Tudományos projektek

2022. jún. 1. – 2026. feb. 28.

RRF

2018. jan. 1. – 2019. dec. 31.

A projekt tartalma és célja az újszülöttek, különösen a koraszülött csecsemők halálozási arányát csökkentő, életben maradásának és életkilátásaiknak javítását szolgáló alap és alkalmazott kutatások eredményeinek felhasználásával támogatott fejlesztést tervezünk megvalósítani,  amely célt a konzorciális partnerek magas fokú tudományos ismereteivel és a legkorszerűbb technológiák felhasználásával érhetünk el. Eredményeként, piacképes technológiák kerülnek megalkotásra., új orvostechnikai prototípus készülékek, export és piacképes világszínvonalú termékek jönnek létre.

2017. szep. 1. – 2019. aug. 31.

Különleges, korszerű anyagok, modern anyagtechnológia: Új csomagolóanyag kialakítására irányul a projekt. Ennek megfelelőn a piaci igények alapján cél egy környezetbarát, a környezeti terhelést jelentősen csökkentő technológiai fejlesztés megvalósítása. A gyártás folyamán használt címke nem tartalmaz ragasztóréteget, ezért azt nem kell vegyszeresen eltávolítani a flakonról, Illetve nem tartalmaz hordozóréteget, mely a hagyományos címkeknél a felhasználás után hulladékot képez.

2017. szep. 1. – 2019. aug. 31.

Digitális holografikus mikroszkópiát sikeresen alkalmazzuk ritka minták elemzésére, mert akár százszor akkora térfogat vizsgálható vele, mint egy hagyományos mikroszkóppal. Erre eddig Gábor féle in-line architektúrát alkalmaztunk, de az ikerkép és nullad rendű tagok a rekonstruált objektumok képét szennyezik. A fázis visszaállítása, ami eltünteti ezeket a zajokat és az objektumok alakját is megmutatja, sajnos hosszú (nagy Fresnel szám esetén pedig kimondottal hosszú) iteratív eljárással valósítható meg.

2016. júl. 1. – 2017. júl. 31.
Két kamerás fedélzeti látórendszer
Két kamerás fedélzeti látórendszer

Részlegünk az MTA-SZTAKI ISAAC belső pályázatának keretében egy olyan két kamerás látórendszert fejleszt, amely az intézet Sindy robotrepülőgépére felszerelve képes valós időben detektálni és követni egy másik kis méretű robotrepülőgépet, illetv

2015. okt. 1. – 2018. szep. 30.

Endoszkópos diagnosztikán alapuló, szoftverrel támogatott klinikai eszközök fejlesztése

Modern multi-funkciós mérőeszközök fontos szerepet játszanak a pontos orvos diagnosztikában. Jelen munkánk célja endoszkópok, mint képalkotó orvosi mérőműszerek támogatása multi- vagy hiperspktrális  megvilágítással, ahol a megvilágítás kívánt spektrum kompozíció kis sávszélességű színekből tetszőlegesen, nagy sebességgel kikeverhető.Endoszkópos diagnosztikán alapuló, szoftverrel támogatott klinikai eszközök fejlesztése

2015. szep. 22. – 2017. jún. 30.

A jelenleg alkalmazott sebességmérő eszközök jellemzően RADAR vagy LIDAR alapúak, melyek aktív érzékelési technológiákon alapulnak. Ezek a berendezések áruk és méretük miatt nem alkalmasak a Smart City koncepció részeként egy elosztott szenzorhálózatban való alkalmazásra. A projekt keretei között kifejlesztésre kerülő CMOS képalkotó szenzor képes egyidejűleg ellátni a hasonló eszközökkel szemben támasztott követelményeket (sebességmérés, képkészítés a járművek azonosításához) kis méret, alacsony bekerülési költség és fogyasztás mellet.

IOL

2014. jan. 1. – 2016. jún. 30.

A szürkehályog hatékonyan gyógyítható új mesterséges szemlencsék beültetésével. Mivel a beültetett mesterséges szemlencsék fokuszát nem tudja állítani a szemünk, ezért a legmodernebb mesterséges szemlencsék több fókuszúak, hogy a páciens egyszerre közelre és távolra is lásson vele. A projekt keretében célunk szimulációkon keresztül megvizsgálni, hogy a különböző neurális adaptációs mechanizmusok segítségével hogyan, mikor és mennyire tud az idegrendszer alkalmazkodni a lencseátültetés utáni, speciálisan megváltozott optikai leképezéshez a többfókuszú lencsék esetén.

2013. jan. 1. – 2015. dec. 31.

Program keretében egy új mikrobiológiai mérőberendezést fejlesztettünk ki, amely ötvözi a fluoreszcens objektumok detektálását a holografikus mikroszkópok közepes felbontásával és kiterjedt mélységélességével. Így egy olyan berendezés jött létre, amely képes detektálni a fluoreszcens objektumok pozícióit egy nagyobb térfogatban, ezek lehetnek auto-fluoreszcens objektumok, pl.

2011. feb. 10. – 2014. dec. 31.

Kiloprocesszoros tömbszámítógép architektúrák kidolgozása komplex számításigényes problémák megoldására.