nélküli légi eszközeiben (angolul: unmanned aerial vehicle, angol rövidítéssel: UAV, a továbbiakban ezt használjuk). Ez az elsődleges feltétele a polgári és hatósági UAV-k ember vezette gépekkel közös légtérbe integrálásának. Egy S&A szituációban a saját UAV-nk megfigyelőként működik és becsli az ütközés valószínűségét, ill.  lehetőségét. Ha szükséges, kitérő manővert kezdeményez.

2014. dec. 1. – 2017. nov. 30.

European Defence Agency Ad-Hoc Research and Technology Category B Project
2014/12-2017/12

Based on the APIS project, with extended goals: "To study, define, analyse a new system concept for implementing and demonstrating ISAR imaging capability in a plug-in multistatic array passive radar finalized to target recognition."

2014. jún. 1. – 2016. máj. 31.