Interpolation-based Q-learning

Csaba Szepesvári MTA SZTAKI
William D. Smart WUSTL

Summary

- Introduction
- Algorithm
- Convergence results
- Extensions
- Some experimental results
- Conclusions, future work

Motivation, problem setup

-Q-learning
-Continuous space Q-
learning

Problem Setup

- Markovian Decision Problems

X - state space
A - action space p - transition kernel (dynamics)
r - immediate rewards

- Continuous State Space
- Unknown Dynamics

Q-learning in Discrete State Spaces

Q-learning in Discrete State Spaces

Q-learning in Discrete State Spaces

Continuous State Spaces

Continuous State Spaces

Difference to Regression

$$
\begin{gathered}
Q^{\prime} \neq Q^{*}+\text { Noise } \\
Q^{*}=\mathrm{T} Q^{*} \\
Q^{\prime}=Q^{*}+\left(Q-Q^{*}\right)+\text { Noise }
\end{gathered}
$$

Goals

- Avoid non-convergence
- Changes:
- Local
- Incremental
- $O(1)$ memory requirements
- O(1) time update

Algorithm

iFAPP-Q Learning

$$
Q^{\prime}\left(X_{t}, A_{t}\right)=R_{t}+\gamma \max _{b} Q\left(X_{t+1}, b\right)
$$

Multi-component updates

-Ribeiro \& Szepesvari, 1996 "spreading"

- Szepesvari \& Littman, 1999 "multi-state updates"

iFAPP-Q Learning

$$
Q^{\prime}\left(X_{t}, A_{t}\right)=R_{t}+\gamma \max _{b} Q\left(X_{t+1}, b\right)
$$

iFAPP-Q Learning

$$
Q^{\prime}\left(X_{t}, A_{t}\right)=R_{t}+\gamma \max _{b} Q\left(X_{t+1}, b\right)
$$

iFAPP-Q Learning

$$
Q^{\prime}\left(X_{t}, A_{t}\right)=R_{t}+\gamma \max _{b} Q\left(X_{t+1}, b\right)
$$

iFAPP-Q Learning

$$
Q^{\prime}\left(X_{t}, A_{t}\right)=R_{t}+\gamma \max _{b} Q\left(X_{t+1}, b\right)
$$

iFAPP-Q Learning

$$
Q^{\prime}\left(X_{t}, A_{t}\right)=R_{t}+\gamma \max _{b} Q\left(X_{t+1}, b\right)
$$

iFAPP-Q Learning

$$
Q^{\prime}\left(X_{t}, A_{t}\right)=R_{t}+\gamma \max _{b} Q\left(X_{t+1}, b\right)
$$

iFAPP-Q Learning

$$
Q^{\prime}\left(X_{t}, A_{t}\right)=R_{t}+\gamma \max _{b} Q\left(X_{t+1}, b\right)
$$

iFAPP-Q Learning

Equations?

Notation

Averagers

Gordon, 1995

$$
(F \theta)(x, a)=\sum \beta_{i}(x, a) \theta_{i}
$$

aFAPP-Q Learning Equation

iFAPP-Q Learning
 vs. Q-Learning

aFAPP-Q Learning vs. Q-Learning

$$
\begin{gathered}
\Delta \theta_{t i}=\alpha_{t} s_{t i}\left(R_{t}+\gamma \max _{b} F_{\theta_{t}}\left(X_{t+1}, b\right)-\theta_{t i}\right) \\
\Delta Q_{t}\left(X_{t}, A_{t}\right)=\alpha_{t}\left(X_{t}, A_{t}\right)\left(R_{t}+\gamma \max _{b} Q_{t}\left(X_{t+1}, b\right)-Q_{t}\left(X_{t}, A_{t}\right)\right)
\end{gathered}
$$

aFAPP-Q Learning/Details

$$
\begin{aligned}
& \Delta \theta_{t i}=\alpha_{t+6}+t i \\
& s: \mathcal{X} \times \mathcal{A} \times \mathcal{X} \rightarrow \mathbb{R}^{+} \\
& s_{t i}=s\left(x_{i}, a_{i}, X_{t}\right), \quad i=1, \ldots, n \\
& \alpha_{t i}=\frac{\chi\left(s\left(x_{i}, a_{i}, X_{t}\right)>\epsilon\right)}{n_{t}\left(x_{i}, a_{i}\right)} \\
& n_{t}\left(x_{i}, a_{i}\right)=1+\sum_{s=0}^{t} \chi\left(s\left(x_{i}, a_{i}, X_{s}\right)>\epsilon\right)
\end{aligned}
$$

Theory

-FAPPs as operators
-Theorem
-Assumptions
-Proof outline

Another View of Function Approximation

Non-expansions

Convergence Theorem

Under Assumptions A1-A4, and if F is a non-expansion then

$$
\theta_{t}
$$

converges to some vector θ^{*} w.p.1, such that

$$
\hat{Q}^{*}=F \theta^{*}
$$

is the fixed point of the operator $F \mathcal{P H}$ where $\mathcal{H}: B(\mathcal{X} \times \mathcal{A}) \rightarrow B(\mathcal{X} \times \mathcal{A})$ and $\mathcal{H}(Q)(z, a)$ is defined by
$\iint \hat{s}(z, a, x)\left\{r(x, a)+\gamma \max _{b} Q(y, b)\right\} d P\left(y \mid x, a d \mu_{X}(x)\right.$

Assumption A1: MDP

- (X, A, p, r, γ) is a discounted MDP
- A finite
- X is a compact subset of a separable metric space (e.g. an n-dimensional Euclidean space)
$-r$ is continuous

Assumption A2: Sampling

Actions:

$$
A_{t} \sim \pi\left(a=\cdot \mid X_{t}\right)
$$

States:

$$
\pi(a \mid x)>0 \quad \text { "positive recurrent" }
$$

Rewards:

$$
E\left[R_{t} \mid H_{t}\right]=r\left(X_{t}, A_{t}\right)
$$

Assumption A3: Conditions on the Influence Function s

$$
s: \mathcal{X} \times \mathcal{A} \times \mathcal{X} \rightarrow \mathbb{R}^{+}
$$

- bounded, measurable

Positivity condition:

$$
\int s\left(x_{i}, a_{i}, z\right) d \mu_{X}(z)>0
$$

$\mu_{X} \quad$ - unique invariant measure underlying $\left(X_{t}\right)$

Assumption A4: Learning Rates

Counting visits:

$$
n_{t}\left(x_{i}, a_{i}\right)=1+\sum_{s=0}^{t} \chi\left(s\left(x_{i}, a_{i}, X_{s}\right)>\epsilon\right)
$$

Learning rates:

$$
\alpha_{t i}=\frac{\chi\left(s\left(x_{i}, a_{i}, X_{t}\right)>\epsilon\right)}{n_{t}\left(x_{i}, a_{i}\right)}
$$

Constraint on ϵ

$$
\mu_{\mathcal{X}}\left(\left\{z \in \mathcal{X} \mid s\left(x_{i}, a_{i}, z\right)>\epsilon\right\}\right)>0
$$

Definition of \hat{s}

$$
\iint \hat{s}(z, a, x)\left\{r(x, a)+\gamma \max _{b} Q(y, b)\right\} d P(y \mid x, a) d \mu_{X}(x)
$$

Truncation:

$$
s_{\epsilon}(x, a, y)=\chi(s(x, a, y)>\epsilon) s(x, a, y)
$$

Normalization:

$$
\hat{s}(z, a, x)=\frac{s_{\epsilon}(z, a, x)}{\int s_{\epsilon}(z, a, x) d \mu_{X}(x)}
$$

Proof (outline)

$$
\begin{aligned}
\Delta \theta_{t i}= & \alpha_{t i} s_{t i}\left(R_{t}+\gamma \max _{b} F_{\theta_{t}}\left(X_{t+1}, b\right)-\theta_{t i}\right) \\
\Delta \theta_{t i}= & \alpha_{t i} s_{t i}\left(R_{t}+\gamma \max _{b} \times\left(x_{t+1}, b\right)-\theta_{t i}\right) \\
& \text { allows } \\
& . . \text { componont-wise analysis } \\
& . . \text { use of standard stochastic approximation }
\end{aligned}
$$

How?

Proof: Stochastic Approximation

- $\left(X_{t}\right)$ positive Harris, aperiodic (A2)
\Rightarrow Time averages -> expected values

$$
\begin{aligned}
& \Rightarrow \frac{n_{t}\left(x_{i}, a_{i}\right)}{t+1} \rightarrow \mu_{X}\left(N_{i}\right)>0 \\
& \quad \Rightarrow \sum_{t=1}^{\infty} \alpha_{t i}=\infty \text { and } \sum_{t=1}^{\infty} \alpha_{t i}^{2}<\infty
\end{aligned}
$$

Proof: Relaxation Processes

$$
\begin{gathered}
\Delta \theta_{t i}=\alpha_{t i} s_{t i}\left(R_{t}+\gamma \max _{b} F\left(X_{t+1}, b\right)\right.
\end{gathered} \underbrace{(\mathcal{J} F)_{i}=(\mathcal{H} F)\left(x_{i}, a_{i}\right)}
$$

..holds for all F

Proof

$$
\begin{gathered}
\Delta \theta_{t i}=\alpha_{t i} s_{t i}\left(R_{t}+\gamma \max _{b} F\left(X_{t+1}, b\right)-\theta_{t i}\right) \\
\theta_{t i} \rightarrow(J F)_{i}
\end{gathered}
$$

Proof

$$
\begin{gathered}
\Delta \theta_{t i}=\alpha_{t i} s_{t i}\left(R_{t}+\gamma \max _{b} F_{\theta}\left(X_{t+1}, b\right)-\theta_{t i}\right) \\
\theta_{t i} \rightarrow\left(J F_{\theta}\right)_{i} \\
\Delta \theta_{t i}=\alpha_{t i} s_{t i}\left(R_{t}+\gamma \max _{b} F_{\theta_{t}}\left(X_{t+1}, b\right)-\theta_{t i}\right)
\end{gathered}
$$

Fixed Point

$$
\begin{gathered}
\Delta \theta_{t i}=\alpha_{t i} s_{t i}\left(R_{t}+\gamma \max _{b} F_{\theta_{t}}\left(X_{t+1}, b\right)-\theta_{t i}\right) \\
\theta_{t} \rightarrow \theta^{*}=\mathcal{J} F \theta^{*} \\
\quad . \text {.since } F \text { is a non-expansion }
\end{gathered}
$$

Proof: Finishing Steps

$$
\begin{aligned}
\theta^{*} & =\mathcal{J} F \theta^{*} \\
F \theta^{*} & =F \mathcal{J} F \theta^{*} \\
\mathcal{J} & =\mathcal{P H} \\
F \theta^{*} & =F \mathcal{P H} F \theta^{*} \\
\hat{Q}^{*} & =F \mathcal{P} \mathcal{H} \hat{Q}^{*}
\end{aligned}
$$

Q.e.d

How to Choose F?

Averagers:

$$
\begin{aligned}
& (F \theta)(x, a)=\sum_{i} \beta_{i}(x, a) \theta_{i} \\
& \sum_{i} \beta_{i}(x, a)=1, \beta_{i}(x, a) \geq 0
\end{aligned}
$$

Averagers are non-expansions!

What Does this Theorem Tell Us?

Theorem - Once Again

Under Assumptions A1-A4, and if F is a non-expansion then

$$
\theta_{t}
$$

converges to some vector θ^{*} w.p.1, such that

$$
\hat{Q}^{*}=F \theta^{*}
$$

is the fixed point of the operator $F \mathcal{P H}$ where $\mathcal{H}: B(\mathcal{X} \times \mathcal{A}) \rightarrow B(\mathcal{X} \times \mathcal{A})$ and $\mathcal{H}(Q)(z, a)$ is defined by
$\iint \hat{s}(z, a, x)\left\{r(x, a)+\gamma \max _{b} Q(y, b)\right\} d P(y \mid x, a) d \mu_{X}(x)$

Interpotation-based Q-learning

Csaba Szepesvári MTA SZTAKI
William D. Smart WUSTL

Averagers-based Q-learning (and other convergent value function approximation algorithms)

Csaba Szepesvári

 MTA SZTAKIWilliam D. Smart WUSTL

Generalizations

-Other learning algorithms
-Increasing accuracy
-Approximating Q*

Generalizations

$$
\begin{gathered}
V_{t+1}=T V_{t} \\
V_{t+1}=F \mathcal{P} T V_{t} \\
V_{t}=F \theta_{t}, \theta_{t+1}=? \\
\mathcal{P} V_{t+1}=\mathcal{P} F \mathcal{P} T V_{t}
\end{gathered}
$$

$$
\theta_{t+1}=P F \mathcal{P} T V_{t}=\mathcal{P T F \theta _ { t }}
$$

$$
\mathcal{P} F \theta_{t+1}=\theta_{t+1}
$$

$$
\mathcal{P} F \theta=\theta
$$

Generalizations

Why not start with

$$
\theta_{t+1}=\mathcal{P} T F \theta_{t} \quad ?
$$

Generalization to "learning":

$$
\theta_{t+1}=\mathcal{P} \not{ }_{t} F \theta_{t}
$$

-learning rates
-observed data

Generalizations

Why not start with

$$
\theta_{t+1}=\mathcal{P} T F \theta_{t} \quad ?
$$

Generalization to "learning":

$$
\theta_{t+1}=\mathcal{P} T_{t}\left(F \theta_{t}, F \theta_{t}\right)
$$

"Meta Theorem"

- Let T be a contraction.

If F is an interpolative non-expansion and T_{t} defines a "relaxation process" when its second parameter is fixed approximating T w.p.1, and if

$$
\begin{aligned}
\left|\mathcal{T}_{t}\left(U_{1}, V\right)-\mathcal{T}_{t}\left(U_{2}, V\right)\right| & \leq G_{t}\left|U_{1}-U_{2}\right| \\
\left|\mathcal{T}_{t}\left(U, V_{1}\right)-\mathcal{T}_{t}\left(U, V_{2}\right)\right| & \leq F_{t}\left(\left\|V_{1}-V_{2}\right\|+\lambda_{t}\right)
\end{aligned}
$$

then

$$
V_{t} \rightarrow \hat{V}^{*}=F \mathcal{P} T \hat{V}^{*}
$$

w.p. 1

Applications

- FAPP +
- Real-time dynamic programming (speeding up dynamic programming by not updating irrelevant parts of the state-space)
- Value iteration with Monte-Carlo updates (when exact updates are too expansive)
- Other criteria (e.g. Markov games, Risk-sensitive MDPs, ..)

Tsitsiklis\&Van Roy, 1997
Gordon, 1995

Extensions

Increasing the Density of Basis Points

Algorithm

While (true)
\{
Add basis points dens $\left(S^{t}\right)>h_{0}$ Run IFAPP-Q Learning for time T_{t} \}

Convergence

- Family of FAPPs: $F^{(n)}: \mathbb{R}^{n} \times Z^{n} \rightarrow B(\mathcal{Z})$.
- Non-destructive refinement
- Expansion finishes in finite time with probability one

$$
\begin{aligned}
& \Rightarrow \quad \theta_{t} \rightarrow \theta^{*} \quad \hat{Q}^{*}=F^{\infty} \theta^{*} \quad \text { (random) } \\
& \\
& \\
& \\
& \\
& \quad F^{\infty}=\lim _{t \rightarrow \infty} F^{\left(n_{t}\right)}\left(\cdot, S^{t}\right) \\
& \hat{Q}^{*}=F^{\infty} \mathcal{P} \mathcal{H} \hat{Q}^{*} \\
& \\
& \quad\left\|\hat{Q}^{*}-Q^{*}\right\| \leq O\left(h_{0}\right) ?
\end{aligned}
$$

Extension \#2

While (true)
\{
Add data points
Shrink influence function s
Estimate density underlying μ_{X} with κ_{t} and
run modified iFAPP-Q for time T_{t}
\}
Output learned Q-function

Modified iFAPP-Q Learning

- Use

$$
\begin{aligned}
& s_{t i}=\frac{s_{t}\left(x_{t i}, a_{t i}, X_{t}\right)}{\kappa_{t}\left(X_{t}\right)} \\
& s_{t}(x, a, y)=\phi_{a}\left(\|x-y\| / h_{t}\right) \\
& \phi_{a}: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R} \\
& h_{t} \rightarrow 0
\end{aligned}
$$

Some Experimental Results

Comparison algorithms

- Soft state aggregation [Singh, Jaakkola \& Jordan 95]
- Kernel-based RL [Ormoneit \& Sen 02]
- Domain: car on the hill

State-action visit counts

left

right

Q-values for "optimal" policy

left

right

Q-values for "optimal" policy

Performance comparison

Varying the exploration policy

flops

Varying the density threshold

Conclusions

Conclusions

- iFAPP-Q: Extends Q-learning to continuous spaces
- Need to update multiple components of the parameter vector => influence function s
- Works for non-expansions
- Extensions are possible
- Changing the policy?
- When to add basis points?
- Other FAPPs (LWR?)

What Makes F "Interpolative"?

$$
\begin{gathered}
\theta \in \mathbb{R}^{n} \\
F_{\theta}: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R} \quad \text {-parameter vector } \\
S=\left\{\left(x_{1}, a_{1}\right), \ldots,\left(x_{n}, a_{n}\right)\right\} \\
F_{\theta}\left(x_{i}, a_{i}\right)=\theta_{i}
\end{gathered}
$$

