
Digital Enterprise Solution for Integrated
Production Planning and Control

L. Monostori1,2, G. Erdős1,B. Kádár1, T. Kis1, A. Kovács1,

A. Pfeiffer1 and J. Váncza1,2

1Computer and Automation Research Institute,
Hungarian Academy of Sciences, Budapest, Hungary

2Department of Manufacturing Science and Technology,
Budapest University of Technology and Economics, Budapest, Hungary

Abstract: Digital enterprise technologies combined with sophisticated
optimization algorithms can significantly contribute to the efficiency of
production. The paper introduces a novel approach for integrated production
planning and control, with the description of the mathematical models and
solution algorithms. The deterministic optimization algorithms are
complemented by a discrete-event simulation system to assess solution
robustness in case of disturbances. The methods are illustrated by describing
two prototype systems and by some experimental results obtained in an
industry initiated project.

Keywords: Production planning and control, discrete-event simulation

1 Introduction
The concept of digital enterprise – the mapping of the key processes of an enterprise to
digital structures by means of information and communication technologies – gives a
unique opportunity for planning and controlling the operation of enterprises [22].
Digitalized solutions are capable to connect customer order management with production
planning, scheduling and control (PPC in short). On the other hand, the importance of
optimization in decision making at various levels of an enterprise has greatly increased
over the past decades, as companies invest in complex advanced planning and scheduling
systems to replace their out-dated material requirement planning software. Digitalized
data and sophisticated algorithms together can provide additional competitive advantage
which cannot be achieved by applying solely the latest production technology.

The scope of our work is set to complex engineer-to-order and make-to-order
production, where products (like turbines, assembly lines, etc.) are traditionally
associated with high quality, advanced, cutting-edge technology. These industries usually
require skilled and expensive human workforce. Recently, business focus has shifted
from selling products to supplying a combination of products and services (like

2

engineering design, installation, on-site customization, maintenance). Such “extended
products” are highly customized and their value is sensitive to the time of the delivery.
Human resource intensive repair and recycling activities have to be planned together with
normal production. Due to complex production processes and long lead times, production
of components often starts before the overall design has been completed, or
customization is executed in parallel with some production activities.

In our target sector, a project-oriented approach is taken in general for planning and
controlling operations. Relying on the conventional wisdom that it can never be wrong to
get work done early, existing project planners typically try to sequence activities as early
as possible, subject to technological constraints and resource availability profiles. Such
methods are only capable of finding a particular solution, without the ability to explore
and evaluate alternatives. Hence, they cannot be used for optimization. Further on,
manual intervention is typically required to deal with overloaded resources and violated
deadlines. According to our experience, medium-term production plans are re-adjusted
manually time and again, and less than 50% of the original plan is executed finally.

Our first objective was to develop intuitive and flexible models and fast, reliable solution
techniques that scale-up well also to large production planning and control problems.
Hence, we tackled both the medium-term production planning and the short-term detailed
scheduling problems as resource-constrained project scheduling problems (RCPSP) [7].
The solution methods had to respect all the main temporal, capacity and material
availability constraints and find an optimal trade-off between various costs and due date
performance criteria.

Our second objective was to find novel, aggregate formulations of the production
planning problem which ensure the integrity of results that are generated on two different
hierarchical levels, on various horizons, by using distinct models and solution algorithms.
Following the usual planning hierarchy, production planning determines what to do on
the medium-term so as to achieve high level business objectives. On the other hand,
scheduling is responsible for refining a segment of the production plan into a detailed and
executable schedule. However, since the two levels use different models, it is open
whether production plans can really be unfolded into feasible, executable detailed
schedules. An essential practical concern – especially in make-to-order production – is
also that the representation of the planning problem should be generated automatically,
from data readily available in de facto standard databases of production information
systems.

Both planning and scheduling problems are burdened by various uncertainties like
estimated resource needs, uncertain capacity availability, unspecified activities due to
evolving problem definition, uncertain orders, hypothetical projects, uncertain processing
times, as well as unreliable delivery dates of necessary components and materials. Any
method that neglects these issues is prone to generate fragile solutions. Disruptions
hardly stop at the boundaries of the particular shop floor of an enterprise; they spread
upwards in the decision hierarchy and even to other members of a production network.
Due to reasons of complexity, the direct inclusion of any main uncertainty factor into our
RCPSP models was out of question. Hence, our third objective was to assess the

3

sensitivity of deterministic solutions and improve the robustness of production schedules
by using discrete-event simulation techniques.

In the sequel first we present our integrated approach to production planning and
scheduling (Section 2). While we capture problems at both levels of the planning
hierarchy as RCPSPs, the details of the models and the solutions techniques are fairly
different. Section 3 gives an account of how we built simulation models automatically
from common master data and applied simulation techniques for assessing the sensitivity
of production schedules. This work had a strong industrial motivation: in Section 4 we
present two prototype systems developed for two enterprises operating in the engineer-to-
order and make-to-order sectors, respectively. Finally, we conclude the paper in Section 5
and give an outlook for related research activities.

2 Integrated production planning and scheduling
In make-to-order manufacturing environments, production planning is responsible for
allocating scarce resources to customer orders over time on a medium-term time horizon
(3-12 months). Usually the resources and operations are aggregated to obtain manageable
problems, and to get rid of unnecessary details [27]. The objective of planning can be
either

• to maximize customer satisfaction by minimizing the tardiness of customer
orders, or

• to minimize the cost of completing all the customer orders on time, when delayed
shipment is unacceptable.

In contrast, detailed scheduling deals with the allocation of operations to machines (when
more machines are available to perform the same operation) and the sequencing of
operations on the allocated resources. The resource capacities and capacity extensions, as
well as the time window of every operation is determined by production planning and the
scheduler has to take them into account as hard constraints. Usually, production planning
determines the calendar week in which an operation has to be completed. The time
horizon of scheduling is usually a couple of days or a few weeks. In fact, it makes no
sense to make a detailed operation schedule far in the future as this would be inevitably
changed due to disturbances and unforeseen events. The objective of scheduling can be to
minimize the makespan of scheduled operations with the aim of finding a schedule such
that all the operations planned to complete in a calendar week would finish on time.

In project-oriented planning and scheduling each production order becomes a project that
has to be carried out from the ordering of materials through manufacturing, assembly and
delivery to the customer. The projects compete for the various resources. If there are
several long projects that take several months to complete, then the planning of capacity
allocation and expansion has to be done at the production planning level, while the daily
work requires a detailed schedule of the operations. Both of these problems can be
modeled and solved as resource constrained project scheduling problems, where planning
provides constraints for scheduling, and conversely, the planning problem is defined by
aggregating the resources and the detailed operation plans of the projects. Below we

4

present in detail the planning and the scheduling problem, and the necessary aggregation
procedures. We also discuss qualitative results.

2.1 Project-oriented production planning
In project-oriented production planning, each project is a collection of activities that are
aggregated from the detailed operation plans of the projects. The aggregation procedure
will be discussed in Subsection 2.2. The time horizon of production planning consists of
several weeks, and the plans specify the progress of each activity of each project in every
calendar week. In case of long projects, aggregated activities usually take several weeks,
and the progress or intensity of the activities varies over time. Such a variation of
activity-intensities can be planned, provided the chosen planning method enables the
modeling of variable-intensity activities [9]. Below we introduce such a mathematical
programming approach and describe some results obtained with it.

There are various results in the literature for project scheduling with variable-intensity
activities. Weglarz [32] considers the model with continuous time and provides analytical
results for minimizing the makespan with respect to finite-capacity resources. Leachman
et al. [21] provide practical heuristics. The discrete time model with the makespan
objective has been studied by Tavares [30]. The problem with activity deadlines, and the
objective of minimizing the above-capacity usage of resources is studied by Hans [10],
who proposes a column-generation based approach. Wullink [33] suggests a fast
constructive heuristic.

2.1.1 Modeling with variable-intensity activities and feeding
precedence constraints

The basic building block of our approach is the variable-intensity activity. In practice, an
activity typically starts with low-intensity preparatory work and its intensity gradually
increases to a maximal level. The fraction of an activity done in time period t is called the
intensity of the activity in time period t. For an illustration, consider the two variable
intensity activities depicted in Figure 1 (the horizontal axes correspond to time periods
and the vertical axes to intensities). The intensity of an activity is at most one, and the
sum of intensities of an activity sums up to one. Usually, there is a physical limit on
which fraction of the activity can be completed during a single time period. This bound is
the maximum intensity of the activity.

Each activity may require one or more resources and the demand is proportional to the
intensity of the activity. Namely, if the total resource requirement of some activity is qk
from some resource k, and the intensity of the activity is xt in time period t, then it
requires an amount of qk xt from resource k in time period t. Of course, the intensity may
vary over time as there can be other, more urgent activities that require the same finite-
capacity resources.

The output of an activity can be fed into a downstream activity. Such a relation can be
captured by a feeding precedence constraint, which models the material and information
flow between activities. More formally, a feeding precedence constraint is specified by a
triple (A,B, f), where A and B are activities and f is a number between 0 and 1. It specifies
that f fraction of activity A has to be completed before B may start, and the total fraction

5

of activity A done up to some time period t cannot be less than that of activity B. In
Figure 1 a pair of variable-intensity activities is depicted connected by a feeding
precedence constraint. In this example, 20% of activity A has to be completed before B
may be started. We note that the notion of overlapping activities is well-known in project
scheduling, and it means that a minimal and a maximal difference between the start times
of a pair of activities are constrained, cf. [7]. But, in the case of overlapping activities
there is no restriction on the progress of the two activities with respect to each other.

Figure 1: Feeding precedence constraint from A to B.

2.1.2 The mathematical program
We assume that the planning horizon is divided into a finite number of time periods H,
indexed by t. There is a finite set of activities, N , and each activity A in N has a release
date rA, deadline dA, and maximum intensity mA, which is a number between 0 and 1.
That is, each activity A has to be entirely processed between rA and dA, and in any time
period t at most mA fraction may be completed. There is a finite set R of continuously
divisible resources, each resource k in R has a capacity bk,t, but the overuse of resources is
permitted. For each activity A, the proportion between the activity-intensity and the
resource requirement from each resource k is specified by the constants A

kq . The intensity
A
tx of each activity A has to be determined for each time period between rA and dA. The

objective is to minimize the overuse of resources, i.e., if ykt denotes the demand of
resource k above bk,t in period t, then the objective is

∑ ∑
∈ ∈Rk Ht

ktymin .

The constraints are

, period timeand resourceeach for , tkbyxq
kt

tk
NA

ktkt
AA∑

∈
≤− (1)

,activity each for ,1 Ax
A

A

d

rt

A
t =∑

=
 (2)

,activity each for ,0 Amx A
A
t ≤≤ (3)

, period timeand resourceeach for ,0 tkykt≤ (4)

6

where Nkt is the set of those activities that may require resource k in time period t, i.e.,
{ | 0 and }A

kt k A AN A N q r t d= ∈ > ≤ ≤ . Constraints (1) and (4) provide lower bounds for

kty . Since we minimize the sum of the kty , in any optimal solution, the value of kty will

be),0max(∑
∈

−
ktNA

kt
A
t

A
k bxq . Equation (2) ensures that activity A is entirely processed

between rA and dA. Finally, the intensity of activity A can never be more than mA, by
constraint (3).

In addition, there can be feeding precedence constraints between pairs of activities.
Suppose (A,B,f) is such a relation. Let fAp , denote the minimum number of time
periods needed to complete the f fraction of activity A, i.e., it is the least integer with

fmp AfA ≥, . Without loss of generality we assume that BfAA rpr ≤+ , and

BBA dpd ≤+ 1, . We introduce new binary variables fA
tz , for },...,{ , AfAA dprt +∈ , and

add the following constraints to the model:

},...,{ period each timefor),1(,
,

1

AfAA
fA

rt

A
t dprzfx

A

+∈−≥∑
−

=
ll

l

, (5)

},,...,{ period each timefor),1(,
AB

fA
tB

B
t drtzmx ∈−≤ (6)

}1,...,{ period each timefor , ,
,
1

, −+∈≥ + AfAA
fA

t
fA

t dprtzz . (7)

},,...,{ period each timefor , AB
rt

B
t

rt

A
t drxx

BA

∈≥ ∑∑
==

l
ll

 (8)

The binary variable fA
tz , takes value 1 if less than the f fraction of activity A is

completed by the end of time period t-1. Constraint (5) ensures that fA
tz , takes value 0

only if the f fraction of activity A is completed by the end of time period 1−l . By
inequality (6), the intensity of activity B can be positive in time period t only if the f
fraction of activity A is completed by the end of time period t-1. The values of the binary
variables fA

tz , are non-increasing, by (7). The feeding nature of the precedence
constraint is captured by inequality (8). There is a new set of constraints for each feeding
precedence constraint (A,B,f), but the variables fA

tz , are defined only for distinct (A,f)
values. If f=1, then the constraint (8) is superfluous, as there can be no overlap between A
and B.

The above model could be amended with a different objective function. For instance, we
can minimize flow time related criteria subject to fixed capacity constraints. Suppose the
activities are partitioned into jobs, each job being a partial order of a distinct subset of
activities. For the last activity A of each job we introduce a set of binary variables 1,A

tz
and add the constraints (5)-(8) to the model. Then, the weighted flow time can be
expressed as

7

∑ ∑
−+∈

+−
A dprt

A
t

A
tA

AAA

zztc
]1,[

1,
1

1,)(min ,

where cA is the weight associated with A, and the first summation is over the last
activities of all jobs. Weighted flow time is an appropriate measure to minimize work-in-
process (WIP) inventories.

2.1.3 Solution with Branch-and-Cut
Branch-and-cut is one of the most successful techniques for solving mathematical
programs with integer (binary) and continuous variables, with linear constraints and
linear objective function. Similarly to branch and bound, the linear relaxation is solved in
each node of a search tree, but before branching, new valid inequalities are added to the
problem that cut off the fractional solution available at the node [13].

We have also applied this method for solving the mathematical program modeling the
project scheduling problem. The crux of the method is the automatic generation of cutting
planes that cut off the fractional solutions at the nodes, and strengthening the relaxation
in this way. Standard solvers, like Fair-Isaac’s XpressMP, or ILOG’s CPLEX provide a
host of subroutines to generate cuts, but the user can also generate problem specific cuts.
We briefly discuss a problem specific cut that we used in our computational experiments.

Our problem specific cuts are generated with respect to feeding precedence constraints.
That is, we consider the convex hull of feasible solutions of the linear system consisting
of the inequalities (2), (3), (5) and (7). Let A

fK denote the convex hull of those

),(, fAA zx vectors with binary fAz , coordinates that satisfy the inequalities (2), (3), (5)
and (7). To simplify the presentation, let m denote the maximum intensity of activity A,
and p the least integer with fmp ≥⋅ . Moreover, let r and d be the short-hand notations

for rA and dA, respectively. If f = 1, then A
fK can be fully characterized by the following

result:

Theorem 1. (Kis [14]) AK1 consists of the vectors),(zx in 11 [0,1]][0, +−−+− × prdrdm
that satisfy the following linear constraints:

1,=
=

t

d

rt
x∑

},,1,{, dprtmzx tt K++∈≤

},,,{, drtmxt K∈≤

1},,1,{,1 −++∈≥ + dprtzz tt K

|,|1 2
)21(\}1,,{}1{\1

1
Smxzmzm t

SStrt
t

tSt
tr −≥++ ∑∑

∪∈∈ K

where mpmr 1)(1= −− , },1,{1 dprS K++⊆≠∅ and },,{2 prrS +⊆ K are such
that pSS |=||| 21 + and 1t is the greatest element of 1S .

8

If f < 1, then the characterization of A
fK is more involved:

Theorem 2. (Kis [15]) Let mpfmr ⋅−− 1)(= . A
fK equals the set of vectors),(zx in

11 [0,1]][0, +−−+− × prdrdm that satisfy the following linear constraints:

1,=
=

t

d

rt
x∑

},,1,{, dprtmzx tt K++∈≤

},,,{, drtmxt K∈≤

1},,1,{,1 −++∈≥ + dprtzz tt K

|,| 2
)21(\}1,{1,}1{\1

1
Smfxzmzm t

SStt
t

tSt
tr −≥++ ∑∑

∪∈∈ K

for every },1,{1 dprS K++⊆≠∅ , },,{2 prrS +⊂ K and pSS |=||| 21 + , 1t being
the greatest element of 1S ;

,1)(
)21(\},,{21

fxmzmzzf t
UUdrtUt

t
Ut

≥+++− ∑∑∑
∪∈∈∈ llK

l

ll

l

 for },1,{ dpr Kl ++∈ , },1,{1 lKl +⊆ pU , },1,{2 dU Kll +⊆ , 1|| 21 ≤∪ ll UUm , and

fUm −≤ 1|| 2
l ;

,1)(fmzx tt
Ut

−≥−∑
∈

 for },1,{ dprU K++⊆ with 1|| ≤Um .

The above characterizations directly lead to polynomial time separation algorithms.

The methods have been extensively tested on benchmark instances from the literature, for
details, see Kis [14], [15]. Qualitatively, generating problem-specific cuts really pays-off
for strict precedence constraints, i.e., f =1 for all precedence constraints. By adding our
cuts we have obtained better results than without them. However, for small values of f,
adding our cuts has not improved solution quality that much. At extremity, when f=0, our
cuts are meaningless, since the mathematical problem becomes linear without any binary
variables.

2.2 Automated aggregation of production data into planning
models

The first step towards the integration of medium-term production planning and short-term
scheduling is ensuring that the two levels operate on common data. In make-to-order
production, customer orders, technology and resource related data are typically available
in the enterprise resource planning (ERP) systems of the company in the form of

9

production orders, bill of materials (BOM), technological routings, and resource
calendars. These data can be mapped almost directly to detailed scheduling models,
whereas production planning requires a less fine-grained representation. Therefore, the
aggregation of detailed production data into high level planning models is of key
importance [31].

According to the model above, we consider each production order as a separate project.
Projects have strict release dates and deadlines, defined by the customer’s deadline. Each
project consists of a set of manufacturing operations, which is determined by the BOMs
and routings. Our model assumes that there are no BOM or routing alternatives. Each
individual operation of the manufacturing process is described by a task in the detailed
scheduling model. Task i is characterized by its processing time ip , sequence-
independent setup time is , and the number of units i

kq it requires of each resource Rk ∈ .
The prescribed amount of all required resources is occupied both during the setup and the
processing of the task i . Pairs of tasks can be connected by precedence constraints

ji → , each of which describes that task i must be completed before the start of
processing task j (though, task i and the setup before task j can proceed in parallel).
Note that the tasks together with the precedence relations between them define a graph
representation of the project, in which labeled vertices correspond to tasks and edges to
precedence constraints. We briefly call this representation the project graph. We assumed
that every project graph forms an in-tree, which usually holds when the manufacturing
process involves machining and assembling operations only.

The above data serve as the input of the aggregation procedure to construct the planning
level representation. Aggregation can happen in terms of time, resources, and activities.
We fixed the aggregate time unit to one week – and therefore in the sequel we briefly use
the word week to refer to the planning level time unit. Our aggregation techniques would
allow the aggregation of resources, i.e., replacing several related physical resources by
one aggregate resource in the planning model. However, since resource aggregation does
not contribute significantly to the reduction of the running time of the planner, but leads
to less precise planning models, we do not use resource aggregation. Activity aggregation
corresponds to partitioning the project graphs, and merging the tasks in each partition into
one aggregate activity. Planning is performed on these larger activities. The way the
aggregate activities are built is crucial for the feasibility and the quality of the production
plans. For instance, Figure 2 presents two distinct aggregations of the same project graph.
Here, model B is preferable to A because it is less constrained by precedence relations
and its minimal lead time is thus shorter by one week.

10

Figure 2. Two alternative aggregate models built from the same project graph.

In order to ensure that the temporal interdependencies of aggregate activities can be
captured by simple precedence constraints, we look for connected components of the
project graph. Finding the most appropriate partitioning is an optimization problem with
the following criteria:

• The set of tasks contained in each aggregate activity must be, in itself,
schedulable in one week.

• The longest directed chain of precedence relations between aggregate activities
should be minimal.

• The number of aggregate activities should be as small as possible, in order to
ensure the compactness of the production planning model.

We have presented details of the aggregation in [31], while in [16] proposed polynomial-
time algorithms to find such a partitioning of the project graph. The resource
requirements of an activity A are then computed as the sum of resource requirements of
its contained tasks Ai ∈ : ∑

∈

+=
Ai

ii
i
k

A
k spqq)(. The deadline of activity Ad is set to the

project deadline, and we allow the complete activity to be performed in one time unit,
1=Am . Two aggregate activities 1A and 2A are connected by a precedence constraint

1 2A A→ if there exist two tasks 11 Ai ∈ and 22 Ai ∈ connected by a precedence constraint

21 ii → . The generated planning problem is then submitted to the planner presented in
Section 2.1.

We note that the extension of the model to the case when precedence relations define an
arbitrary directed acyclic graph (DAG) is straightforward, but some of the implied graph
problems become more complicated. For instance, the implied partitioning problem is
tractable in polynomial time for trees, while it is NP-complete for DAGs.

1 2 3 4 5

8 9 10 11 12

6 7

1 2 3 4 5 8 9 10 11 12

Aggregate model A.)

Aggregate model B.)

6 7

11

2.3 The detailed scheduling problem
Short-term scheduling unfolds the (first units of the) production plan into executable task
sequences on a horizon of a couple of days or weeks. Particularly, we set the scheduling
horizon to one week, i.e., to the time unit of the production planner. If a detailed schedule
is required for more than one week, then the scheduling problems of different weeks can
be considered separately, and hence, the following steps must be repeated as many times
as the number of independent detailed schedules. Detailed scheduling considers all
relevant technological and economical constraints present in the given application, as
well as the available resource capacities defined by the production plan. The objective of
the scheduler is (1) to construct a detailed schedule without violating the specified time
and capacity limits, and (2) to hedge against unforeseen disturbances. We mapped these
requirements to the optimization criterion of minimal makespan.

The set of tasks to be scheduled in different weeks is received by disaggregating the
activities in the production plan. Each task Ai ∈ is assigned to exactly one week, based
on the intensity of the aggregate activity A over time. If the entire activity A is planned
for week t , then all of its constituent tasks are assigned to t . If A spans over various
aggregate time units with intensities A

tx , then tasks Ai ∈ are ordered by decreasing
distance from the root task of A , with path lengths calculated as the sum of processing
times jp along the path. The tasks are then assigned to weeks in this order,
proportionally to intensities A

tx , with appropriate rounding where necessary. Two tasks i
and j are interconnected by a precedence if they are also interconnected in the routings.
Also, each task i requires i

kq units of resource k as specified in the routings. Resource
capacities may vary over time, taking into account the capacity extensions defined in the
production plan. The solution of the scheduling problem is an instantiation of the start
times variables iS of the tasks.

2.3.1 Constraint-based solution techniques
We apply constraint-based scheduling (CBS) techniques [3] for solving the above
detailed scheduling problem. CBS takes a declarative model of the scheduling problem,
expressed in the form of variables (the start time of tasks), variable domains (the time
horizon), constraints (resource and precedence) and an optimization objective (makespan,
in our case). Then, the constraint solver looks for a binding of these variables to a value
from their domain that satisfies all constraints and minimizes the objective value.

Solution techniques in CBS rely on an effective combination of search and inference. The
search procedure – usually some kind of a backtracking search – explores the space of
potential solutions, while inference restricts search to promising regions of that space. A
fundamental inference method is constraint propagation. A propagator is an algorithm
attached to an individual constraint that removes values from the variables’ domains that
are inconsistent with the given constraint. Constraints that can be handled efficiently by
CBS are those for which there exists an efficient propagator, i.e., one that finds nearly all
inconsistent values sufficiently fast.

12

Typical CBS models, such as ours, differ from other, more widely known mathematical
programming representations of planning and scheduling problems in a number of ways.
First, in CBS the most widely used variables are the start and end times of tasks. The
domain of these variables can be arbitrarily fine-grained without particular degradation of
computational efficiency. This model is principally suitable for non-preemptive
scheduling problems. While theoretically both constraint and mixed-integer programming
can tackle any problem in NP, the set of constraints that can be handled efficiently by the
two techniques differ essentially. In CBS, the propagation of precedence constraints

ji → is straightforward even when delays are specified: the earliest start time of j , as
well as the latest start time of i can be adjusted. Very efficient propagation algorithms
are available for resource constraints, which state that tasks can use at most a given
number of units of a certain resource at any point in time: edge-finding [5] deduces which
tasks must (or must not) start before (or after) a set of tasks that require the same
resource. The handling of sequence-independent setup times is straightforward using the
above techniques, and also, significant results have been published on propagating
sequence-dependent setup times [8]. On the other hand, the performance of CBS
techniques is sensible to the choice of optimization criteria. Generally, maximum-type
criteria, such as makespan or peak resource usage, can be propagated efficiently, whereas
sum-type criteria, such as total flow time or tardiness, are more challenging. Various
constraint-based solvers are available for solving such scheduling problems, among
which we have used ILOG Solver and Scheduler.

2.3.2 Exploiting the structure in industrial problem instances
Generic models of scheduling problems, such as e.g., RCPSP, have had key importance
in the development of solution approaches such as constraint-based techniques, and in
general, of scheduling theory. Nevertheless, these models hide some actual properties of
industrial problem instances, the exploration and exploitation of which would be of key
importance for efficient solvability. Hence, we have developed two novel different
methods that reveal the hidden structure and exploit it to improve solution efficiency.

A typical structural property of industrial scheduling problem instances is that there are
several, in a sense, similar projects: there might by many orders for the same end product,
or the same component can be used to build different end products. In [17] we have
defined a notion of similarity on a graph theoretical basis, as a special kind of sub-graph
isomorphism on two project graphs. This definition of similarity is exploited in so-called
progressive solutions, in which the sequencing decisions among corresponding tasks of
similar projects are made by simple inference methods in a pre-processing step. It has
also been demonstrated that restricting the search space to progressive solutions can
reduce considerably the solution times of practical detailed scheduling problems.

Figure 3 presents two pairs of similar projects. It is assumed that tasks with identical
indices have equal durations and resource requirements. P and Q are completely identical
project graphs, while R and S have isomorphic sub-graphs. The latter pair can represent
the manufacturing of two different products from the same family: R has an additional
component and S has an additional finishing operation, e.g., painting. Now, it is easy to
see that there exists an optimal detailed schedule in which corresponding tasks of P and
Q, as well as R and S are executed in the order shown in the figure (since P and Q are

13

identical, the direction of all precedence constraints between these two projects could be
reversed). We note that this technique is applicable if there are no BOM and routing
alternatives, or the actual alternative to use is already known at the time of detailed
scheduling. For more details, including computational experiments on the efficiency of
progressive solutions, the reader is referred to [17]

Figure 3: Precedence constraints deduced in a progressive solution when two identical projects are to be
scheduled (left). Precedence constraints deduced when two end products are build from partly identical

components (right).

Another typical structural property is that the scheduling problem consists of a number of
loosely connected sub-problems. This might hold due to plants composed of several
departments or different product families requiring different sets of resources. Freely
completable partial solutions (FCPS) address the exploitation of this structural property
[18]. An FCPS is a feasible binding of a subset of the variables that is compatible with
any instantiation of the remaining variables. If an FCPS is found in any search node, then
the contained variables can be bound to the values they take in the FCPS, which reduces
the size of the problem yet to be solved.

P

Q
q1 q2

q4
q3

q5

p1 p2
p4

p3
p5

r8
r6

R

S
s1 s2

s4
s3

s5

r1 r2

r4 r3

r7

14

3 Simulation support for PPC
In the following part the role of simulation-based schedule evaluation as well a new
approach will be described including its structure, model building and shop-floor
emulating features.

3.1 Production control and simulation
The discrete-event simulation (hereafter referred to as simulation) approach has been
applied to decisions in planning and scheduling, related to production applications (see
e.g., [2], [20], [24]). The simulation models that are used for making or evaluating these
decisions generally represent the flow of materials to and from processing machines and
the operations of machines themselves [28]. Potential problems can be identified and can
be corrected using a simulation model. By far the most common use of simulation models
is for operational decisions such as planning and scheduling [20].

Simulation captures those relevant aspects of the PPC problem which cannot be
represented in a deterministic, constraint-based optimization model. The most important
issues in this respect are uncertain availability of resources, uncertain processing times,
uncertain quality of raw materials, and insertion of conditional operations into the
technological routings. Aytug et al. [1] give a broad overview in their study on
production schedule execution in the face of uncertainties. Categorization of uncertainty
is formulated for a better understanding of the meaning of uncertainty during the
calculation or execution of a production plan or schedule.

In simulation supported schedule evaluation, simulation is often used for evaluating the
robustness of the schedule. A production schedule is termed robust in case it performs
well after a disruption. The usefulness of simulations lies in detecting and preventing
these problems concerning robustness before the detailed, short-term schedule reaches
the shop floor. Thus, the key benefit of a simulation-based schedule evaluation system is
the feedback about schedule performance (e.g., number of late tasks) which, in turn, can
be used for improving subsequent solutions. Recently applied schedule evaluation
methods of (predictive) production schedules during simulation-based assessment are
classified in [19] regarding the environment of the evaluation (static/dynamic) and the
evaluation criteria of the schedules (absolute/relative).

A number of authors present simulation-based experimental studies with the aim at
analyzing scheduling problems and schedule evaluation techniques in a dynamic and
stochastic environment. The categorization of the selected papers is also highlighted in
[25]. The analytical solutions proposed in [25] are able to estimate important
performance measures for schedule evaluation methods in a dynamic, stochastic
manufacturing system, and are evaluated in simulation testbeds. In [4] and [6] the
simulation-based execution of the calculated schedules is introduced considering
uncertain activity durations in the form of probability distributions. Regarding the
robustness and flexibility of tardiness and total flow-time in job-shops, several schedule
repair methods are investigated in [12], and an experiment is performed on a set of
benchmark problems by executing schedules against simulated machine breakdowns.
Sabuncuoglu et al. [29] propose a simulation-based approach for testing the rescheduling

15

methods in a dynamic and stochastic manufacturing system, applying uncertain
processing times and machine breakdowns. In their approach the system consists of three
components: simulation model, controller and scheduler. An interesting combination of
deterministic and stochastic simulation is given by Honkomp et al. [11]. They describe a
simulator for semi-continuous and batch processing manufacturing environments that can
accept deterministic schedules and simulate both a deterministic and a stochastic
realizations of the schedule. Running two versions of the simulation the authors compare
the performance and robustness of the schedules.

3.2 Model building and schedule evaluation

3.2.1 Requirements and functions
In our case, the proposed simulation module is utilized as a component of a higher level
system taking the role of the real production system. The reasons of connecting the
scheduler to a discrete-event simulator are twofold. On the one hand, it serves as a
benchmarking system for evaluating the schedules on a richer model. On the other hand,
it covers the non-deterministic character of the real-life production environment.
Additionally, in the scheduling phase it is expected that the statistical analysis of
schedules should help to improve the robustness of execution and support the scheduler
during the calculation of further schedules. The main functions of the discrete-event
simulator are as follows: it

• evaluates the robustness of weekly schedules against the uncertainties, performs
sensitivity analysis of the schedules,

• helps in visualizing and verifying the results of a PPC system,

• supports the systematic test of a pilot PPC system, and

• supports rescheduling decisions.

The evaluation of schedules is measured over several runs of the discrete-event
simulation where the number of replications (independent simulation runs, with different
random numbers) depends on the setting of confidence intervals. The main requirements
towards the simulation module are as follows:

• common data, bi-directional connection to the scheduler,

• support for input/output inspections,

• support for different playback strategies,

• from 1 day to 1 week playback time horizon, and

• short response time, making multiple model runs possible.

3.2.2 Main phases of the simulation
In order to meet all the requirements and achieve the desired functionality for a flexible
simulation system, a so-called component-based simulation method has been developed
[25]. The simulation module and the finite capacity job-shop scheduler have connections

16

to the same production database (see Figure 4). Resources, products, process plans,
production information, i.e., directly and indirectly usable data are transformed exactly to
the same form for all system components. Note that simulation relevant data (e.g.
resource model, execution policies, process flow model) are stored locally in the
simulation model.

Figure 4: Architecture and the main process flow in the simulation module.

Hereby, the complexity of integrating the simulation module into the system is
significantly reduced. None the less, the common data tables ensure data integrity during
the creation of the simulation model; moreover, the data-model serves as a basis for the
more detailed shop-floor model. Running the simulation by applying the basic data tables
results in a waste number of queries during the model run, reducing the simulation speed
significantly. However, in order to ensure sufficient number of simulation replications for
the evaluation of a short-term production schedule, the total response time should be
minimized. In order to resolve the above two contradictory objectives an exhaustive data
pre-processing phase is included in the simulation process.

Data preparation is carried out before the overall simulation (see Figure 4). The
redundant data storage in the simulation model is compensated by the advantage of the
shorter response time. Modelling real production systems frequently brings up the
problem of handling hundreds of resources in a simulation model. Having the modelling
objects in hand, which were created on the base of the conceptual model, in our
architecture the simulation model is created automatically based on the pre-processed
data (phase b). The automatic generation of the model is followed by initialization (phase
c). There, besides classical parameter settings, the procedure involves the generation of
input parameter specific model components (entities such as products, operators).
Contrary to the previous phase, this one is carried out for each replication. The simulation
runs are repeated until the required number of replications is obtained (phase d). Each

17

replication is a terminating, non-transient simulation run. In the last phase, the schedule is
evaluated by using the evaluation criteria and the results of the evaluation process are
interpreted by the Decision-maker (e.g., planner) who is responsible for taking the
necessary actions.

3.2.3 Novel model of the production execution process
Regarding resource modelling of the designated production system (e.g. flow/job-shop
model), a machine model class library was developed and applied for all the machine
resource instances [26]. These classes are pre-programmed component objects in the
simulation, consisting of a generalized model of the resource, a built-in execution policy
as well as the process flow. Tasks represent the operations on particular parts, together
with the assigned machine and human operator resources. As a main principle, the
simulator should play back the schedule without changing the optimized sequence of the
tasks, but considering the calculated start times of the processes. Therefore, as a new
solution, an ordered queue of the tasks is built up in front of each scheduled machine
(TaskObject in Figure 5), and the tasks to be processed are forwarded into these queues.

Figure 5: Object-oriented model of the execution of the pre-calculated production schedule in the simulator,

by applying the TaskObject structure.

Each task has a list of the TaskObjects to be visited during the manufacturing process,
according to its routing and the production schedule. Arriving tasks at the machines are
processed in the simulation as follows (see also Figure 5):

• Tasks waiting for processing are stored in the input buffers of the machines,
always sorted by their starting times. Each task in the schedule contains one of
these TaskObjects, which, at the initialisation phase of the simulation, are
distributed to the input buffer of the machines.

• The first TaskObject in the input buffer queue reserves the first position of the
input buffer on the machine. This ensures that the designated machine is reserved
for the designated task.

18

• If there is a TaskObject in the input buffer of the machine, which becomes ready
at the moment, the setup process will be immediately started (regarding the task
represented by the TaskObject). Setup has to be started also when the part itself
has not arrived yet at the TaskObject. In this case, there is no event generated by
the arrival of the part for the simulation, however, because of the first criterion
enlisted above, it is not allowed to start the setup process based on the calculated
starting times. The proposed solution is to start the setup process, but freeze it
immediately, before requesting the operator. It will be restarted only if the
simulation time equals the planned starting time of the setup process.

• In order to start the process at least one operator is needed with the designated
service skills. One setup operation is executed by one operator.

• If the setup process has finished and – in case it is an assembly process – all the
required parts (component type) are already in the input buffer, then the main
process can be initiated.

• Before the parts are reallocated to the machines, the processing times of the tasks
are set, according to the specified attributes of the part objects. The processing of
the parts is realized on two machine objects. For the first one no operator (with
service) is necessary, while, for the second, it is mandatory to have at least one
operator (see fourth criteria). In this case, the processing time of the first machine
is calculated as the total machine time minus the operator time. Of course, for the
second machine the processing time equals the operators’ time.

• If no free operator is available then the process cannot be started.

• After processing, parts are sent to a virtual transportation unit (for a predefined
transportation time interval), before being reallocated to the input buffer of the
next machine.

4 Applications
The models and solution methods presented in the previous sections have been
implemented and embedded in two prototype planning and scheduling systems. The
PROTERV production planning system addresses engineer-to-order and make-to-order
enterprises, and operates on the high level description of planning level activities. The
PROTERV-II system performs integrated production planning and scheduling, and
incorporates the presented aggregation procedures to generate the planning level
representation automatically from detailed scheduling data. The PROTERV-II system
was further coupled with a simulation model of a real factory. This simulation model
emulates the real execution environment and supports the analysis of the generated
schedules.

4.1 PROTERV: Prototype planning system
The PROTERV prototype planning system has been developed to solve project-oriented,
integrated production and capacity planning problems that are typical in engineer-to-

19

order and make-to-order type production. It directly builds on the project model and
customized mathematical solver presented in Section 2.1.

A projects includes various activities needed to complete an order, like engineering
design, technological process planning, components manufacturing, assembly,
programming, documentation, installation and deployment. Although some ordering of
the activities is to be followed, many of them may overlap in time, especially in case of
large, complex projects. These temporal relations between activities are captured by
feeding precedence constraints. Each activity may call for the use of a number of
different resources. The resources are typically either machine or human resources (or
both, in a coupled way) that will be shared by the activities of different projects. The
system handles both internal and external resources, the use of which incurs different
costs. The resources may be distributed, geographically dispersed and may even belong
to different organizations. Resources are typically aggregated and their amount available
is given in working hours per each week. Each project has a time window set by its
negotiated earliest starting time and deadline. The intensity of executing an activity may
vary over time; the activity can even be pre-empted. Hence, processing times of activities
are not fixed a priori. The decisions variables are just the intensities of activities
throughout the planning horizon; once these values are determined, it is straightforward
to calculate the actual amounts of work to be performed on the activities in each week, as
well as to summarize demand for the various capacities.

Hence temporal – both time window and precedence – constraints are hard, projects
compete for limited resources. Excessive use of external resource capacities is possible
only if there is no way to avoid this but violating some customer order deadlines. The
primary objective is to minimize the total cost of this extra capacity usage, while the
secondary objective is to reduce WIP as far as possible. All decisions are made with
regard to the actual set of orders and production load, instead of using data collected in
the past.

PROTERV obtains all basic project and resource calendar data from the ERP system of
the enterprise through file exchange. The uploaded planning problem can be interactively
modified in order to build different scenarios from the initial problem. The system’s
graphical user interface helps human planners develop a number of plan variants,
organized in a tree hierarchy of scenarios. The scenarios are created by inheriting a
predecessor scenario. The project related parameters (like starting time, deadline,
precedence relations of tasks, probability of acceptance etc.) can be modified through a
project editor (see Figure 6). The scenario variants may differ in the time windows of the
projects, the set of projects selected for planning and the actual resource capacities in
each time unit. Through this editor, it is also possible to investigate the internal structure
of a project: its activities, the time windows of the activities, as well as the feeding
precedence relations between them.

20

Figure 6: Screenshot of the project editor’s graphical user interface.

For a given scenario, PROTERV calculates the production plan based on the actual
production load, resource capacity limits and accepted production orders for several
months or even years ahead. For instance, Figure 7 shows the plan of a particular project,
i.e., the calculated work amounts for all of its three component activities, week by week.

Figure 7: Plan of a particular project, with three variable-intensity activities.

The other main result of the system is the capacity plan which is given in terms of the
aggregated weekly load of resources, with eventual external capacity requirements. As an
example, consider Figure 8. Here, for two resources, against the pale skyline of available
capacities, one can see aggregate planned resource demand on a weekly basis. Demand
that exceeds the actual capacity limit is highlighted. Even though PROTERV strives to
minimize extra capacity usage, there are periods when some extra capacity is needed so
as to complete projects by the given deadline. As mentioned before, the user has an

21

opportunity to change the time window and status of projects in the project editor; future
load of projects in hypothetical status is distinguished from the load of running projects.

Figure 8: Resource load chart of two aggregated resources.

The different scenarios are solved by a generic planning engine that uses the solution
method presented in Subsection 2.1.3. It was essential to keep the response time short,
thereby allowing the users to work interactively with the system. Thanks to the efficient
customized solver, the PROTERV system can be applied in a dynamic setting when re-
planning is initiated by unexpected changes, as well as for creating “what if” scenarios
with hypothetical projects (projects in proposal phases) and with possible resource
extensions in the future. This way available to promise and capacity reservation
decisions can be made on a more reliable estimate of the timing and resource needs of
new projects. The system has been successfully tested on production planning problems
whose main features are summed up in Table 1.

Table 1: Characteristics of the aggregate planning problems solved.

Input Size

Aggregate resources

Running projects

5 - 10

50 - 80

Activities per project 3 - 8

Planning horizon (medium-term)

Solution time (worst case)

50 - 100 weeks

5 - 10 min

4.2 PROTERV-II: Integrated planning and scheduling system
The PROTERV-II prototype system performs integrated production planning and
scheduling using the models and algorithms presented in Section 2. The system addresses
make-to-order project-oriented production problems. It has a graphical user interface that
facilitates its use as a decision support system at both levels of the decision hierarchy.

22

PROTERV-II takes as input the list of production orders, BOMs, routings, resource
capacities and calendars, as well as shop-floor status information. Instances of production
planning problems are automatically generated from this detailed data by using the
aggregation methods presented before (see Subsection 2.2). On this level, the first
optimization criterion is to minimize the use of capacity extension, while the secondary
criterion is to minimize WIP, both subject to strict deadlines. The planning-level horizon
is 15-30 weeks long, while the time unit is one week. The objective of the scheduler is to
unfold the production plan into feasible detailed schedules. The time horizon of the
detailed scheduler is one week, and it determines task start times with a precision of 0.1
hours.

For solving production planning problems on the medium term, the same planner engine
is used as in the PROTERV system. Figure 9 presents the resource view of a production
plan for a given worker group, displaying for each week the number of working hours
planned. This worker group is one of the bottleneck resources of the factory: the normal
capacities are completely exploited and in several weeks overtime is also required. Note
that there are two weeks where the available capacity of the worker group is smaller than
in other weeks: this is due to national holidays.

Figure 9: Medium-term production plan – load of a particular resource.

On the level of detailed scheduling, our special solution algorithms have been realized on
the top of the commercial mathematical programming and constraint programming
software of ILOG (see also Subsection 2.3).

In Figure 10 a segment of a detailed schedule is presented over a horizon of one week.
Each row of the diagram contains a sequence of tasks to be performed on one component
of an end product. The green boxes correspond to tasks, while the arrows connecting
them represent the precedence constraints. Some task sequences are joined together when
the corresponding components are assembled. In this example one can also notice that

23

detailed scheduling indicated the need for one extra weekend shift, which was not visible
on the planning level.

Figure 10: Short-term detailed schedule – details of a particular project.

The features of typical problem instances tractable by PROTERV-II are given in Table 2.

Table 2: Characteristics of the integrated planning and scheduling problems solved.

Input Size

Resources (machines and operator groups)

Running projects

80-120

600 - 1200

Tasks per project 20 - 500

Duration of tasks 1 - 120 hours

Planning horizon (medium-term)

Scheduling horizon (short-term)

15 - 30 weeks

1 week

24

Table 3 displays computational results that characterize the integration of the two
decision levels in Proterv-II. Each row of the table corresponds to one problem instance,
i.e., one production planning problem on a horizon of 15 weeks and the induced 15
weekly detailed scheduling problems. The overall number of tasks in the problem
instance is indicated in the first column, and the number of aggregate activities formed
from them in the second. An activity contained ca. 20 tasks on the average. However,
only a part of the activities had to be performed within the planning horizon, since the
requirement of minimal WIP level implied that activities had to be planned as near to the
customer deadline as possible. The number of activities planned within the horizon of 15
weeks is shown in column Planned.

The results of detailed scheduling are presented in two parts, first for the entire set of
tasks (Total), and then for the critical set of tasks, i.e., those that are executed on the week
just before the customer deadline (Critical). The portion of delayed tasks was between
0.46% and 1.16% (0.15% and 2.22% for critical tasks). The average delay over the tasks
with positive delay was 5-9 hours (3-8 hours for critical tasks), although the delay of
some tasks reached up to 50 hours (18.6 hours for critical tasks).

Table 3: Planning and scheduling: characteristics of the integrated planning and scheduling problems

solved.

T
es

t c
as

e

Production planning Detailed scheduling
Total Critical

T
as

ks

A
ct

iv
iti

es

Pl
an

ne
d

T
as

ks

D
el

ay
s

A
ve

ra
ge

de

la
y

(h
)

M
ax

.
de

la
y

(h
)

T
as

ks

D
el

ay
s

A
ve

ra
ge

de

la
y

(h
)

M
ax

.
de

la
y

(h
)

#1 43213 2413 621 9277 0.72% 5.72 16.7 6035 0.31% 3.85 11.7
#2 42850 2358 753 12127 0.68% 6.28 25.3 7713 0.30% 3.99 12.1
#3 42140 2247 833 13196 0.67% 6.46 19.7 8554 0.32% 5.29 17.2
#4 38255 2074 826 13824 0.54% 6.11 17.6 5530 0.25% 3.89 13.6
#5 34637 1901 801 13120 0.46% 8.09 29.2 3294 0.15% 4.50 11.5
#6 32549 1756 855 14536 0.72% 8.37 45.4 4344 0.99% 5.77 12.8
#7 30249 1584 847 16024 0.52% 7.99 50.4 3930 0.76% 3.71 14.1
#8 27892 1397 770 15308 0.91% 9.00 45.4 3917 2.22% 8.23 18.6
#9 24271 1244 769 15346 0.48% 7.32 41.8 5871 0.27% 2.95 15.6
#10 21068 1073 720 14490 1.14% 7.64 35.0 6144 1.01% 5.67 14.8
#11 16412 871 702 14001 1.08% 5.33 22.5 5492 1.11% 4.36 10.3
#12 13956 726 722 13804 1.16% 5.04 20.9 7051 1.16% 3.95 8.5

25

Although the method we propose for integrating the two levels of the planning hierarchy
does not theoretically guarantee that productions plans can always be unfolded directly
into feasible, deadline respecting production schedules, results of our large-scale
experiments suggest that the integrity of the two levels can be ensured. Hence, we are
convinced that our results are competitive with the performance of current production
planning methods. This holds especially in the light of the criterion of minimal WIP,
which implies that tasks have to be performed close to the project deadline. Furthermore,
some of the above delays can be eliminated by simple heuristics, e.g., by swapping tasks
between neighboring weeks. We are planning to extend our system with such local
improvement heuristics in the future.

4.3 Simulation results

4.3.1 Implementation of the simulation
The above enterprise produces mechanical products by using machining and welding
resources, assembly and inspection stations and some highly specialized machines.
Production is performed in a make-to-order manner where deadline observance is an
absolute must, even regarding unpredicted orders. Since quality assurance is a key issue,
tests may result in extra adjustment operations.

By taking the component-based approach, we have built a stochastic evaluation
environment for testing the schedules generated by PROTERV-II (see Figure 11). This
environment has been implemented by using the eM-Plant simulation framework. The
Decision-maker initializes the simulation experiment manually (Simulation Input), by
selecting the time horizon, the uncertainties, the confidence level as well as the main
goals of the simulation study from a predefined set. The simulation system generates the
required scenarios automatically and executes the simulation replications. Finally, the
results of the experiment (Simulation Output) are interpreted to the Decision-maker either
by using the GUI of the simulation software or by exporting to other common formats.

26

Figure 11: The simplified description of the process flow of data preparation and component-based model

building realised in eM-Plant (phase a and phase b).

The four main criteria the simulation model has to cope with are as follows:

• During the simulation, only the sequences of the scheduled operations are
considered, while, the calculated starting times are neglected because of the
discrete-event-driven execution.

• All of the operators should return to the operators’ pool when the shift ends.
Operations not finished within the current shift should request new operator in the
following shift. The reordering process of the operators to the unfinished
operations is sequential.

• Each processing activity of a task requires at least one operator of a given type.

• It is possible that the processing time of the operator is shorter than the processing
time of the machine, for the same operation.

The object-oriented hierarchical simulation model of the plant to be modelled is based on
the functional decomposition approach. The simulation includes the modelled elements
of the real plant and each unit of a production set is identified uniquely and traced during
its lifecycle. In order to reduce the rigidity of the schedule during execution, the fixed
start times of tasks are removed and only the sequence of the tasks on the various
resources are kept. As a main principle, the simulator should play back the schedule only
without changing the optimized sequence of the tasks.

27

4.3.2 Experimental results
The planning and scheduling methods, described in Section 2 were validated and tested
with the real-life data. In the experiments, first projects were generated from existing
routing tables and BOMs, then, using the resource calendars, the planning problem was
solved on a 15-week horizon, with a time unit of one week. Next, the production plan
was passed to the constraint-based finite job-shop scheduler. The shop-floor of the case-
study includes more than 100 resources, all of which are modelled in the simulation
module. The short-term schedule table contains approximately 1000 (max. 2000) tasks to
be executed in one replication and the time frame of one simulation replication is one
week. Statistical data were collected both on the resource and product sides.

In the case-study considered, the most important objective regarding the factory was the
minimization of tardy jobs during the schedule execution. We considered the following
performance measures: Tmean mean tardiness, Tmax maximum tardiness, and npt, the
number of tasks postponed to the next week. The basic types of uncertainties modelled in
the simulation model are as follows:

• downtimes: due to failures or the unexpected absence of machines and/or
operators;

• processing time: the actual processing time of some tasks may depend on the
proficiency and skill of the operator; processing times may be shorter or longer
than planned.

Table 4 demonstrates the results of the experiments after the execution of a predictive
schedule in the simulation model including different uncertainty levels.
Table 4: Illustrative results of deterministic and stochastic schedule execution regarding one week (average

values in hours, calculated from 10 simulation replications).

Applied
play-back strategy

Efficiency of new employees
(75%)

Efficiency of employees (100%)

 Tmean (h) Tmax (h) Npt Tmean (h) Tmax (h) Npt
Deterministic processes 3.25 16.39 15 0 0 0
95% machine availability
and stoch. process times 5.73 27.20 45 5.24 18.65 27

Deterministic execution means that no uncertainty was set in the simulation. As expected,
in this case the executed schedule is exactly the same as the planned one, and this way it
serves as a benchmark for the stochastic scenarios. In the stochastic scenarios (row 2 in
Table 4) the processing times of the tasks were set to a stochastic variable, where the
lower bound is 90%, while the upper one is 130% of the planned process time.
Correspondingly, machine availability was set to 95% in this scenario.

Major tasks on the shop floor consist of welding operations that depend highly on the
skills of the operators. Experiments were carried out for evaluating different operator
groups including operators with different skills. It is supposed that new operators are
employed and their efficiency is lower during the “learning period”. Their overall effect
on the planned schedule were investigated so that the total number of the operators in

28

each group (10 different operator groups were considered) were combined with the
number of supposed new employees with skills under the standard skill level (for more
details regarding the experimental design please refer to [25]). The two main columns in
Table 4 highlight the variation of processing times deriving from the difference of the
skills of operators (efficiency of the new employees were set to 75% of the regular
operators’ skills). Results were calculated from 20 different parameter settings, each with
10 replications.

Figure 12 shows the simulation results with the two pre-selected ratios (75% and 85%).
In the x-axis (highlighted as ‘Completed task’) the tardiness is calculated for each task
completed its processing. When evaluating the results, the Decision-maker is interested in
the steepness, the breaks and steps of the curves (formulated by the plotted dots), as well
as the distances between the curves. This information might be important also for the fine
tuning of the scheduling parameters, but even more for the exact allocation of the
operators (considering the skills) during the weekly execution of the predefined
production schedule.

0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1000 1200 1400 1600 1800

Ta
rd
in
es
s (
h)

Completed task

Eff. of new employee (85%) Eff. of new employee (75%)

Figure 12: The possible effects of new operators with lower skills (operators’ efficiency, %) on the

tardiness of the completed tasks (schedule containing 1675 tasks, time horizon is one week).

Figure 13 shows the effects of both machine availability and processing time variance on
average tardiness. Apart from the fact that the chart reinforces the prior expectations
about the average tardiness, effect of input values from different interval sets can also be
analysed together. The Decision-maker has the opportunity either to compare the maps of
different scheduling settings (as a feedback, e.g. inserting slack time during scheduling),
or to compare the evaluation results of different weeks with different system loads (e.g.
number of tasks to be processed).

29

99

97

95

93

91

012345678910
1 1.04 1.08 1.12 1.16 1.2 1.24 1.28 1.32 1.36

M
ac

hi
ne

av

ai
la

bi
lit

y
(%

)

Av
er

ag
e

ta
rd

in
es

s
(h

)

Process time variance (upper bound)

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

Figure 13: Response map: the dual effect of machine availability and processing time variance on average
tardiness, for a selected production schedule (schedule containing 1675 tasks, time horizon is one week).

5 Conclusions
The main goal of the paper was to demonstrate how digital enterprise technologies
combined with sophisticated optimization algorithms can contribute to planning and
scheduling the operation of complex production systems in an efficient and consistent
way. In an industry-initiated and involved project, novel models and algorithms were
developed for integrated production planning and scheduling. As the results of
computational experiments with two systems have shown, our original objectives could
be attained. The main contributions are as follows:

• We have developed a novel project-based model for production planning in make-
to-order and engineer-to-order industries. Planning with variable intensity
activities and feeding precedence constraints enables to combine decisions about
the timing of production activities and the utilization of resources. The model that
can be amended with various objective functions results in more accurate
production plans.

• We put special emphasis on developing efficient solution algorithms. On the level
of planning, a new custom-tailored branch-and-cut algorithm solves the planning
problem with the automatic generation of cutting planes that cut off the fractional
solutions at the nodes of the search tree. The constraint-based scheduler was
augmented with two methods that reveal – and exploit – typical but hidden
structural properties of our industrial problem instances. Thanks to the efficient
solvers, large-scale, real-life problem instances can also be solved, and decision
makers are able to explore and evaluate a number of alternative future scenarios,
too.

30

• In case of hierarchical planning and scheduling, the integrity of solutions can be
ensured by an appropriate aggregation method that builds up the high-level
planning model from detailed, de facto standard master data. The integration of
planning with detailed scheduling and execution leads to a better due date
observance and to more efficient use of resources. As a result, planners are
capable of accepting more customer orders and reducing production costs.

• Our component-based simulation technology proved to be appropriate for
assessing the sensitivity of deterministic solutions in face of typical uncertainties.
Hence, results of the integrated production planning and scheduling system can be
tested and further improved by a discrete-event simulation module which is able
to analyze the effects of various types of changes and uncertainties related to
operator skills and availability, machine breakdowns, and processing time
variations. We emphasize that all the three models are built up automatically,
from a common data store.

Finally, two possible connections of the integrated production planning and control
approach introduced in the paper are to be outlined here. One is the execution control
level [23] and the other is planning on the level of production networks. However, in any
case, local powerful PPC methods that produce cost-efficient, executable and robust
plans and schedules both on the medium and the short-term are prerequisites of these
extensions.

Acknowledgements
We dedicate this paper to the memory of the late András Márkus who contributed many
ideas presented here. Further on, we are also indebted to Ferenc Erdélyi, Tibor Tóth and
Péter Egri for their advice and contributions to this work. This research has been
supported by the Hungarian Scientific Research Fund (OTKA) grants “New
mathematical models and methods for integrated production planning and scheduling” K-
76810, and “Production Structures as Complex Adaptive Systems” T-73376.

References
[1] Aytug, H., Lawley, M.A., McKay, K., Mohan, S., Uzsoy, R.: Executing

production schedules in the face of uncertainties: A review and some future
directions, European Journal of Operational Research 161 (2005), pp. 86-117.

[2] Banks, J.: Handbook of Simulation, Principles, Methodology, Advances,
Application and Practice. John Wiley & Sons Inc., 1998.

[3] Baptiste, Ph., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling. Kluwer
Academic Publishers, 2001.

[4] Bidot, J., Laborie, P., Beck, J.C., Vidal, T.: Using simulation for execution
monitoring and on-line rescheduling with uncertain durations. In: Proc. of the
ICAPS'03 Workshop on Plan Execution, Trento, Italy, (2003).

31

[5] Carlier, J., Pinson, E.: A practical use of Jackson’s pre-emptive schedule for
solving the job-shop problem. Annals of Operations Research, 26 (1990), pp.
269-287.

[6] Cowling, P., Johansson, M.: Using real time information for effective dynamic
scheduling. European Journal of Operational Research 139 (2002), pp. 230-244.

[7] Demeulemeester E.L., Herroelen, W.S.: Project Scheduling: A Research
Handbook. Kluwer Academic Publishers, 2002.

[8] Focacci, F., Lodi, A., and Milano, M.: Embedding relaxations in global
constraints for solving TSP and TSPTW. Annals of Mathematics and Artificial
Intelligence 34(4) (2002) pp. 291-311.

[9] Hackman, S.T., Leachman, R.C.: An aggregate model of project-oriented
production. IEEE Transactions on Systems, Man, and Cybernetics, 19(2) (1989),
pp. 220-231.

[10] Hans, E. W.: Resource Loading by Branch-and-price Techniques. Ph.D. thesis,
Twente University Press, The Netherlands, 2001.

[11] Honkomp, S.J., Mockus, L., Reklaitis, G.V.: A framework for schedule evaluation
with processing uncertainty. Computers and Chemical Engineering 23 (1999), pp.
595–609.

[12] Jensen, T.M.: Improving robustness and flexibility of tardiness and total flow-
time job shops using robustness measures. Applied Soft Computing 1 (2001), pp.
35-32.

[13] Jünger, M., Reinelt, G., and Thienel, S.: Practical problem solving with cutting
plane algorithms in combinatorial optimization. DIMACS Series. in Discr. Math.
and Theor. Comput. Sci. 20 (1995), pp. 111-152.

[14] Kis, T.: A branch-and-cut algorithm for scheduling of projects with variable
intensity activities. Math. Prog., Ser. A 103 (2005), pp. 515–539.

[15] Kis, T.: RCPS with variable intensity activities and feeding precedence
constraints, In: Józefowska, J., and Weglarz J (eds), Perspectives in Modern
Project Scheduling, International Series in Operations Research & Management
Science, Springer US, Vol. 92 (2006), pp. 105-129.

[16] Kovács, A., Kis, T.: Partitioning of trees for minimizing height and cardinality.
Information Processing Letters 89(4) (2004) pp. 181-185.

[17] Kovács, A., Váncza, J.: Progressive solutions: a simple but efficient dominance
rule for practical RCPSP. In: Proc. of CPAIOR 2006, the 3rd Int. Conf. on
Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (Springer LNCS 3990), (2006), Cork, pp.
139-151.

[18] Kovács, A., Váncza, J.: Completable partial solutions in constraint programming
and constraint-based scheduling. In: Proc. of the 10th International Conference
on Principles and Practice of Constraint Programming (Springer LNCS 3258),
(2004), pp. 332-346.

[19] Kempf, K., Uzsoy, R., Smith, S., Gary, K.: Evaluation and comparison of
production schedules, Computers in Industry 42 (2000), pp. 203-220.

32

[20] Law, A., Kelton, D.: Simulation Modelling and Analysis. McGraw-Hill, 2000.
[21] Leachman, R. C., Dincerler, A., and Kim, S.: Resource-constrained scheduling of

projects with variable-intensity activities, IIE Transactions 22(1) (1990), pp. 31-
39.

[22] Maropoulos, P.G.: Digital enterprise technology – Defining perspectives and
research priorities. In: Proc. of the 1st CIRP (UK) Sem. on Digital Enterprise
Technology (DET02), September 16-17, 2002, Durham, UK, Part V: 3-12.

[23] Monostori, L.; Kádár, B.; Pfeiffer, A.; Karnok, D.: Solution approaches to real-
time control of customized mass production, CIRP Annals - Manufacturing
Technology 56(1) (2007), pp. 431-434.

[24] O’Reilly, J.J., Lilegdon, W.R.: Introduction to FACTOR/AIM. In: Proc. of the
1999 Winter Simulation Conference, (1999), pp. 201 – 207.

[25] Pfeiffer, A., Kádár, B., Monostori, L.: Stability-oriented evaluation of
rescheduling strategies by using simulation. Computers in Industry 58(7) (2007),
pp. 630-643.

[26] Pfeiffer, A.: Novel Methods for Decision Support in Production Planning and
Control, PhD Thesis, Budapest University of Technology and Economics, 2007.

[27] Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming.
Springer, 2006.

[28] Rabelo, L., Helal, M., Jones, A., Min, J., Son, Y.J., Deshmukh, A.: A hybrid
approach to manufacturing enterprise simulation. In: Proc. of the 2003 Winter
Simulation Conference, (2003), pp. 1125-1133.

[29] Sabuncuoglu, I., Kizilisik, O.M.: Reactive scheduling in a dynamic and stochastic
FMS environment. International J. of Production Research 41(17) (2003), pp.
4211-4231.

[30] Tavares, L. V.: A review of the contribution of Operational Research to project
management. European Journal of Operational Research 136 (2002), pp. 1-18.

[31] Váncza, J., Kis, T., Kovács, A.: Aggregation – the key to integrating production
planning and scheduling. CIRP Annals - Manufacturing Technology 53(1) (2004),
pp. 377-380.

[32] Weglarz, J.: Project scheduling with discrete and continuous resources. IEEE
Trans. Systems, Man and Cybernetics 9 (1979), pp. 644-650.

[33] Wullink, G.: Resource Loading under Uncertainty, Ph.D. Thesis, Twente
University Press, The Netherlands, 2005.

