Progressive Solutions: A Simple but Efficient
Dominance Rule for Practical RCPSP

1, 1

Andris Kovacs'? and Jézsef Vancza

!Computer and Automation Research Institute,
Hungarian Academy of Sciences
2 Cork Constraint Computation Centre,
University College Cork, Ireland

{akovacs,vancza}@sztaki.hu

Abstract. This paper addresses the solution of practical resource-con-
strained project scheduling problems (RCPSP). We point out that such
problems often contain many, in a sense similar projects, and this char-
acteristic can be exploited well to improve the performance of current
constraint-based solvers on these problems. For that purpose, we define
the straightforward but generic notion of progressive solution, in which
the order of corresponding tasks of similar projects is deduced a priori.
We prove that the search space can be reduced to progressive solutions.
Computational experiments on two different sets of industrial problem
instances are also presented.

1 Introduction

The practical value of constraint-based scheduling hinges both on the representa-
tion power of the models and the efficiency of the solution techniques. Solution
performance, in turn, depends on whether the solver can recognize and take
advantage of the structural properties of the problem at hand.

Generic models, though different (like flow shop, job shop, resource-con-
strained project scheduling, etc.), hide some eventual structural properties of
specific real-life problem instances. Making such properties explicit by adding
extra features to the model is an option, but it comes together also with special-
ized solution techniques. Just to the contrary, in this paper we suggest to detect
and exploit some hidden structural properties within the boundaries of a generic
model. We introduce the simple notion of progressive pairs to characterize simi-
lar patterns of activities of a scheduling problem. Similarity will be defined both
in terms of temporal relations and resource requirements. Typically, progressive
pairs are inherent in practical discrete manufacturing problems where products
or components of similar/same type are produced in parallel, by using the same
technology and a common pool of resources.

We take the classical model of resource-constrained project scheduling prob-
lem (RCPSP) [3], and demonstrate our approach on the objective of minimizing

the makespan.! When detecting and exploiting progressive pairs, we rely on no
extra domain-specific information.

The results presented here are based on our previous works that suggested the
application of consistency preserving transformations to exploit some structural
properties of constraint programs [7]. Earlier experiments with a combination
of symmetry breaking techniques and so-called freely completable solutions con-
vinced us that the performance of generic constraint-based methods can consid-
erably be improved on practical problem instances. Now we take a more general
approach to rule out dominated solutions by constraints added before the search
process.

In the sequel we give an overview of relevant works related to symmetry
breaking and the application of dominance rules. Following the definition of the
RCPSP model, Sect. 4 presents the idea of progressive solutions together with
the basic definitions, theorems and proofs. Sect. 5 describes how we detect this
structural property among the projects in an RCPSP instance, while Sect. 6
summarizes the results of our experiments on two industrial data sets. Finally,
conclusions are drawn.

2 Related Work

Recently, considerable efforts have been made to explore various classes of consis-
tency preserving transformations in constraint programming. These transforma-
tions reduce the search space while ensuring that at least one (optimal) solution
remains, if the original problem was solvable. Hence, they essentially extend the
traditional toolbox of constraint programmers that mostly consists of equivalence
preserving transformations. Such transformations — like constraint propagation
or shaving — guarantee that the original and the transformed problems have
exactly the same set of solutions.

The most intensively studied branch of consistency preserving transforma-
tions is doubtlessly symmetry breaking. Symmetry is a bijective function f de-
fined on the bindings of the variables such that for each variable binding «, f(«)
is a solution iff « is a solution, too. Breaking this symmetry means excluding all
but one of the symmetric equivalents. The foremost of all symmetry breaking
techniques is the addition of symmetry breaking constraints to the model before
search. More sophisticated methods, such as the Symmetry Breaking During
Search (also called Symmetry Excluding Search) and the Symmetry Breaking
via Dominance Detection prune symmetric branches of the search tree during
search. All of these general frameworks require an explicit declaration of the
symmetries in the form of symmetry functions or a dominance checker. See [11]
for a recent overview of symmetry breaking techniques.

! Note that while this objective is often criticized by practitioners, it really helps to
squeeze a given amount of work into a pre-defined time frame. In a hierarchical
production planning and scheduling setting, where the primary goal of scheduling is
to generate an executable solution that complies with a segment of the production
plan, makespan is a useful criterion [13].

A wider class of consistency preserving transformations is constituted by the
dominance rules. They define properties of a problem that must be satisfied by
at least one of its (optimal) solutions. By now, little work has been done to
apply dominance rules in constraint programming. The recent paper [12] calls
the attention to the application of dominance rules and defines novel dominance
rules for three different problems.

At the same time, dominance rules are widely used in operations research
and project scheduling. For instance, dominance rules of different strength and
computational complexity are described for RCPSP with the criteria of minimal
makespan in [3]. Dominance rules, as well as methods for the insertion of re-
dundant precedence constraints are proposed for the problem of minimizing the
number of late jobs on a single machine in [2].

3 Notations

Below, we define progressive solutions for resource-constrained project schedul-
ing problems with the criterion of minimizing makespan, and give an outlook
on possible extensions at the end of the paper. Hence, let T' denote a set of
non-preemptive tasks. Each task ¢t € T has a fixed duration d;, and requires pj
units of each renewable cumulative resource r € R during the whole length of
its execution. The number of available units of resource r at a time, i.e., the ca-
pacity of r is denoted by ¢,.. Tasks can be connected by end-to-start precedence
constraints (t; — to) that state that task t; must end before the start of task
to. We assume that there is no directed circle in the graph of precedences.

Then, the objective is to find non-negative start times start; for the task
t € T, such that all precedence and resource constraints are satisfied, and the
makespan, i.e., the maximum of the end times end; = start; + d; is minimal.

Although they are not allowed in the original problem definition, we will use
the notion of start-to-start precedences as well, denoted by (t; --+ t3), meaning
that start;, < start;,. For brevity, we call the maximal sets of tasks connected
by precedence constraints projects.

4 Progressive Solutions of Scheduling Problems

Factories often produce several pieces of the same product, or products belong-
ing to the same product family during their short-term scheduling horizon. As
a consequence, their detailed scheduling problems may include many, in a sense
similar projects. This chapter is devoted to show that in such cases, a valid
ordering of tasks belonging to similar projects can be deduced by off-line infer-
ence. These investigations will allow us to insert precedence constraints in the
constraint-based model of the scheduling problem before search, and hence, to
reduce the search space.

4.1 The Underlying Idea

As a simple example, suppose that two identical projects, P and Q are to be
executed within the scheduling horizon (besides arbitrary other projects). By
identical, we mean that for each index i, tasks p; and ¢; in Fig. 1.a. (and in all
subsequent figures) have equal durations and resource requirements. Now, it is
easy to see that if there exists a solution to this scheduling problem, then there
exists one in which each task of P precedes its corresponding task in Q.

@@
Q Q @@
/)
p 80/

Fig. 1. a.) and b.) Examples of similar projects in the scheduling problem.

Now, assume that some tasks belonging to project P have already been ex-
ecuted before the start of the current scheduling horizon, hence, there is no
match of ¢; in P. Similarly, some tasks of @) suffice to be done after the end of
the horizon, resulting in no corresponding task for ps in Q). Again, tasks of P
can precede tasks of @, see Fig. 1.b. The third example in Fig. 2.a. depicts a case
where P and @ are different members of the same product family. P requires
an additional finishing operation (ps) that has no match in @, while there is an
extra component built in @ (gs, g7, gs). Finally, Fig. 2.b. has a theoretical sig-
nificance, since it shows an example where the inferred precedence constraints
form directed circles between projects, but not between tasks.

R (@)
Q
QL @—=~@—@
v,

Fig. 2. a.) and b.) Two more examples of similar projects in the scheduling problem.

Below, we formally define our notion of similarity between projects and
present how all this makes possible the reduction of the solution space.

4.2 Progressive Solutions

Definition 1 Two sets of tasks P and Q are defined isomorphic, and will be
denoted by P = Q, iff there exists a bijection B : P < @Q such that for each pair
of tasks p € P and q € Q

B(p,q) = VreR:ph=p) A dp=dy, and
B(p1,q1) A B(p2,¢2) = (p1 — p2) & (@1 — q2)-

Definition 2 Given two projects P and Q, we call them a progressive pair iff
there exists a P* C P and a Q* C @Q such that P* = Q*, and there are no
incoming precedences to P* and no outgoing precedences from Q*. This relation
will be denoted by P = Q (see Fig. 3).

Fig. 3. The progressive pair P = Q.

Furthermore, to avoid the ambiguous situations where P = @ and P & @ hold
simultaneously for two isomorphic projects P = @, we label the projects by
unique identifiers L(.). Now, we say that two isomorphic projects constitute a
progressive pair P = Q only if L(P) < L(Q).

Definition 3 A solution of a scheduling problem is called progressive, iff for
each progressive pair P = @, the execution of P precedes Q, in the formal sense
that for each pair of tasks p € P* and q € Q* such that B(p,q), p --+ q holds.
We will refer to this type of start-to-start precedence constraints as progressive
constraints.

Note that if at least one of the resources required by p and ¢ is unary, then
(p-—q) = (p—0q).

Theorem 1 If an RCPSP problem has a solution, then it also has a progressive
solution with minimal makespan.

We start the proof by the following simple lemma.

Lemma 1 Given an RCPSP problem with no directed circles of precedence con-
straints, the insertion of progressive precedence constraints does not create a
directed circle of (end-to-start and start-to-start) precedences between the tasks.

Proof: Let us label the tasks t € T by [(t) = |Pred(t)|—|Succ(t)|, where Pred(t)
and Succ(t) are the sets of predecessors and successors (direct and indirect) of
t in the original problem, respectively. Notice that [(t;) < I(¢2) holds for all
precedences (t; — to) in the original problem, and I(t;) < I(t2) for all the
inserted progressive constraints (t; --» t2).

Now, let us assume that there is a directed circle of precedences C. According
to the above, C consists of progressive constraints only, with [(¢;) = I(t2). Then,
by the definition of the progressive pairs, Pred(t;) = Pred(t3) and Succ(ty) =
Suce(ts). This also implies that all the projects traversed by C are isomorphic.
It is a contradiction, because by definition L(P) < L(Q) must hold for each
subsequent pair of projects P and @ traversed by C. a

Now, we prove Theorem 1 by an algorithm that departs from an arbitrary opti-
mal solution, and through iteratively swapping pairs of tasks, generates a pro-
gressive solution with the same makespan. In each step of the algorithm, a pro-
gressive pair P = (@ is selected, such that some of the progressive constraints
between P and () are violated in the actual schedule S. Then, the algorithm
computes a modified schedule S’ by swapping all the pairs of tasks in P and @
which violate the progressive constraints as follows.

Vp e P,geQ:fB(p,q) A starts > starts = startgl = startg, and
startgl = startg.

For all other tasks t € T, starttS, = start?.

Lemma 2 S’ is feasible, and its makespan equals the makespan of S.

Proof: All resource capacity constraints are satisfied in S’, because only pairs
of tasks with equal durations and resource requirements were swapped. In order
to show that precedence constraints p; — po, where p,ps € P*, cannot be
violated in S’ either, we introduce ¢; and ¢ to denote the two tasks in @ for
which B(p1,q1) and B(pa, g2) hold. Then,

— if neither the pair (p1,q1), nor (pa, g2) were swapped, then the start times of
p1 and ps are unchanged in S’ w.r.t. S, and S is feasible;

— If the pair (p1,q1) was swapped but (pz,qQ) not, then
end;? = ends < end? L < startS , = = startS

— If the pair (pg,qg) was swapped, but (pl,ql) not, then

ends = ends < ends < starts = startgz,

— If both (p1,q1) and (p2,g2) were swapped, then
end;?1 = 6nd§1 < start(f2 = start;i.

Precedence constraints pointing from P* to P\ P* and those within P\ P*
are also satisfied, because only tasks of P* were moved earlier, and tasks of Q*
later in the schedule. The proof is analogous for precedence constraints in @,
and trivial for the precedence constraints between tasks of T'\ (P U @), because
those tasks were not moved. a

The above step is iterated until there are no more progressive constraints vio-
lated.

Proof of Theorem 1: The algorithm halts when it has found a progressive
schedule. According to Lemma 2, this schedule is feasible, and has an optimal
makespan. Furthermore, this is reached in finitely many steps, because the al-
gorithm performs a brick sort over the tasks, according to the partial ordering
defined by the progressive constraints. O

5 Computing the Progressive Pairs

Computing the progressive pairs in essence requires a pairwise comparison of
the projects, and checking whether they have appropriate isomorphic subsets of
tasks. The computational efficiency of these algorithms is of special importance,
because no polynomial-time algorithm is known for deciding whether two general
graphs are isomorphic [5]. Furthermore, we did not find a generic way to decrease
the number of necessary isomorphism tests below O(n?).

Despite all this, our experiments suggest that in practical cases, PPs can be
computed fast enough. On the one hand, efficient graph isomorphism algorithms
are known for many classes of graphs, including trees [1, pp. 84-86], planar
graphs, and graphs of bounded valence [4,5,8]. The algorithms also return a
matching. In fact, the graph structures we encountered in our recent industrial
applications belonged to the class of in-trees, in the most general case. On the
other hand, often some kind of meta-knowledge about the projects (drawing
numbers of parts and assemblies, product family codes, etc.) can be exploited,
too.

In our pilot system, we assumed that the precedence graphs of projects form
in-trees. For each pair of projects P and @), and for each task p € P, we took
the sub-tree PP of the precedence tree of P rooted at the node correspond-
ing to p. We checked if PP is isomorphic with a sub-tree of @) also contain-
ing the root of @. Clearly, a positive answer of the isomorphism test means
that a progressive pair P = @ has been found with P* = PP (see procedures
ComputeProgressivePairs and CheckIfProgressive in Fig. 4.). We imple-
mented a simple depth-first search to perform the isomorphism tests (procedure
TryMatching). Note that TryMatching considers only the precedence constraints
present in the original problem formulation, but not the progressive constraints
inserted beforehand.

Although this algorithm has an exponential worst-case complexity, it proved
efficient enough for even the largest practical instances we tackled (see the next
section for details). This was possible because the vast majority of the isomor-
phism tests could return false immediately, due to the different durations or
resource requirements of tasks in the roots of the examined sub-trees.

PROCEDURE ComputeProgressivePairs()
FORALL project P
FORALL project @ : Q # P
CheckIfProgressive (P, Q)

W NN =

5 PROCEDURE CheckIfProgressive (P, Q)

6 ¢ := last task of @

7 FORALL task p € P, ordered by the increasing distance of p
from the root of P

8 IF NOT ((p is the last task in P) AND (L(P) > L(Q))) THEN
9 IF p=q THEN

10 M := TryMatching(P?,Q,{< p,q >})

11 IF M # () THEN

12 Add progressive pair P = () with matching M

13 RETURN

14 PROCEDURE TryMatching(P,Q, M)

15 p,po := Select a pair of task from P such that (p — po),
- p has no match in M, but po has a match in M
16 IF there is no such p,po

17 RETURN M

18 qo:= Match of pp in M

19 FORALL g : (¢ — qo) AND ¢ has no match in M

20 IF p=gq THEN

21 M’ := TryMatching(P,Q,M U{<p,q¢ >}
22 IF M' #0
23 RETURN M’

24 RETURN 0

Fig. 4. An algorithm for computing the progressive pairs when projects form in-trees.

6 Experiments

We performed computational experiments on two different sets of industrial
problems with two purposes. First, to estimate to what extent the tasks in a
scheduling problem can be ordered by off-line inference, and second, to measure
how much the inferred precedence constraints can speed up the solution process.

Our first set of data derives from an industrial partner that manufactures
mechanical parts of high complexity for the energy industry. Their products can
be ordered into four product families. Members of the same family share a similar
structure, but differ in various parameters. The overall number of different end
products is ca. 40, but this number may grow in the future. A project, aimed at
the fabrication of one end product, consists of up to a few hundred tasks. Since
the bill of materials of the products are tree-structured, the precedence relations
within a project also form an in-tree. Tasks require one unit of a machine resource
(unary or cumulative) and one unit of a human resource (cumulative) for their
execution. There are altogether ca. 100 different resources in the plant. For more
details on this scheduling problem, the readers are referred to [6].

The other set of problem instanced originates from the ILOG MascLib li-
brary [10]. MascLib contains industrial and generated benchmarks classified ac-
cording to the complexity of the scheduling model. For our experiments, we used
the No-Calendar General Shop (NCGS) problem class. Although the authors of
the library suggest the usage of more realistic criteria — combinations of non-
performance, earliness/tardiness, setup and mode costs — we simplified these
instances to standard job-shop problems and minimized makespan. Therefore,
we disregarded the due times of the tasks and the option of not performing them,
while preserving their durations, resource requirements, and the precedence re-
lations. The library contains 26 NCGS instances, but 13 of them differ only in
the tardiness and non-performance costs from the others, and 7 others do not
contain progressive pairs at all — we believe these were the generated instances.
Hence, we performed experiments on the 6 remaining instances.?

As the first step of the experiments, we detected the progressive pairs in the
problem instances. The results are presented in Table 1. The first group of rows
stands for the instances from the industrial partner, while the second group for
the NCGS instances. Columns Tasks, Projects, and Resources give information
about the size of the problem instance, while column PPs indicate the num-
ber of progressive pairs of projects found. FtS and StS displays the number of
inferred end-to-start and start-to-start progressive precedence constraints. The
last two columns contain the order strength (OS) [9] without (OS™) and with
(OS™) the inferred constraints. OS was calculated as the number of precedence
constraints within one resource, divided by the number of task pairs competing
for a resource, i.e.,

ZT‘GR
T (T |=1) °
2rer T

Prec,|

0S =

2 We also experimented with a third set of data that came from the automotive in-
dustry. These were job-shop problems with ca. 50 unary resources and hundreds
of projects, each containing at most 6 sequentially ordered tasks. Progressive pairs
could be found in these instances as well, but the resource loads were so unbalanced
that it was easy to find optimal solutions even without the progressive constraints.

where T, = |t € T : p} > 1| and Prec, = {(t1 — t2) or (t1 --» t3) : t1,t3 €
T,.}.3 Hence, OS is 0 when there are no ordering constraints within the resources,
and 1 if the tasks are completely ordered. The results show that in all the in-
stances, the inferred progressive constraints could considerably reduce the search
space. In the case of the NCGS instances, all the inserted precedence constraints
were of the end-to-start type, since these problems contained unary machines
only. The time needed to find the progressive pairs did not exceed 1 second even
for the largest problem instances.

Tasks Projects Resources|PPs EtS StS|OS™ OS™
pl 3511 97 95| 308 17605 864(0.011 0.090
p2 2767 80 95| 242 10674 641]0.014 0.093
p3 1470 70 95| 132 2729 273]0.030 0.105
p4 1753 80 95| 148 2833 225(0.025 0.077
pd 2472 89 95| 196 3389 339(0.017 0.050
p6 2570 91 95| 181 3653 323(0.019 0.058
p7 1133 70 95| 134 1495 212]0.068 0.227
p8 769 68 95(122 293 248]0.052 0.084
P9 1620 85 95| 160 2723 299(0.027 0.094
pl0 1677 71 95| 156 491 348]0.024 0.033
pll 1471 69 95129 337 277]0.026 0.034
pl2 585 71 95| 143 232 221(0.032 0.069
pl3 1786 83 95| 187 2918 353]0.024 0.082
pl4 1240 72 95(220 1570 230(0.067 0.201
pl5 947 45 95| 92 1223 97]0.088 0.269
NCGS:21 60 16 5/ 39 147 -|0.000 0.377
NCGS.31 75 19 5/ 42 162 -|0.000 0.277
NCGS_54| 260 45 101476 1783 -|0.007 0.399
NCGS.55) 260 45 10| 588 1921 -|0.007 0.427
NCGS_75| 1250 41 30/ 40 1600 -]0.042 0.128
NCGS_81| 2500 72 30| 302 12210 -|0.022 0.184

Table 1. Order strength without and with progressive constraints.

In order to measure the effect of the inferred ordering decisions on algorithm
performance, we fed these instances into ILOG Scheduler 5.1. We used ILOG’s
default branch-and-bound search with the setting times branching strategy and
the edge-finding algorithm for the propagation of resource constraints. For all
instances, the solution process was stopped when the optimality of a solution
was proven, or after 600 seconds passed without improvement. In the latter case,
we computed a lower bound by pure constraint propagation. The tests were run
on a 1.6 GHz Pentium IV computer under Windows 2000 operating system.

The results achieved without and with the presence of the progressive con-
straints are shown in Table 2, where each row stands for one problem instance.

3 Including all the edges in the transitive closure of the precedence graph.

UB and LB stand for the best found upper and lower bounds, respectively.
Error was calculated as (UB — LB)/LB, while -’ denotes optimality. Values
displayed in columns Nodes and Time were measured only until the best solu-
tion was found. The solver often generated significantly more search nodes until
the timeout, but displaying those figures in the table would not be informative.

The figures show that progressive constraints facilitated both finding better
solutions and proving tighter lower bounds. While improved lower bounds and
better pruning is an evident outcome of a tighter formulation, the presence of
the progressive constraints also had a positive effect on the branching heuristic.
This is clearly shown by better first solutions for 10 of the 21 problem instances.
All in all, the addition of the progressive constraints decreased the gap between
the solutions found and the lower bounds by 60% on average, and made pos-
sible finding optimal solutions for two previously unsolvable instances (p5 and
NCGS_31).

At the same time, the presence of progressive constraints had a negative im-
pact on the solution process in the case of two instances: p9, where equivalent
solutions were found, but with less search without the progressive constraints,

Tasks Without PP With PP

UB LB Error Nodes Time| UB LB Error Nodes Time

(%) (sec) (%) (sec)

pl 3511 372 341 9.09 3511 651| 345 342 0.88 3511 646
p2 2767 289 247 17.00 2767 29| 251 248 1.21 2767 29
p3 1470| 276 276 - 1470 11| 276 276 - 1470 15
p4 1753] 252 252 - 19719 1891| 252 252 - 7347 553
p5 2472| 290 276 5.07 2472 21| 276 276 - 2472 36
p6 2570 269 230 16.96 2570 25| 254 230 10.43 2570 23
p7 1133| 254 254 - 5686 148| 254 254 - 1133 8
p8 769| 264 264 - 2309 31| 264 264 - 770 2
P9 1620| 343 334 2.69 1620 9| 343 334 2.69 3240 328
pl0 1677 304 284 7.04 1677 9| 295 284 3.87 6924 406
pll 1471| 320 307 4.23 3450 286| 310 307 0.98 4469 273
pl2 585| 358 349 2.58 585 1| 356 349 2.01 585 1
pl3 1786| 370 366 1.09 4073 483| 373 366 1.91 5409 475
pl4d 1240| 383 373 2.68 5504 147| 376 373 0.80 4885 541
pl5 947| 233 222 4.95 5232 107| 232 222 4.50 3267 77
NCGS_21 60(2872 2799 2.61 9304 0[2872 2854 0.63 13469 0
NCGS.31 75(3412 3339 2.19 9552 0[3348 3348 - 10235 1
NCGS_54| 260({1105 1105 - 260 0[1105 1105 - 260 0
NCGS_55 260 975 975 - 260 0| 975 975 - 260 0
NCGS_75| 1250({1164 1028 13.23 1200404 1310({1122 1044 7.47 17649 82
NCGS_81| 2500{2220 1902 16.72 5956417 20479(2014 1902 5.89 5001 234

Table 2. Effect on algorithm performance.

and pl3, where better solution could be constructed without them.* This ef-
fect is caused by the adverse interaction of the inserted constraints with the
search strategy, an unfavorable phenomenon well known from the literature of
symmetry breaking [11].

7 Conclusions

In this work we focused on the solution efficiency of constraint-based scheduling
on practical RCPSP instances. For that purpose, we suggested a method for
detecting progressive pairs, and transforming the original problem into a tighter
constrained formulation by the application of a novel dominance rule. It was
proven that the proposed transformation preserves the consistency of the original
problem.

Our hypothesis was that practical scheduling problems do have components
with inherent temporal and resource-related similarities. The experiments con-
firmed that the simple but generic notion of progressive solutions is appropriate
to capture this structural property. Further on, applying progressive constraints
made the scheduling problems almost in each case easier to solve.

The proposed method naturally extends to richer scheduling models, includ-
ing earliest start and latest finish times, setup times, or various other criteria,
such as the minimization of tardiness costs. Finally, one has still to investigate
if the harmful interaction of the progressive constraints and the search heuris-
tic can be eliminated, likewise it is done by advanced techniques of symmetry
breaking.

Acknowledgement

This research has been supported by the grants NKFP 2/010/2004 and OTKA
T046509.

References

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

2. Ph. Baptiste, L. Peridy, and E. Pinson. A Branch and Bound to Minimize the Num-
ber of Late Jobs on a Single Machine with Release Time Constraints. European
Journal of Operational Research, 144(1), pp. 1-11, 2003.

3. E.L. Demeulemeester and W.S. Herroelen. Project Scheduling: A Research Hand-
book. Kluwer Academic Publishers, 2002.

4. J.E. Hopcroft and R.E. Tarjan. A V2 Algorithm for Determining Isomorphism of
Planar Graphs. Information Processing Letters 1, pp. 32-34, 1971.

4 There is an apparent disproportion between search nodes and time for p9 and p10:
the number of nodes doubles while time multiplies by ca. 40. This is due to the fast
processing of nodes until a first solution is found (where the number of nodes equals
the number of tasks), and heavier computation later, with a valid upper bound.

10.

11.

12.

13.

B. Jenner, J. Kobler, P. McKenzie, and J. Toran. Completeness Results for Graph
Isomorphism. Journal of Computer and System Sciences 66(3), pp. 549-566, 2003.
A. Kovécs. Novel Models and Algorithms for Integrated Production Planning and
Scheduling. PhD Thesis, Budapest University of Technology and Economics, 2005.
http://www.sztaki.hu/~akovacs/thesis/

A. Kovécs and J. Vancza. Completable Partial Solutions in Constraint Program-
ming and Constraint-based Scheduling. In Proc. of the 10th International Confer-
ence on Principles and Practice of Constraint Programming, Springer LNCS 3258,
pp. 332-346, 2004.

E. Luks. Isomorphism of Bounded Valence Can Be Tested in Polynomial Time.
Journal of Computer and System Sciences 25, pp. 42-46, 1982.

A.A. Mastor. An Experimental and Comparative Evaluation of Production Line
Balancing Techniques. Management Science 16, pp. 728—-746, 1970.

W. Nuijten, T. Bousonville, F. Focacci, D. Godard, and C. Le Pape. Towards an
Industrial Manufacturing Scheduling Problem and Test Bed. In Proc. of the 9th
Int. Conf. on Project Management and Scheduling, pp. 162-165, 2004.

K.E. Petrie and B.M. Smith. Comparison of Symmetry Breaking Methods in Con-
straint Programming. In Proc. of the 5th International Workshop on Symmetry
and Constraint Satisfaction Problems, 2005.

S.D. Prestwich and J.C. Beck. Exploiting Dominance in Three Symmetric Prob-
lems. In Proc. of the 4th International Workshop on Symmetry and Constraint
Satisfaction Problems, pp. 63-70, 2004.

J. Vancza, T. Kis, and A. Kovécs. Aggregation — The Key to Integrating Produc-
tion Planning and Scheduling. CIRP Annals — Manufacturing Technology 53(1),
pp. 377-380, 2004.

