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Abstract 
The paper tackles the problem of managing uncertainties during the execution of predictive schedules in a 
dynamic environment. The dynamic environment in question is represented by a simulation model which 
constitutes a coherent part of a Digital Factory solution. The model is connected to an integrated production 
planner and job-shop scheduler system with flexible modelling capabilities and powerful, scalable solution 
methods. The paper addresses the simulation module of the architecture highlighting its main functionalities. 
The paper also shows the potential of using the simulation model in two different ways. Both applications 
support the production planning and scheduling decision making process, but from two different viewpoints. 
On the one hand, the model presented in the paper can be applied as a schedule evaluator, on the other, it 
can serve as a simulation-based scheduler as well. A brief description about possible schedule evaluation 
criteria is also provided. Within the integrated hierarchical architecture the schedules are calculated by a 
constraint-based deterministic scheduling algorithm. Results of experiments which were achieved by using 
the model of a real, large job-shop environment are also provided. 
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1 INTRODUCTION 
The concept of the Digital Factory, i.e., the mapping of all 
the important elements of the enterprise processes by 
means of IT provides a unique way for managing the 
problems, which enterprises face in today’s changing 
environment. According to [1], the Digital Factory concept 
can be understood as an approach for an improvement in 
handling, managing and control of changes in a production 
system. With the power provided by the IT components of 
the Digital Factory plans of higher quality can be 
generated. Additionally, the concept provides better 
support in the handling and execution of planning 
processes 
Among other things, the Digital Factory concept: 
• enables the integrated handling of the data on the 

products, processes and resources, furthermore, the 
systematic organisation of the manufacturing 
knowledge, 

• enables planning by models and provides a 
harmonised combination of sub-models built from 
different planning aspects, 

• allows the evaluation of designing and manufacturing 
activities based on precise computer simulation before 
starting manufacturing,  

In a broader sense the Digital Factory concept can be 
regarded as an integrated, synthetic manufacturing 
environment to enhance all the levels of decision and 
control.  

1.1 Simulation 
Simulation can be considered as one of the technologies 
used in the Digital Factory concept. This is a powerful tool 

often applied to the design and analysis of complex 
systems. Decisions are made about the system by 
constructing its computer models and experimenting on the 
models. In order to construct valid models of complex 
systems (e.g. manufacturing, transport, service systems 
etc.) and their processes, the models should represent the 
discrete event evolution of the system, as well as the 
features of the underlying continuous processes. 
The realisation of a simulation is a cyclical and 
evolutionary process. The first draft of the model will 
frequently be altered to make use of in-between results 
and, in general, the final model can only be elaborated 
after several cycles. Building a model is rarely an end in 
itself. The goal of most analyses is to be able to make a 
‘good’ decision. Whether the system is a production line, a 
distribution network or a communication system, we can 
use modelling for gaining knowledge of the system at 
different life-cycle phases, evaluating a certain feature in 
the system, making prediction on system performance, 
comparing several alternatives, detecting problems and for 
evaluating and improving system performance. Simulation 
results help to define the physical layout of a system, its 
operating limits and control system. Models are applied as 
a basis for extensive experimentation, often using 
automatic procedures to determine optimal or robust 
solutions. 
The features provided by the new generation of simulation 
software facilitate the integration of the simulation models 
with the production planning and scheduling systems. 
Additionally, if the simulation system is combined with the 
production database of the enterprise, it is possible to 
instantly update the parameters in the model and use the 
simulation parallel to the real manufacturing system 



supporting and/or reinforcing the decisions on the shop-
floor.  
The paper illustrates a simulation framework that supports 
decision making process in production planning and 
scheduling (PPS). It is coupled in a hierarchical planning 
and scheduling system and enables the testing and 
evaluation of deterministically calculated advance 
schedules. The overall architecture provides the base of a 
dynamic scheduling system which assists both reactive 
and proactive scheduling decisions. 

1.2 New approaches to apply simulation in 
production systems modeling 

This section describes the possible applications of 
simulation on the different levels of a production system. 
The different roles of simulation in production planning and 
scheduling as well as in production control systems is 
shown in Figure 1.  
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Figure 1: The possible roles of simulation 
in PPS systems.  

To make the categorization easier three main levels are 
defined. A real production environment is presented on the 
left side of the figure. The physical system constitutes the 
lowest level that includes the real manufacturing facilities 
of the factory. 

The middle level corresponds to the control and schedule 
execution system. Generally, this is the Manufacturing 
Execution System (MES) of the production system. It 
controls the physical system, i.e., propagates the 
scheduled tasks as commands to the physical system and 
receives reports about the execution state of the plan. This 
level, generally, does not have any complex planning or 
decisions-making function but a close connection to the 
resources at a lower level. Any change in the state of the 
lowest level is described by events, and these events will 
cause reactions in the control system. 

The highest level represents the integrated planning and 
scheduling system where complex decision-making and 
scheduling processes are carried out. The plan is executed 
by the physical system under the control of the second 
level. The planning and scheduling system gets feedback 
information about the plan from the second level. Both, the 
new planning and scheduling tasks and feedback 
information are received from the production database. 
With regard to production systems, the third level is usually 
very complex. As described in [2], these systems are 
tested on the shop-floor after the installation only, which 
results in costly failures at the start-up stage. In order to 
eliminate the technical problems in the design phase, the 
modelling and simulation of the whole system is needed. 
However, in order to model the three levels in one 
framework, substantial compromise is needed. A good 

solution is to separate the model of the systems, in the 
same way as in reality, as represented on the right side of 
Figure 1. 

Generally, a simulation model is developed, for modelling 
the overall behaviour of the system, including control 
methods and reflecting the physical system by modelling 
the resources. Mainly this kind of simulation model 
(simulation model in Figure 1) is applied for testing and 
validating production plans and collecting statistical data. 
The details, the granularity and the time-horizon of the 
simulation model depend on the system to be modelled. 
These features should be chosen in a way that they should 
enable fast simulation runs, ensuring a great number of 
model runs, which gives statistical confidence. 

Expanding the simulation with additional components (e.g. 
optimization algorithms) powerful simulation-based solvers 
can be created that may be applied in the solution of 
planning and scheduling problems (simulation-based 
solver in Figure 1). Generally, in a system like this, the 
simulation module is applied as an evaluation (fitness) 
function of an optimization algorithm. These algorithms 
may reside outside the simulation software in a separate 
solver system or in the simulation system as an integrated 
sub-module. 

In contrast to simulation, emulation reflects only the state 
of the underlying production system. Emulation (emulation 
model in Figure 1) is actually a simulation model without 
control inside. This differs from the typical discrete event 
simulation models, but the applied modelling techniques 
are the same. Instead of validating production plans, 
emulation is applied for testing and evaluating control 
systems. Emulation models are used in a much more 
precisely defined way; in order to test the operation of the 
control system under different system loading conditions, 
and as a risk-free means of training system operators and 
maintenance staff. Emulation and simulation models are 
used for experimentation in a different way. Emulation 
reflects more precisely the system that will be 
implemented, and as such, can be used to carry out a 
constrained series of verification procedures to ensure the 
performance or reaction of the control system [3]. 
Emulation may reduce the developing time of control 
systems and shortening this way the time-to-market, 
furthermore, allows testing of control systems faster than it 
is done in real-time and under safe conditions. The 
conditions under which the tests are carried out can be 
better controlled, allowing the study of different scenarios 
the control system has to deal with. The effects of worst-
case scenarios and machine break-downs can easily be 
studied.  

The simulation system, which will be detailed in the 
remaining part of the paper, is classified into the middle 
layer in Figure 1 and will be used as a schedule evaluator 
for the highest level. 

2 SCHEDULING AND SCHEDULE EVALUATION 
The broad goal of manufacturing operation management, 
such as a resource constrained scheduling problem, is to 
achieve a co-ordinated efficient behaviour of 
manufacturing in servicing production demands, while 
responding to changes on shop-floors rapidly and in a cost 
effective manner. Operation scheduling is viewed as a 
major issue which is a complex task requiring co-
ordination. Shop-floor scheduling, such as resource 
constrained scheduling problems in general, is a 
combinatorially complex, NP-hard problem, thus is 
unfeasible to be solved computationally by the sole use of 
conventional Operations Research (OR) approaches. 
Artificial Intelligence (AI) based or hybrid techniques using 



domain specific heuristics are necessary to guide the 
search and to provide satisfactory solutions in due time. 
This demand put the constraint satisfaction techniques in 
front [4]. 
The quality of factory scheduling, generally, has a profound 
effect on the overall factory performance. The advanced 
generation of factory schedules is necessary to co-ordinate 
the manufacturing activities in order to meet organizational 
objectives, and to anticipate potential performance 
obstacles (e.g., resource contention), thus to minimize the 
disturbing effects on the overall manufacturing system 
operation. In industrial practice, however, at least two 
factors confound the use of predictive (advance) schedules 
as operational guidance [5], [6]: 
• Advance or predictive schedules result from scheduling 

systems running with static models that ignore 
important new operating constraints/ objectives of live 
shop operation which correspond to the live status of 
executed processes and the data resulting from their 
real-time monitoring. 

• They cannot cope with the environmental and internal 
uncertainties such as unexpected production demands 
raised by changing market conditions, late deliveries, 
failed operations/break-downs of machines/equipment, 
unavailability of operators all of which work against 
efforts to follow predictive schedules. 

Traditionally, research on scheduling concentrates on off-
line scheduling problems. However, in reality, shop-floor 
scheduling problems, are of dynamic nature, which 
necessitates more complex techniques. The closer we are 
to the realization of plans and schedules, the higher the 
chance of unexpected events is that may render plans and 
schedules inadequate. That is why practical scheduling is 
driven by uncertainty, and the methods applied in dynamic 
job-shops rarely utilize theoretical results [7]. 
The performance of a shop-floor control system depends 
mostly on its ability to rapidly adapt schedules to current 
circumstances. Scheduling techniques addressing the 
dynamic scheduling problem are called dynamic 
scheduling algorithms. These algorithms can be further 
classified as reactive and proactive scheduling techniques. 
An additional categorization of scheduling techniques 
relates to the stochastic or deterministic characteristics of 
the problem [6], [8], [9]. 
Reactive scheduling is, generally, conceived as a real-time 
revision or repair of a complete but execution-time flawed 
schedule to keep in line with the live status of shop-floor 
processes and events and to make it further executable. In 
addition, the importance of the stable behaviour of 
manufacturing system operation has been recognized. 
Operational solutions for reactive scheduling mean 
complete rescheduling, deferred commitment and tweaking 
[8]. Some probabilistic representations of scheduling 
uncertainty have been reported on in [10], [11]. Reference 
[12] gives a detailed survey on how other possible 
approaches were applied in scheduling.  

2.1 Evaluation of schedules 
The quality of factory scheduling, generally, has a profound 
effect on the overall factory performance. As stated in [13], 
an important aspect of the schedule measurement problem 
is whether an individual schedule or a group of schedules 
is evaluated. Individual schedules are evaluated to 
measure its individual performance. For a predictive 
schedule, the result may determine whether it will be 
implemented or not. 
There might be different reasons for evaluating a group of 
schedules. One of them is to compare the performance of 
the algorithms with which the different schedules were 
calculated. The comparison of different schedule instances 

against different performance measures is an other option 
in the evaluation of a set of schedules for the same 
problem. According to [13], relative comparison assumes 
that for the same initial factory state two or more schedules 
are available, and the task is to decide which is better. The 
task is to decide which one is better from two schedules, or 
which one is the best from a group of schedules generates 
additional questions. In a complex manufacturing 
environment it is probable that different schedules will 
perform better against different performance measures. 
Therefore, the selection of the best schedule will always 
depend on the selected performance measure(s) and thus, 
on the external constraints posed by the management of 
the enterprise. 
An absolute measurement of schedule quality consists in 
taking a particular schedule on its own and deciding how 
„good” it is [13]. This requires some set of criteria or 
benchmarks against which to measure.  
Regarding the predictive schedules, a set of decisions is 
made on the base of estimates on future events, without 
knowing the actual realizations of the events in question 
until they actually occur. Taking this fact into consideration, 
Kempf et. al [13] differentiate between the static and 
dynamic measurements of predictive schedules. A static 
measurement means the evaluation of the schedule 
independently of the execution environment.  
Contrary to static measurement, the dynamic 
measurement of a predictive schedule is more difficult. In 
this case, beyond the static quality of the schedule, the 
robustness of the schedule against uncertainties in the 
system should also be taken into consideration.  
Another aspect in the evaluation of schedules is the state 
of the manufacturing system after the execution of the 
schedule. In Kempf et. al [13] these parameters are 
compared as state measurements, which evaluate the end 
effects of the schedule at the end of the schedule horizon.  
Regarding the evaluation classes listed above, a dynamic 
measurement of individual predictive schedules will be 
presented in the following sections. The schedules are 
computed by a constraint-based scheduler and afterwards 
they are evaluated in a simulation environment that 
imitates the dynamic behaviour of the real production 
system. The maximum and average tardiness of all jobs in 
the system over the scheduled horizon (1 week) and the 
number of unprocessed jobs are applied in course of the 
evaluation. 

2.2 Simulation model as a schedule evaluator  
Simulation captures the relevant aspects of the PPS 
problem, which cannot be represented in a deterministic, 
constraint-based optimization model. The most important 
issues in this respect are uncertain availability of resource, 
uncertain processing times, uncertain quality of raw 
material, and insertion of conditional operations into the 
technological routings. 
Here the developed simulator is utilized as a component of 
a higher level system taking the role of the real production 
system and acting as a ”quasi emulator”. In quasi-
emulation the simulation takes the role of the MES and real 
production system. The control logic of the simulator 
ensures that the schedule be executed in the same way as 
it was passed by the short-term scheduler (Figure 2)1.  
The reason of the intention to connect the scheduler to a 
discrete event simulator was twofold. On the one hand, it 
serves as a benchmarking system to evaluate the 
schedules on a richer model, on the other hand, it covers 
the non-deterministic character of the real-life production 
                                                           
1 In a true emulation mode the simulation model would take 
the role of the real production system only. 



environment. Additionally, in the planning phase it is 
expected that the statistical analysis of schedules should 
help to improve the execution and support the scheduler 
during the calculation of further schedules. The evaluation 
of schedules is measured over several runs of the discrete 
event simulator where the number of replications 
(independent simulation runs, with different random 
numbers) depends on the construction of confidence 
intervals. 
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Figure 2: Applying the simulation model as a 
quasi-emulation module for schedule evaluation. 

The main functions of the discrete event simulator are as 
follows: it 
• evaluates the robustness of daily schedules against the 

uncertainties, 
• helps in visualizing and verifying the results of the PPS 

system, 
• supports the systematic test of the pilot PPS system, 
• offers a benchmark platform for the calculated 

schedules, 
• supports dynamic rescheduling decisions. 

3 ARCHITECTURE OF THE DEVELOPED 
PRODUCTION PLANNING AND SCHEDULING 
SYSTEM 

Based on previous explanatory experiments and basic 
research, a multi-tiered system structure was defined. The 
layers of the system are as follows: 
• The solution of medium-term, integrated capacity and 

production planning problem is provided by an integer-
linear programming approach. (Capacity planning in 
Figure 2) 

• The solution of the short term, detailed finite scheduling 
problem is calculated by a constraint programming 
technique. (Short term scheduling in Figure 2) 

• The evaluation and analysis of the predictive short term 
schedules is carried out by a discrete event simulation 
model. (Simulation quasi-emulation in Figure 2) 

An important practical requirement is that the system 
components should be able to work with the data stored in 
existing production information systems. The details of the 
capacity planning module and the finite capacity scheduler 
are described in [14], [4], [15]. 

 

Figure 3: User Interface of the short-term schedulers. 

Figure 3 shows a user interface screenshot of the short-
term scheduler, with a detailed schedule plan. 
In the following sections the simulation module of the 
above architecture and the schedule evaluation approach 
are described.  

3.1 Architecture of the simulation module 
The main requirements for the simulation module are as 
follows: 
• Common data, on-line and bi-directional connection to 

the scheduler, 
• Support for Input/Output inspections, 
• Support for different playback strategies, 
• Playback time horizon: 1 week, 
• Short response time, making multiple model runs 

possible. 
In order to meet all the requirements for a flexible 
simulation system, the structure presented in Figure 4 has 
been developed. Simulation and finite capacity job-shop 
scheduler has the same production database. Resources, 
products, process plans, production information, etc. are 
transformed exactly to the same form for all system 
components. Hereby, the complexity of integrating the 
simulation module into the system is significantly reduced. 
None the less, the common data tables ensure data 
integrity during the creation of the simulation; moreover, 
the data-model serves as a basis for the more detailed 
shop-floor model. Running the simulation by applying the 
basic data tables results in a waste number of queries 
during the model run, reducing the simulation speed 
significantly. However, in order to ensure enough number 
of simulation replications for the evaluation of a short time 
production schedule, the total response time should be 
minimized. To resolve the above two contradictory 
objectives an exhaustive data pre-processing phase is 
included in the simulation process.  
The data-processing is carried out before the overall 
simulation (phase a in Figure 4). The redundant data 
storage in the simulation model is compensated by the 
advantage of the shorter response time. 
Modelling real production systems frequently brings up the 
problem of handling hundreds of resources in a simulation 
model. Having the modelling objects in hand, which were 
created on the base of the conceptual model, in our 
architecture the simulation model is created automatically 
based on the pre-processed data (phase b in Figure 4).  
The automatic generation of the model is followed by the 
initialization phase (phase c in Figure 4). In this phase, 
besides classical parameter settings, the procedure 
involves the generation of input-parameter-specific model 



components (entities such as products, operators). 
Contrary to the previous phase, this one is carried out for 
each replication. 
The simulation runs are repeated until the required number 
of replications is obtained (phase d in Figure 4). Each 
replication is a terminating, non-transient simulation run, 
having the same initial parameters and settings, but 
different parameters for uncertain simulation times and 
events generated on the base of random numbers. In the 
last phase the plan is evaluated by using the evaluation 
criteria and the results of the evaluation process are 
interpreted by shop-floor managers who are predestined to 
take necessary actions (the shop-floor manager, phase e 
in Figure 4).  
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Figure 4: Architecture and the main process flow 
in the simulation module. 

Uncertainties in the simulation model 
The basic types of uncertainties modelled in the simulation 
model are as follows: 
• Downtimes: due to failures and/or the unexpected 

absence of machines and/or workers, 
• Processing time: the actual processing time of some 

operations may depend on the proficiency and skill of 
the worker. Processing times may be shorter or longer 
than planned, 

• Rework and adjustment: the execution of specific 
operations depends on the result of quality check 
operations. Based on the result of the check, they may 
be repeated or some adjustment operations are 
performed. 

Execution of schedules 
Because the time horizon is limited and the orders under 
process are included in the schedule in question at the 
initialization, the system does not have a transient phase 
coming from the warm-up period. This is handled on the 
level of the short term scheduler that determines the 
optimal schedule taking the current work in-process (WIP) 
state of the shop-floor into account. 
In order to reduce the rigidity of the schedule during 
execution, the fixed start times of operations are removed 
and only the sequence of the operations on the various 
resources are kept. We use this control rule in order to 
follow the predictive schedule as far as possible. By 
default, an operation can be processed if it is in the front of 
all of its queues. However, since there are not only single, 
but also alternative resources, we may apply a relatively 

liberal execution policy, while keeping the consistency of 
the overall job-shop schedule. Accordingly, an operation 
may be processed any time if it does not cause lateness in 
the subsequent operations. As a main principle, the 
simulator should play back the plan only without changing 
the optimized sequence of the tasks. 
A case-study with several experimental results is 
summarized in the following section. The model of the 
case-study represents a real, large job-shop environment. 

4 CASE-STUDY 
A case-study was elaborated at a factory that produces 
mechanical products by using machining and welding 
resources, assembly and inspection stations and some 
highly specialized machines. Production is performed in a 
make-to-order manner where deadline observance is an 
absolute must, even regarding unpredicted orders. Since 
quality assurance is a key issue, tests may result in extra 
adjustment operations. The planning and scheduling 
method was validated and tested with the real-life data. 
First, projects were generated from existing routing tables 
and Bill of Materials (BOMs), then, using the resource 
calendars, the planning problem was solved on a 15-week 
horizon, with a time unit of one week. Then, the production 
plan was passed to the constraint/based finite job-shop 
scheduler that worked with a 10 min. time unit. 
The object-oriented hierarchical simulation model of the 
plant is based on the functional decomposition approach. 
The simulation includes the modelled elements of the real 
plant and each unit of a production set is identified 
uniquely and traced during its lifecycle. The simulation 
model is created following the simulation modelling 
process described above. The deterministic inputs of the 
simulation are provided in three main data tables. These 
are tables of resources, process plans, and the short-time 
schedule, passed by the scheduler.  
The resources of the plant are categorized in two main 
groups: machine and personnel. The stochastic inputs are 
represented by the uncertainty parameters mentioned 
above. Based on the resources table, the whole model is 
generated automatically during the data preparation phase. 
This is combined with the weekly calendar of the 
resources.  
The simulation model of the case-study implements a dual-
frame architecture (Model and SimManager frames). 
SimManager is responsible for the data preparation, model 
creation, initialization and evaluation. The components of 
the model are created into the Model frame. One of the 
main advantages of this server-client architecture is that it 
makes the transfer of the application to a distributed 
simulation environment possible. 

Input Size 
Number of tasks in a job 20-500 
Working resources/week 80-120 
Average number of jobs/week 15-20 
Average number of tasks/week 1500-2000 

Table 1: The parameters of the scheduling problem 
in the case-study. 

The shop-floor of the case-study includes more than 100 
resources, all of which are modelled in the simulation 
module. The short-term schedule table contains approx. 
2000 tasks to be executed in one replication. The time 
frame of one simulation replication is one week. The 
statistical data are collected both on the resource and 
product sides. Figure 5 shows the developed simulation 
model. Table 1 summarizes the size of the case-study 
scheduling problem.  



 

Figure 5: The visualized simulation model of the case-study and the Gantt charts 
of the initial and the executed schedule, respectively. 

 

The initial schedule and the schedules after the simulation 
runs can be visualized in the simulation module providing a 
comfortable user interface for necessary interventions 
(Figure 5). 

4.1 Results of the evaluation 
In the case-study the experimental simulation runs 
investigated the effect of the following three uncertainty 
factors: 
• Availability of the machines, which may range from 

90% to 99%. 
• Variable processing times, depending on the state of 

the production facilities of the shop floor and the skills 
of the workers. 

• Variable number of the workers with the same skills in 
different groups.  

The most important objective in the factory of the case-
study is the minimization of tardy jobs and WIP level. 
Additionally, the simulation studies always have a one-
week time horizon. Taking these facts into consideration, 
mean tardiness, maximum tardiness and the remaining 
WIP level after the schedule execution (after the executed 
week) are considered as responses and performance 
measures in the evaluation of the schedules. 
Table 2 shows how the value of average tardiness 
changes in deterministic and stochastic cases. 

Applied play-
back strategy 

Average 
tardiness (h) 

Maximal 
tard. (h) WIP 

Deterministic 
process times - 0 0 

Stochastic 
process times 2.74 17.13 5 

95% machine 
availability 5.25 18.65 27 

Table 2: Illustrative results of deterministic and stochastic 
schedule execution procedures for one-week (average 

values in hours, calculated from 250 simulation 
replications). 

Deterministic execution means that no uncertainty was set 
in the simulation. As expected, in this case the executed 
schedule is exactly the same as the planned one. In the 
stochastic processing time scenario (row 2 in Table 2) the 
processing times of the tasks are set randomly, supposing 
uniform distribution. The lower bound is 90%, while the 
upper one is 130% of the planned process time. This set-
up includes the variation of processing times coming from 
differences in the skills of the operators, as well. Row 3 in 
Table 2 refers to the machine availability which is 95% in 
this experiment. To create a real dynamic scheduler, after 
the simulation the executed schedules are uploaded in the 
common database. The tasks which were not executed are 
added to the plan of the next week during the rescheduling 
process. The average time of one simulation run is 
approximately 10 seconds. 

1

1.
08

1.
16

1.
24

1.
32

99

96

93

90

0
1
2
3
4
5
6
7
8
9

10

A
ve

ra
ge

 ta
rd

in
es

s 
(h

)

Process time variance

Machine 
availability 

(%)

 

Figure 6: The dual effect of machine availability and 
processing time variance on average tardiness. 



Integrated effect of two factors 
Figure 6 shows the effect of both machine availability and 
processing time variance on average tardiness. Apart from 
the fact that the chart reinforces the prior expectations 
about the average tardiness effect of input values from 
different interval sets can be analysed together. 

The effect of missing operators 
Figure 7 represents the effect of weekly operator 
availability on average tardiness value for one selected 
schedule. The dark bars show the results where the 
number of operators per group was decreased by 10% 
while the white bars represent the results with 20% less 
operator per group. The replications were carried out 
sequentially group by group, analysing the effect of only 
one group at once. The results of the experiment show that 
groups 7 and 8 have the main effect on the average 
tardiness. The other operator groups have no significant 
influence on the same output value. Results were 
calculated from 20 different parameter settings, each with 
10 replications. 

0
2

4
6
8

10
12

14
16

1 2 3 4 5 6 7 8 9 10

Operator group

A
ve

ra
ge

 ta
rd

in
es

s 
(h

) 20%

10%

 
Figure 7: The effect of missing operators. 

The effect of new employees with decreased efficiency 
Experiments were carried out for the evaluation of different 
worker groups including operators with different skills. 
Supposing that new operators are employed and during 
the “learning period” their efficiency is smaller, we 
investigated their overall effect on the planned schedule.  
 

 SHIFT1 SHIFT2 SHIFT3 

Group No of 
op. 

No of 
new 

empl. 

No of 
op. 

No of 
new 

empl. 

No of 
op. 

No of 
new 

empl. 
1 2 1 2 1 2 0 
2 13 4 13 2 13 1 
3 18 4 21 5 17 3 
4 3 1 4 2 3 0 
5 4 1 4 1 4 1 
6 4 2 4 1 4 1 
7 8 2 10 3 9 1 
8 12 3 15 3 13 2 
9 8 2 10 3 8 2 

10 3 1 4 1 3 0 

Table 3: Input data table for sensitivity analysis on operator 
efficiency level. 

Table 3 shows the input settings of the experiment. There 
are 10 different operator groups. Column “No of op.” 
represents the total number of the workers in a group, 
while column “No. of new employees” shows the number of 
supposed new employees whose skills are under the 

standard skill level. The other input is the percentage ratio 
of the skills of new employees compared to the standard 
value which is 100%. Table 4 shows the simulation results 
with the three pre-selected ratios (75%, 85% and 95%). 

Efficiency. of 
new empl. 

Avg.  
tard. (h) 

Max 
tard. (h) WIP 

75% 5.73 27.20 45 

85% 3.25 16.39 15 

95% 0.98 5.15 1 

Table 4: Simulated effect of differing worker efficiency 
levels on average and maximal tardiness value. 
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Figure 8: The effect of new employees. 

Figure 8 presents the effect of differing worker efficiency 
levels on schedule execution. Running the simulation for a 
longer time horizon, the effect of the learning curve 
regarding new employees on the calculated schedule can 
be analysed easily. 

4.2 Simulation-based scheduling  
The simulation model presented above is applied as an 
evaluator of the short-time scheduler. As described 
previously, in the above model only one specific 
dispatching rule is applied, guaranteeing the sequential 
play-back of the schedule calculated by the constraint-
based scheduler. Nevertheless, the same simulation model 
can be applied as schedule generator. Using the 
simulation in this way, predefined control rules should be 
added to the simulation model that provide the control logic 
of the simulation runs. Contrary to the previous application, 
the main input of this application mode is the list of 
production orders while the output is represented by the 
schedules generated by different simulation runs (Figure 
9).  

The other inputs of the system, such as process plans, 
routings, shift descriptions etc. reside further in the 
production database providing this way the base for the 
same automatic model-building procedure as presented in 
the previous section.  

Naturally, the uncertainty factors, too, are considered as 
variable inputs of the simulation-based scheduler, like in 
the previous model. One of the most important 
requirements for this application is the fast response of the 
simulation model, to ensure enough simulation 
replications.  
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Figure 9: The methodology of applying the simulation 
model as a schedule generator. 

5 CONCLUSION 
The paper presented a hierarchical PPS system whose 
components - a medium-term aggregate capacity and 
production planner, a short-term job-shop scheduler, and a 
discrete-event simulator - work on the more and more 
detailed models of a given production environment. While 
the basic models of the planner and scheduler are 
deterministic, the simulator can capture non-deterministic 
events - especially the ones that may occur on the shop-
floor. 
The paper gave a detailed description on the architecture 
and the functionalities of the simulation module. Different 
experiments can be performed with the overall system 
supporting the mid- and short-term planning and control 
decisions on the shop-floor.  
Some possible roles of simulation were also discussed in 
the first part of the paper, together with a brief introduction 
on the eventual evaluation of short-term schedules. 
Parallel to the quasi-emulation mode, the presented 
simulation model can be applied traditionally as a 
simulation-based scheduler. In this case predefined control 
algorithms should be included in the simulation model and 
these predefined control decisions can be evaluated with 
the model.  
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