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Abstract

We consider the convergence of a class of
reinforcement learning algorithms combined
with value function interpolation methods us-
ing the methods developed in (Littman &
Szepesvéri, 1996). As a special case of the
obtained general results, for the first time,
we prove the (almost sure) convergence of Q-
learning when combined with value function
interpolation in uncountable spaces.

1. Introduction

Since the early days of dynamic programming re-
searchers interested in solving problems with large or
even infinite state spaces combined function approx-
imators and value backups. Some of the first exam-
ples include (Bellman & Dreyfus, 1959; Reetz, 1977;
Werbds, 1977). The approach at these days was to
use some interpolation method and compute the value
backups on a set of representative states.

Reinforcement learning (RL) has grown out of the
work of (Samuel, 1959) who himself has used a form
of value function approximation. Sometimes RL is
defined as large-scale approximate dynamic program-
ming combined with learning techniques.

One main stream of RL employs gradient-based meth-
ods. Focusing on value function approximation only,
examples include T'D(A) (Sutton, 1988), Bellman-
error (Schweitzer & Seidman, 1985) and residual al-
gorithms (Baird, 1995; Baird & Moore, 1999). Some
successful applications of these methods are described
in (Tesauro, 1994; Zhang & Dietterich, 1995; Bax-
ter et al., 1998). Another main stream employs con-
tructive (local) methods. Decision tree based meth-
ods were used e.g. in (Chapman & Kaelbling, 1991)
and more recently in (Wang & Dietterich, 1999). Dis-
cretization using triangularization has been advocated
in (Munos, 1997), (sometimes adaptive) state aggre-
gation was employed in e.g. (Moore & Atkeson, 1995;
Tsitsiklis & Van Roy, 1996; Gordon, 1995). Recently,
locally weighted regression models have been used by

(Smart & Kaelbling, 2000).

Regression literature teaches us that the advantage
of constructive or local methods is that the behavior
of the method can be understood much better than
that of the gradient-based approaches. As discussed
in (Atkeson et al., 1997) advantages of constructive
local methods include (i) no interference, (i) incre-
mental improvement (no local minima as in gradient
methods), (##) one-shot learning and (%v) that the in-
corporation of new data is cheap. The main disadvan-
tage of local methods is that value prediction slows
down as the number of training examples increases
and their performance degrades as the dimensionality
of the space increases.

Unfortunately, it seems that the nice properties of con-
structive approximations do not carry over seemlessly
to the combinations of local methods and reinforce-
ment learning. This has been observed by many re-
searchers (e.g. (Boyan & Moore, 1995; Baird, 1995))
and then researchers were urged to come up with con-
vergent algorithms. In (Gordon, 1995) and indepen-
tently in (Tsitsiklis & Van Roy, 1996) convergence re-
sults were derived for approximate dynamic program-
ming when the “value-fitting operator” was chosen to
be a non-expansion! More precisely, in (Gordon, 1995)
an algorithm of the form V341 = GT'V; was considered,
where T is the value backup operator and G is a non-
expansion w.r.t. the supremum norm. In discounted
problems T is known to be a contraction (w.r.t. the
supremum norm) and thus 7 = GT is a contraction as
well and the algorithm converges to the unique fixed
point of 7. In order to make the algorithm practi-
cal one decomposes G into the product of an opera-
tor P that maps the space of value functions into a
low-dimensional space © and an operator £ that maps
O to the space of value functions. Then, by defining
0; = PV, one gets

8,41 = PTEG,. (1)

n (Tsitsiklis & Van Roy, 1996) the authors actually
derived a slightly less restrictive condition. We shall dis-
cuss this difference later.



Gordon proposed to use “averagers” as £ and discussed
the problems with the extension of the method to the
learning scenario when 7' is unknown.

In (Tsitsiklis & Van Roy, 1996), T is still assumed to
be known, although these authors mention that their
method could be extended to the case when T is re-
placed by its Monte-Carlo approximation. State ag-
gregation with approximate gradual value iteration is
studied. Iteration 1isreplaced by 041 = (1—0u)6:;+
oy (T(50t))(Xt(i)), where Xt(i) is a sample from the ith
“cluster” and (£6)(z) = Y., 0ixa,(x), where {4;}
forms a partition of the state space X. Convergence
is shown and tight error bounds are derived. In the
same article, another algorithm in the style of Equa-
tion 1 is presented that employs an interpolative linear
operator £. Convergence and tight error bounds are
derived.

Apperantly, the only work known to us which does
not make use of a model and which employs local
learning is that of (Singh et al., 1995). The au-
thors of these article propose a combination of Q-
learning with what they call “soft-state aggregation”.
The soft-clusters are represented by probability dis-
tributions P(i|z): Y., P(ilz) = 1, P(ilz) > 0. A
fixed persistently exciting policy is used to generate
a stationary state-action sequence (X, A;) over a fi-
nite state and action space. In each time-step a ran-
dom cluster index I; is generated from P(-|X;) and
the ()-values are updated using the experience samples
< Ii, Ay, Ry, I 1 >. Amost sure convergence is guar-
anteed since < Iy, Ay, Ry, I 11 > has a stable statistics
(Singh et al., 1995).

Although this algorithm is guaranteed to converge, it is
quite inefficient as it updates only one @-value in each
time step even if the clusters “overlap”. In an ear-
lier work Q-learning was studied with “multi-state”
updates (Ribeiro & Szepesvéri, 1996; Szepesvari &
Littman, 1999). In the algorithm considered multiple
states are updated in each time step (hence the name
of it), the original motivation being to share samples
across “neighboring” @-values to speed up the conver-
gence process. Convergence results and bounds on the
error introduced were given.

One main motivation of the present article is to extend
this algorithm to large or even infinite state spaces.
This is achieved by combining the ideas of (Tsitsiklis
& Van Roy, 1996) with that of (Ribeiro & Szepesvéri,
1996). The key idea is to employ interpolative func-
tion approximators. This way a familiar error recur-
sion can be shown to hold for the error in the pa-
rameter space. Following the ideas of (Szepesvari &
Littman, 1999), instead of showing the convergence of

this combined algorithm directly we derive a generic
convergence theorem of which the given algorithm will
be shown to be a special case. Our results will show
convergence of on-line learning algorithms even in in-
finite state-spaces. The actual form of the function
approximator employed is left unspecified apart from
the requirement that the corresponding operator must
be a non-expansion.

The organization of the paper is as follows: In Sec-
tion 2 the basic definitions are given and the notation
is introduced. In Section 3 the form of the generic
algorithm is proposed. The main convergence result
along with its application to @-learning and approx-
imate value iteration is presented in Section 4. Con-
clusions are drawn and some open issues are discussed
in Section 5.

2. Definitions

We assume that the reader is familiar with basic con-
cepts of Markov decision processes (MDPs). In this
section we introduce our notation, but do not provide
any explanation of the concepts used.

2.1 MDPs

An MDP is a tuple M = (X, A,p,r,7v), where X is
a set of states, A is a set of actions, p is the tran-
sition probability density function for non-countable
state spaces and the transition probability function for
countable state spaces, r is the reward function and
is the discount factor.

The optimal value function associated with the MDP
M shall be denoted by V*, the value operator by T,
the optimal policy by n*. The sup-norm shall be de-
noted by || -||. The space of real-valued bounded func-
tions over a set X will be denoted by B(.X).

2.2 Interpolative Function Approximation

A function approximator F maps a parameter space ©
into the set of functions of interest, in our case B(X),
ie., F': @ — B(X). Usually, O is a finite dimensional
space, typically ® = R* for some ¥ > 0. For conve-
nience, we shall denote the function F(6) by Fy.

Besides choosing a function approximator, one also
needs to choose a method to construct the parameter
given some data. In this article we will consider in-
terpolative methods, by which we mean the following;:
given the data D = ((z1,...,2,),(v1,... ,v,)) with
x; # xj, an interpolative method R : A" x R* — ©
chooses a parameter vector 8 such that Fy(z;) = v; for
alli =1,2,... ,n.



Fix the basis points x = (21,...,2,), ¥; # 2;. Given
a function V' of B(X) the interpolative representation
of V as given by the pair (F,R) is Fp, where § =
R(Dy) and Dy = (21,...,2n), V(21),...,,V(2n)).
Let G : B(X) — B(X) be the interpolative operator
defined by GV = F(R(Dy)).

The mapping that “projects” functions in B(X) onto
R™ given the basis points x shall be denoted by P.
P:B(X)—=R*, (PV); = V(x;). Further, let us define
E:R* —» B(X) by Ev = GV, where V is any function
in B(X) satisfying V(z;) = v;, ¢ = 1,2,...,n. & is
well-defined, by the definitions of G and R.

It is easy to see that these operators satisfy the equa-
tions

EPV = GV, 2)
Pg = id]Rn, (3)

where idr~ is the identity over R”. Here the second
equation states that G is interpolative. Note that P
is linear: P(AMU + X2V) = MPU + PV, U,V €
B(X), A1, A2 € R Further, P|U| = |PU|, where |U]| is
defined by |U|(z) = |U(z)|.

In the algorithms and the analysis below, for the sake
of generality, we shall take G as our starting point
together with its decomposition into the projection
(P) and “expansion” (&) operators satisfying Equa-
tions 2 and 3. We shall require below that G be a non-
expansion w.r.t the supremum norm.? Given the de-
composition above this is equivalent to requiring that
£ is a non-expansion (R" is taken with the £°° norm):

Proposition 2.1. Let G, P,E satisfy 2 and 3, where
P is the projection operator for some set of basis
points. Then G is a non-expansion if and only if £
is a non-expansion. Further,

IPGU —PGV|| = ||PU-PV|| (4)
IPU-PV| < IU-VI, (5)
IGU -GV < [[PGU—-PGV|.  (6)

Proof. Assume that G is a non-expansion. Let u,v €
R” be arbitrary. Choose U,V € B(X) such that PU =
uand PV =v and ||[U = V|| = |Jlu —v||. Then ||Eu —
Evl| = [|EPU = EPV| = |IgU = GV|| < U = V]| =
[lu — v||. This proofs that £ is a non-expansion. Now,
assume that £ is a non-expansion. Let U,V € B(X)
be arbitrary. ||GU — GV|| < ||PU - PV|| < ||U = V|

The first two inequalities are trivial. The third one
follows since ||GU — GV|| < ||PU — PV|| (since € is a

Later we will relax this condition in the spirit of (Tsit-
siklis & Van Roy, 1996).

non-exponasion) and ||PU — PV|| is equal to ||PGU —
PGV|| by 4. 0

Many well known interpolation operators (£) are non-
expansions. Among them are the Oth order spline in-
terpolation with €u = >0 | u;xa;, where X is the
disjoint union of the sets Aj,...,A, and x4 is the
characteristic function of A (corresponding to state ag-
gregation), certain higher order spline-interpolations,
and radial basis function (RBF) interpolation, which
is a special case of kernel-based approximation. All
these interpolation architectures assume a linear form:
Eu = uT ¢ for a suitably chosen function ¢ : X — R”.
¢ is called the basis function and can either be explic-
itly or implicitly given. For example, if the sets A;
above are given explicitly then ¢ = (x4,,---,x4,). If
A; is given as the sets corresponding to the leafs of a
decision tree then the basis function is implicit, — it is
encoded into the decision tree algorithm. In the case
of RBF networks ¢ = U~ T4, where ¢ : X = R" is a
mapping such that ¢;(z) = K(z;,z) for some radially
symmetrical kernel function K, and U is defined by
uij = ¥i(z;) = K(z;, d(2;, 25)).°

2.3 Asynchronous Stochastic Dynamic
Programming

We will make use of the notation of the paper (Littman
& Szepesviri, 1996) so as we can capture many asyn-
chronous stochastic dynamic programming algorithms
with a single algorithm and convergence proof. Let
T: : B x B— B be a sequence of stochastic opera-
tors satisfying certain regularity conditions. The al-
gorithms considered in (Szepesvéri & Littman, 1999)
take the form

Virr = Te(Ve, Vo). (7)

In order to shed some light on the intuitions behind
this notation consider (lookup table based) @-learning,.
Take B = B(X x A) and let

[7:(Q, Q")](z,a) = (1 — au(z,a))Q(z, a)
+at($7a) {Rt + ’Ymbax QI(XH-I: b)} ’ (8)

where ay(z,a) = 0 if (X, Ay) # (z,a). Here (X¢, Ar)
is the state-action pair visited at time step ¢t and
R; is the immediate reward received. Note that the
operator sequence 7; depends on the random trajec-
tory (Xo, Ao, Ro, X1,...) and is therefore random it-
self. The choice of T; is motivated by the observation

3Conditions under which the RBF interpolation oper-
ator of RBF networks exists and is a non-expansion are
given in (Tsitsiklis & Van Roy, 1996).)



that each component of Q11 = T;(Qy, Q) is a stan-
dard one-dimensional stochastic approximation pro-
cess and thus, under the usual conditions, Q; converges
to To@ w.p.1, where 7o denotes the optimal value op-
erator for ()-functions. Therefore algorithm 7 can be
thought of as performing a “diagonal” approximation
to hmt_,oo TéQO

Although, asynchronicity does not follow directly from
the form of 7, using )-learning as an example, one can
see that the form of the algorithm does allow the dif-
ferent components of the value function to be updated
at different rates - hence the algorithm allows asyn-
chronous updates.

In (Szepesvéri & Littman, 1999) a general convergence
result is presented for this algorithm. In the same ar-
ticle it was shown that this convergence result applies
to many well known algorithms, including e.g. model-
based reinforcement learning, asynchronous dynamic
programming, Q-learning, Q-learning with multi-state
updates. This last result will play an important role
in this paper.

The convergence analysis of the algorithm builds on
the comparision of the sequence Ugr1 = Ty (U, V*)
with V3. In particular, a recursive error equation is
derived for their difference.

3. The RLI Algorithm

The proposed RLI (“reinforcement learning with in-
terpolation”) algorithm has the form

Vitr = GTe(Ve, Vi), 9)

in the value function space, for a suitably chosen se-
quence of random operators and non-expansive inter-
polation operators G;. This algorithm can be thought
of as the extension of the algorithm proposed by Gor-
don who studied the iteration Vi1 = GT'V;. If one
thinks of 7 as the generalization of value-iteration then
clearly 9 appears analogous to the algorithm studied
by Gordon.

Given the decomposition G; = &P, where P; is a pro-
)

jection operator as in the previous section, one readily

derives the parameter space recursion

Orr1 = PiTi(E0e, E6y), (10)

where V; = &6, or 8; = P;V;. We will be primarily
concerned with the convergence of V; and the quality
of approximation of the optimal value function by the
limes. Note that if the limes exists and if P; = P for
some P and for all ¢ > 0 then by the continuity of
P and since 0; = PV, 6; will also converge to some
limiting value.

4. Results

4.1 Convergence Analysis

For the simplicity of presentation let G; = G, Py =
P and & = &. Following the ideas developed in
(Szepesvdri & Littman, 1999) we compare Upi1 =
GTi (U, V*) with Vi = GTi(Vi, V). Here V* is the
fixed point of GT'. Let &; = |V; — Uy| denote the error
process.

First, note that by 6,
0e41ll =

A

NGT:(Vi, Vi) — GTe(Us,, V)|
I1PGT:(Vi, Vi) — PGT(Uy, V*)||
[PVigr — PUpta|l = [|Pdgyall-  (11)

A\

Il

This inequality will play a key role in proving the con-
vergence of V; as it shows that it is sufficient to prove
that P§; converges to zero w.p.1. This way, the prob-
lem is reduced to a finite dimensional problem.

Now, by 3 PVi1 = PEPTi(Vi, Vi) = PTi(Vi, Vi)- Sim-
ilarly, PUsy1 = PTi(U;, V*). Therefore

Pois1 = |[PT(Ve, Vi) = P (U, V*).  (12)

Now, recall that in (Szepesvéri & Littman, 1999) the
T: operators were shown to satisfy the following con-
ditions in most of the applications:*

|7;(U17V) _7;(U27V)| <

< GiUp = Us|, (13)

F(|[Vi — V2|

+A), (14)
where Uy, Us, Vi,Va € B(X) are arbitrary, Ay > 0 is
a random sequence converging to zero w.p.1, Gy, F;
are suitable chosen uniformly bounded non-negative
random functions satisfying 0 < F;, Gy < 1, F; < y(1—
G¢), and lim, , [T} G¢|| = 0 w.p.1 for all t5 > 0
and 0 < v < 1 is a discount factor (a non-random real
number).

Note that in the applications F; typically corresponds
to agy and Gy to 1 —ay, where oy is the “learning rate”
at time step ¢ (cf. Equation 8).

Proceeding formally, using 13 and 14 we get

Pop1 < |PTe(Ve, V*) = PT(Us, V)| +
PTe(Vi, Vi) = PTe(Vi, V)
'P(Gt|Vt — Ut|) +
PE(IVe = Ul + U = V|| + Ar))
= (PGy) (P|V; = Uyl) +

(PE) (161 + U = V|| + o).

‘Here and in what follows multiplication, absolute
value, equality and inequality of functions should be un-
derstood pointwise.

IA



Now, by 11, ||6;]| < ||Pd;|| and therefore

Pdir1 < (PGy) (P8;) + (PE) (1P| + |U: — V*|| + Ao).

(15)

Notice that we have reduced the infinite dimensional
error recursion to a finite dimensional one. Now, if
PGt, PFt satisfy 0 S PFt,PGt S ]., PFt S ’y(]. bl
PGy), and limy, o0 ||}, PGyl = 0 w.p.1, for all to >
0 and if ||U;— V*|| converges to zero then by Lemma 26
of (Szepesvari & Littman, 1999) PJ; converges to zero
w.p.1.

Similarly to the above analysis, the convergence of U,
can be studied by looking at PU;. Namely, if PU;
converges to §* then by the continuity of £, Uy must
also converge w.p.1.% Further, if V* is the fixed point
of GT then [|Upy1 — V*|| = |GTe(Us, V*) — GV*|| <
|PUgy1 — PV*|| by 6.

4.2 The Main Theorem

Theorem 4.1. Assume that the sequence Ugy1 =
gﬁ(Ut,V*) converges to V* w.p.1, where V* is the
fixed point of GT'. Further, assume that the random
variables Gy, Fy satisfy 0 < PF,, PGy < 1, PF; <
v(1 = PGy), and limy_ oo [T, PGyl| = 0 w.p.1 and
Te, Fy, Gy satisfy inequalities 18 and 14, where Ay > 0
converges to zero w.p.1. Then Viy1 = GT:(Vi, Vi) con-
verges to V* w.p.1.

A performance bound follows immediately from the
bounds derived for the composite of non-expansion
and contraction operators (see e.g. (Gordon, 1995)
or Proposition 9 in (Szepesvéri & Littman, 1999)).

Theorem 4.2. Let G be an interpolative non-
expansion over B and T be a contraction with con-
traction factor 0 < v < 1, also given over B. Let V*
be the fixed point of GT and let V* be the fized point
of T. Then

2infyegn [|€v — V|

VE-VH =
l I =)

Proof. The theorem follows directly e.g. from Propo-
sition 9 of (Szepesvéri & Littman, 1999) and the ob-
servation that {V : GV =V} ={&v:veR*}. O

Note that the infimum is not necessarily taken at v* =
PV*, but clearly, ||GV*—V*|| provides an upper bound
on infy,egn ||Ev — V*||.

5Since £ is a non-expansion, it must be continuous.

4.3 Interpolative Q-learning

Let G = £P be any interpolative, non-expansion de-
fined over B(X X A)6 Let Xo,A(),R(),Xl,Al,Rl, N
be a random trajectory generated by a suitable sta-
tionary exploration policy (X is the state visited at
time ¢, A; is the action taken at time t and R; is the
reward received at time t).

The straightforward combination of @)-learning and in-
terpolative function approximation generates the se-
quence Q¢+1 = GT1(Q¢, @), where Ty is the Q-learning
update operator defined in Equation 8. This algorithm
has the problem that it does not change (J); unless
(X¢, Ay) € W. Since this has a zero probability in
uncountable state spaces the resulting algorithm will
be rather uninteresting. We need to update @Q-values
at state-action pairs other than the currently visited
ones!

In (Ribeiro & Szepesvéari, 1996) and later in
(Szepesvéri & Littman, 1999), the process Qi1 =
Ti(Q¢, Q¢) was studied where

7@ Q) (z,0) = (1 - oy(z,0)s(z,0, X))Q(z. )
+au(e, )0, %) { Rty max (X, J16)

where «; is a suitably chosen sequence of random
learning rates and s(z,a,z) > 0 is a spatial smoothen-
ing factor. Typically, s(z,a,z) < s(z,a,2) and
s(z,a,z) decays to zero as ||z — z|| & co. We will
require that s is measurable and uniformly bounded.
In the updates we allow ay(z,a) > 0 for state-action
pairs (z,a) # (Xy, 4;).7 This way other state-action
pairs than the currently visited one will be updated as
well - just what we wanted to achieve.?

In (Szepesvéri & Littman, 1999) it was shown that in
finite state spaces, under mild conditions @; defined
above converges w.p.1. The motivation there, how-
ever, was to speed up (Q-learning rather than making
Q@-learning work in infinite state spaces. The anal-
ysis required that every state action pair be visited
infinitely often. Such a condition is never met in un-
countable state spaces.

5A special case is when the basis points (z;,a;)
are chosen such that W = {(z1,a1),...,(Zn,an)} =
{z1,... ,2n} x A. This corresponds to approximation in
the state space only. In what follows we shall assume this.

"We will still need, however, a;(x,a) = 0 unless a = A;.
This last condition could be removed by extending s to
include “action smoothening” as well.

8In (Singh et al,, 1995) essentially the same was
achieved by sampling which component to update. We
believe that our method makes use of the samples more
efficiently, but this still needs to be proven!



Here we show that this update rule when combined
with interpolative function approximation yields a
convergent algorithm. Let Qi1 = GT¢(Q+, Q+), where
T is defined by 16. In the parameter space the algo-
rithm takes the form:

01,5 = (1 — ae(zi, i) 8(wi, ai, X)) (s,5) +
+at(l'j,aj)8($j,ai,Xt). (17)

{Rt+’7m1?‘XQt(Xt+lab)}7 i:]-aza"'ana

where Q; = £6; and we have used Q¢(z;,a;) = 6
which follows from the interpolative property of G.

Now, let us consider Qt+1 = 7}(@,5,@), where ) €
B(X x A) is fixed. In order to analyze this process we
need to make some further assumptions on the sam-
ple path {(X, A;):} and the policy = that generates it.
First, we require that w(a|z) > 0 for all (z,a) € X x A.
Second, we require that {X;} be stationary, have a
unique invariant measure, px(-), and let it be posi-
tive Harris (e.g. (Tadi¢, 2001)). It is known (see e.g.
(Tadié, 2001) Lemma 9) that under these conditions
(1/(t+1) Xty F(Xs) = [ f(x)dux (x), where f is an
arbitrary L' (u,) functlon

Now, by the positivity of s, [ s(z;,as,z)dux(z) >
0 and thus there must exist some ¢ > 0 such
that px(4) > 0, where A = {z : s(z;,a;,z) >
e} Let my(zia) = 1+ Yo o x(s(xiai, X)) >
€). Clearly, ny(z;,a;) = oo w.p.l, since (1/(t +
1))Zizox(s(xi,ai,Xt) > ¢€) = pux(A). Therefore
it ar(wi,ai) = x(s(zi,ai,Xe) > €)/ni(xi,a;) then
g (i, ai)s(zi,ai, X)) > e p5o 1/ (k + 1).
For the same sequence, by the boundedness of s,
St o(as(@i, ai)s(mi, ai, X)) — 00 w.p.1.

Now, the analysis presented for multi-state Q-learning
in (Szepesvari & Littman, 1999) applies to 8; = PQ;
and shows that it converges to (PH)(Q), where H :
B(X x A) = B(X x A) is given by

(z,a) // (z,a,2){R(z,a) +

v max Q(y, b) }p(yle, a)dydpx (z), (18)

where §(z,a,2) = s(z,a,2)/([ s(z,a,2)dux (z)). By
standard arguments H can be shown to be a contrac-
tion operator with contraction factor .

Now let 7 : B(X x A) = B(X x A) be defined
by 7 = GH and let Q* be the fixed point of it.
We claim that Qi1 = GT3(Q¢, Q¢) converges to Q*
w.p.1. We shall make use of Theorem 4.1. Let
Fi(z,a) = vyay(z,a)s(z,a,X:) and Gi(z,a) = (1 —
ai(z,a)s(z,a,Xy)).  limpeo [Ty, PG| 0 fol-

lows iff Y70 o, a:)8(xi, a5, Xy) = 0o wp.l., i =
1,2,... ,n. This proves the following theorem:

Theorem 4.3. Fixz a stochastic exploration policy
m(a|z) such that the sequence of the generated states
X; has a unique invariant measure px, {X:} is sto-
tionary and positive Harris. Assume further that
m(alz) > 0 for alla € A and z € X. Let £ be a non-
expansion, let ay(x;,a;) be defined as in the previous
paragraph, where s(z,a,z) > 0 is a design parameter.
Let s be measurable and bounded. Then 01 con-
verges w.p.1 to 8* such that Q* = £6* is the fized point
of GH, where H is defined by 18.

Since T'D(0) is a special case of Q-learning (where the
cardinality of A is one), one obtains a convergence
result for TD(0) as a corrollary of the above theorem.
This result complements those that were obtained by
Van Roy and Tsitsiklis (Tsitsiklis & Van Roy, 1997)
and more recently by Tadi¢ for gradient-based TD(A)
(Tadié, 2001).

4.4 Interpolative Approximate Asynchronous
Value Iteration

Let us consider again the iteration Vi1 = GT'V; stud-
ied by (Gordon, 1995), or the equivalent form (Equa-
tion 1) in the parameter space. Convergence can be
proved as the composite operator GT' is a contraction
with the same index as that of 7.° However, this algo-
rithm is not practical if the number of states accessible
from z; (the ith base-point) is very large or infinite.
In (Tsitsiklis & Van Roy, 1996) the authors consider
the same algorithm was considered for interpolative
representations. As another application of Theorem
4.1 the convergence of an extension of the second al-
gorithm consider in (Tsitsiklis & Van Roy, 1996) is
derived here.

There are a number of ways to approximate PTE0;.
An obvious approximation is to replace T' by a Monte-
Carlo approximation of it. If T is “randomized” in
this way then one must change 6; graudally to filter
out the effects of noise:

0t+1 = (]. - at)0t + atPﬁSHt.

One possibility is to sample K transitions
{(Xt(f,’ca),Rgf,’f)}kzl,,,,,K from each basis point
z; and action a and define (P(T;V)); =

(1/N)mingea Y {RYS + 4V (X57)}. As before,
the algorithm can be put in the form Vier = Te(Ve, Vi)
and analyzed using the tools developed above. Under

9At this level of generality one does not need the inter-
polative requirement.



the usual conditions on «;, the samples and £, one
obtains convergence to the fixed point of GT w.p.1.

If one does not have a sampling device that can gen-
erate samples from any point of interest then one may
use the idea of spatial smoothening and rely on a sin-
gle sample path generated using a persistently exciting
policy. Again, the resulting algorithm can be proven
to converge under conditions similar to that of in The-
orem 4.3.

Many other variants can be proposed. Due to the lack
of space we cannot discuss these here.

4.5 Adaptive Representations

Deciding for a good representation for a given
MDP requires good insight of the problem to be
solved.Therefore it is important to consider methods
that refine the representation on the basis of observed
data. The iteration Viy1 = GiT¢(V4, V) models such
changing representations provided that we allow the
operator G; to become random (since it will depend
on random data). Examples that can be cast into
the present framework include refinements of trian-
gulations as in (Munos, 1997), decision tree growing
(Wang & Dietterich, 1999) and growing kernel-based
methods (Smart & Kaelbling, 2000).

If there exist a deterministic bound on the number
of changes of the representation (e.g. adaptive dis-
cretization is stopped when a given maximal spatial
resolution is achieved or when a maximum number of
allowable changes is achieved) then V}; will converge to
V*, the fixed point of Goo T, where Goo = lim;_, o0 Gy.10
Note that in general G, will be random, but the main
theorem continues to hold.

4.6 Relaxing the interpolation requirement

The requirement that G should be a non-expansion can
be relaxed if one observes that all what matters is that
GT should be a contraction. For this it is sufficient to
require that G is Lipschitz with a constant 0 < 7' <
1/5 (or ||EV = EU|| < 4'||U = V||, where U,V € B(X)
are arbitrary). This was first observed in (Tsitsiklis &
Van Roy, 1996). The results derived here can also be
shown to hold under this relaxed condition.

5. Conclusion

We have introduced a class of general interpolative re-
inforcement learning algorithms and studied their con-
vergence. In particular, an extension of Q-learning was

%Convergence is defined w.r.t. the induced sup-norm of
operators.

studied in uncountable state spaces. Almost sure con-
vergence was derived and bounds were given to the
loss resulting from using the given architecture.

One attractive feature of Q-learning is that it al-
lows the exploration policy to be chosen at will as
long as it remains “infinitely exploring” (see (Singh
et al., 1997)). Unfortunately, the result of the pre-
vious section requires that the exploration policy be
fixed during learning. A naive approach to over-
come this problem is to multiply ay(z,a)s(z,a,X})
in the update equation with a correction factor
Ci, where C; is obtained recursively: Ciy1 =
Ct (W(At-l—l |Xt+1)/7Tt (At+1 |Xt+1). Here 7 is a fixed ex-
ploration policy and 7 is the policy that is actually fol-
lowed during learning. Trivial computation shows that
for any real-valued, bounded measurable function f,
E[f(X)C¢] = [ f(z)dpx (z), i-e., Cy successfully com-
pensates for the changes in the policy. Unfortunately,
there is a catch: C} in general cannot be kept bounded
and uniformly positive and thus the previous conver-
gence results will not continue to hold. Therefore de-
coupling exploration and learning remains a very in-
teresting open problem.

If there is no way to decouple learning from the ex-
ploration policy then one may hope to use to use ap-
proximate policy iteration together with the consid-
ered methods. Then the rate of convergence of the
method becomes very important.

Finally, in connection to adaptive interpolation meth-
ods, some interesting problems are as follows: (i) De-
rive conditions under which (specific) algorithms let
G converge to some deterministic G;. (ii) Extend the
analysis to the case of indefinitely growing representa-
tions, derive consistency results.
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