Non-commutative rank of linear matrices, related structures and applications

Gábor Ivanyos MTA SZTAKI

SIAM AG 2019, 9-13 July 2019, Bern.

Based on joint works with Youming Qiao and K. V. Subrahmanyam

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Commutative and noncommutative rank

linear matrix: A(x) = A(x₁,...,x_k) = A₁x₁ + ... + A_kx_k ~ matrix space A = ⟨A₁,...,A_k⟩; A₁,...,A_k ∈ F^{n×n}
(commutative) rank rk A(x): as a matrix over F(x₁,...,x_n) max rank from A (if F "large enough")
Task: compute rk A(x) (attributed to Edmonds 1967) an instance of PIT, ∈ RP, not known to be in P "derandomization" would have remarkable consequences in complexity theory (Kabanets, Impagliazzo 2003)
noncommutative rank ncrk A(x): as a matrix over the free skewfield

max rank from $\mathcal{A} \otimes_F D$; ("*D*-span" of A_j s; *D*: *some* skewfield) (Gaussian elim. and consequences to rank remain valid for skewfields)

Commutative vs. noncommutative rank

• $\operatorname{rk} A(x) \leq \operatorname{ncrk} A(x)$

Example for <: A₁, A₂, A₃ a basis for the skew-symmetric 3 by 3 real matrices

 $\operatorname{rk} A(x) = 2$; $\operatorname{ncrk} A(x) = 3$ (over the quaternions)

- which one is easier to compute?
 - ncrk is a proper relaxation of rk
 - however its definition is more complicated uses a difficult object or a (possibly) infinite family of skewfields (can be pulled down to exp size)

 \Rightarrow ???? randomized poly alg?????

Commutative vs. noncommutative rank

• $\operatorname{rk} A(x) \leq \operatorname{ncrk} A(x)$

Example for <: A₁, A₂, A₃ a basis for the skew-symmetric 3 by 3 real matrices

 $\operatorname{rk} A(x) = 2$; $\operatorname{ncrk} A(x) = 3$ (over the quaternions)

- which one is easier to compute?
 - ncrk is a proper relaxation of rk
 - however its definition is more complicated uses a difficult object or a (possibly) infinite family of skewfields (can be pulled down to exp size)

 \Rightarrow ???? randomized poly alg?????

ncrk is "easier":

computable even in deterministic polynomial time!

(Garg, Gurvits, Oliveira, Wigderson 2015-2016; IQS 2015-2018)

The nc rank as a rank of a large matrix

• Can assume D: central of dimension d^2 over F • $D \otimes L \cong L^{d \times d} (= M_d(L))$ for some L • both D and $F^{d \times d}$ embedded in $I^{d \times d}$ gives switching procedures $\mathcal{A} \otimes D \longleftrightarrow \mathcal{A} \otimes F^{d \times d} \subset F^{nd \times nd}$ rank r over $D \longrightarrow \operatorname{rank} > r \cdot d$ over F rank $\geq \lceil R/d \rceil$ over $D \leftarrow$ rank R over F• composition (\leftarrow , then \rightarrow): "rounding up" the rank of a matrix in $\mathcal{A} \otimes F^{d \times d}$ to a multiple of d IQS 2015: can be done in deterministic poly time (for suitable D) Remark: determinants of matrices in $\mathcal{A} \otimes F^{d \times d} \sim$ invariants of $SL_n \times SL_n$

- A ⊗ F^{d×d}: inflated matrix space (d: infl. factor)
 n by n matrices with entries from F^{d×d}
- based on the rounding, Derksen-Makam 2015–2017, a reduction tool to show

ncrk
$$A(x)=rac{1}{d}$$
max rank in $\mathcal{A}\otimes \mathcal{F}^{d imes d}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for some $d \leq n - 1$.

 $\blacksquare \Rightarrow \exists$ randomized poly time alg for ncrk

IQS 2015-2018: a deterministic poly time algorithm

• computes a matrix of rank $d \cdot \operatorname{ncrk} A(x)$ in $\mathcal{A} \otimes F^{d \times d}$

$$d \le n-1$$
 (or $d \le n \log n$ if F is too small)

- computes a witness for that ncrk cannot be larger
- uses analogues of the alternating paths for matchings if graphs
 + an efficient implementation of the DM reduction tool

Garg, Gurvits, Oliveira, Wigderson 2015-2016:

 different approach for char F = 0 (not through such witnesses)

The witnesses: shrunk subspaces (a Hall-like obstacles)

ℓ-shrunk subspace: U ≤ Fⁿ mapped to a subspace of dimension dim U − ℓ by A

 $\exists \ \ell$ -shrunk subsp. \Rightarrow the max rank in \mathcal{A} is at most $n-\ell$

■ Inheritance: $U \otimes F^{d \times d}$ mapped to a subspace of dim less by $\ell \cdot d \Rightarrow$ max rank in $\mathcal{A} \otimes F^{d \times d}$ is at most $nd - \ell d$.

$$\Rightarrow \mathsf{ncrk} \le n - \ell$$

 \blacksquare ~ a characterization of the nullcone of invariants $SL_n imes SL_n$ (by Hilbert-Mumford)

- attempt to find a shrunk subspace (from Fortin, Reutenauer 2004, also I, Karpinski, Qiao, Santha 2013-2015)
- Assume we have $B \in \mathcal{A}$ with rk $B = \operatorname{ncrk}$, $\ell = n \operatorname{ncrk}$, $U \ell$ -shrunk. Then

 $U \geq \ker B$ and $\mathcal{A}U = \operatorname{Im} B$.

 Wong sequence (~ alternating forest in bipartite graph matching): U₁ = ker B; U_{i+j} = B⁻¹(AU_j) (inverse image for B)
 Either stabilizes in Im B: gives an ℓ-shrunk subspace
 or "escapes" : AU_i ⊈ Im B: (~ ∃ augmenting path)

• sequence i_1, \ldots, i_s – with *s* smallest – s.t.

$$A_{i_s}B^{-1}(A_{i_{s-1}}B^{-1}(\ldots B^{-1}(A_{i_1} \ker B))) \not\subseteq \operatorname{Im} B$$

• Put
$$A'_1 = B' = B \otimes I_d$$
, $A'_2 = \sum A_{i_j} \otimes E_{j,j+1} \in \mathcal{A} \otimes F^{d \times d}$;
 $\mathcal{A}' = \langle A'_1, A'_2 \rangle$ (d large enough)

• Then the Wong seq. escapes $\operatorname{Im} B'$ and

 $\mathcal{C}' = \mathcal{B}' + \lambda \mathcal{A}'_2$ has rank $> d \cdot \operatorname{rk} \mathcal{B}$ for some λ

Round up the rank of C' in $\mathcal{A} \otimes F^{d \times d}$ to a multiple of d

The iterative algorithm

- iterate the above "scaled" rank incrementation procedure (with iteratively "inflating" A)
- combine with the reduction tool to keep final "inflation" factor small.
- Result: A ∈ A ⊗ F^{d×d} of rank d ⋅ ncrk; and a maximally (by (n − d ⋅ ncrk))) shrunk subspace (of Fnd) for A ⊗ F^{d×d}. (d ≤ n − 1.)
- Use converse of inheritance to obtain a maximally (by n − ncrk) shrunk subspace of Fⁿ for A.
- Remarks:
 - (1) Actually, the smallest maximally shrunk subspace found. ((0) if ncrk = n.)
 - (2) The largest one can also be found (duality)

The echelon structure

In bases resp. smallest and largest maximally shrunk subspaces:

- The "middle diagonal block" of A (filled with •) is of full ncrk. Can be:
 - $n \times n$ (if ncrk $\mathcal{A} = n$)
 - 0 × 0 (unique maximally shrunk subspace)
 - Further maximally shrunk subspaces can be found by block triangularizing the •-block.

- ~ finding flag of 0-shrunk subspaces U (dim AU = dim U)
- If $I \in \mathcal{A}$ then (as $\mathcal{A}W \geq W$) equivalent to $\mathcal{A}U = U$.
 - U: a submodule for A,
 - for many F, \exists good algorithms
- If $A \in \mathcal{A}$ of full rank found, $I \in A^{-1}\mathcal{A}$.
- In the general case,
 - Find $A \in \mathcal{A} \otimes F^{d \times d}$ of full rank,
 - Block triangularize $\mathcal{A} \otimes \mathcal{F}^{d \times d}$ as above
 - Pull back by "reverse inheritance"
- Applicable in multivariate cryptography e.g, for breaking Patarin's balanced Oil and Vinegar scheme.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

On Wong sequences and the commutative rank

Wong sequence: $U_1 = \ker B$; $U_{i+j} = B^{-1}(AU_j)$.

 Bläser, Jindal & Pandey (2017): deterministic rank approximation scheme based on the speed/length

In extreme cases, ncrk = rk

Immediately escaping case: length 1

- $\operatorname{rk}(B + \lambda A_i) > \operatorname{rk} B$ for some *i* and λ : \longrightarrow "blind" rank incrementing algorithm
- holds for $\mathcal{A} = Hom(V_1, V_2)$ where V_1, V_2 semisimple modules
- holds when \mathcal{A} simultaneously diagonalizable
- Slim Wong sequence dim $U_{j+1} = \dim U_j + 1$
 - $\operatorname{rk}(B + \lambda \sum_{j=1}^{k} A_j) > \operatorname{rk} B$ for some λ
 - holds for k = 2
 - can be enforced if A spanned by rank 1 matrices (even if they are not given explicitly)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・