Non-commutative rank of linear matrices, related structures and applications

Gábor Ivanyos
MTA SZTAKI

SIAM AG 2019, 9-13 July 2019, Bern.
Based on joint works with Youming Qiao and K. V. Subrahmanyam

Commutative and noncommutative rank

■ linear matrix: $A(x)=A\left(x_{1}, \ldots, x_{k}\right)=A_{1} x_{1}+\ldots+A_{k} x_{k}$ \sim matrix space $\mathcal{A}=\left\langle A_{1}, \ldots, A_{k}\right\rangle ; \quad A_{1}, \ldots, A_{k} \in F^{n \times n}$

- (commutative) rank rk $A(x)$: as a matrix over $F\left(x_{1}, \ldots, x_{n}\right)$ max rank from \mathcal{A} (if F "large enough")
- Task: compute rk $A(x)$ (attributed to Edmonds 1967) an instance of PIT, $\in R P$, not known to be in P "derandomization" would have remarkable consequences in complexity theory (Kabanets, Impagliazzo 2003)
■ noncommutative rank ncrk $A(x)$: as a matrix over the free skewfield max rank from $\mathcal{A} \otimes_{F} D$; (" D-span" of $A_{j} s ; D$: some skewfield) (Gaussian elim. and consequences to rank remain valid for skewfields)

Commutative vs. noncommutative rank

- rk $A(x) \leq \operatorname{ncrk} A(x)$
- Example for $<: A_{1}, A_{2}, A_{3}$ a basis for the skew-symmetric 3 by 3 real matrices
$\operatorname{rk} A(x)=2$; ncrk $A(x)=3$ (over the quaternions)
■ which one is easier to compute?
- ncrk is a proper relaxation of rk
- however its definition is more complicated uses a difficult object or a (possibly) infinite family of skewfields
(can be pulled down to exp size)
\Rightarrow ???? randomized poly alg?????

Commutative vs. noncommutative rank

- rk $A(x) \leq \operatorname{ncrk} A(x)$
- Example for $<: A_{1}, A_{2}, A_{3}$ a basis for the skew-symmetric 3 by 3 real matrices
$\operatorname{rk} A(x)=2$; ncrk $A(x)=3$ (over the quaternions)
■ which one is easier to compute?
- ncrk is a proper relaxation of rk
- however its definition is more complicated uses a difficult object or a (possibly) infinite family of skewfields
(can be pulled down to exp size)
\Rightarrow ???? randomized poly alg?????
■ ncrk is "easier":
computable even in deterministic polynomial time!
(Garg, Gurvits, Oliveira, Wigderson 2015-2016; IQS 2015-2018)

The nc rank as a rank of a large matrix

- Can assume D : central of dimension d^{2} over F
- $D \otimes L \cong L^{d \times d}\left(=M_{d}(L)\right)$ for some L
- both D and $F^{d \times d}$ embedded in $L^{d \times d}$
- gives switching procedures

$$
\mathcal{A} \otimes D \longleftrightarrow \mathcal{A} \otimes F^{d \times d} \subseteq F^{n d \times n d}
$$

rank r over $D \longrightarrow$ rank $\geq r \cdot d$ over F rank $\geq\lceil R / d\rceil$ over $D \longleftarrow$ rank R over F
■ composition (\leftarrow, then \rightarrow): " rounding up" the rank of a matrix in $\mathcal{A} \otimes F^{d \times d}$ to a multiple of d

IQS 2015: can be done in deterministic poly time (for suitable D)
Remark: determinants of matrices in $\mathcal{A} \otimes F^{d \times d} \sim$ invariants of $S L_{n} \times S L_{n}$

Inflated matrix spaces

- $\mathcal{A} \otimes F^{d \times d}$: inflated matrix space (d : infl. factor)
n by n matrices with entries from $F^{d \times d}$
■ based on the rounding, Derksen-Makam 2015-2017, a reduction tool to show

$$
\operatorname{ncrk} A(x)=\frac{1}{d} \max \text { rank in } \mathcal{A} \otimes F^{d \times d}
$$

for some $d \leq n-1$.
■ $\Rightarrow \exists$ randomized poly time alg for ncrk

Constructive deterministic results

■ IQS 2015-2018: a deterministic poly time algorithm

- computes a matrix of rank $d \cdot \operatorname{ncrk} A(x)$ in $\mathcal{A} \otimes F^{d \times d}$
$d \leq n-1$ (or $d \leq n \log n$ if F is too small)
- computes a witness for that ncrk cannot be larger
- uses analogues of the alternating paths for matchings if graphs + an efficient implementation of the DM reduction tool
■ Garg, Gurvits, Oliveira, Wigderson 2015-2016:
- different approach for char $F=0$ (not through such witnesses)

The witnesses: shrunk subspaces (a Hall-like obstacles)

■ ℓ-shrunk subspace: $U \leq F^{n}$ mapped to a subspace of dimension $\operatorname{dim} U-\ell$ by \mathcal{A}

$$
\mathcal{A} \leq\left(\begin{array}{lllll}
* & * & 0 & 0 & 0 \\
* & * & 0 & 0 & 0 \\
* & * & 0 & 0 & 0 \\
* & * & * & * & *
\end{array}\right) \text { alias }\left(\begin{array}{ccccc}
* & * & & & \\
* & * & & & \\
* & * & & & \\
* & * & * & * & *
\end{array}\right)
$$

$\exists \ell$-shrunk subsp. \Rightarrow the max rank in \mathcal{A} is at most $n-\ell$
■ Inheritance: $U \otimes F^{d \times d}$ mapped to a subspace of dim less by $\ell \cdot d \Rightarrow$ max rank in $\mathcal{A} \otimes F^{d \times d}$ is at most $n d-\ell d$.
■ \Rightarrow ncrk $\leq n-\ell$
■ ~ a characterization of the nullcone of invariants $S L_{n} \times S L_{n}$ (by Hilbert-Mumford)

Wong sequence

- attempt to find a shrunk subspace (from Fortin, Reutenauer 2004, also I, Karpinski, Qiao, Santha 2013-2015)
- Assume we have $B \in \mathcal{A}$ with rk $B=$ ncrk, $\ell=n-\mathrm{ncrk}, ~ U$ ℓ-shrunk. Then

$$
U \geq \operatorname{ker} B \text { and } \mathcal{A} U=\operatorname{Im} B .
$$

■ Wong sequence (\sim alternating forest in bipartite graph matching):

$$
U_{1}=\operatorname{ker} B ; U_{i+j}=B^{-1}\left(\mathcal{A} U_{j}\right) \quad \text { (inverse image for } B \text {) }
$$

- Either stabilizes in Im B : gives an ℓ-shrunk subspace
- or "escapes" : $\mathcal{A} U_{j} \nsubseteq \operatorname{Im} B$: ($\sim \exists$ augmenting path $)$

Escaping Wong sequence \sim augmenting path

■ sequence i_{1}, \ldots, i_{s} - with s smallest - s.t.

$$
A_{i_{s}} B^{-1}\left(A_{i_{s-1}} B^{-1}\left(\ldots B^{-1}\left(A_{i_{1}} \operatorname{ker} B\right)\right)\right) \nsubseteq \operatorname{Im} B
$$

- Put $A_{1}^{\prime}=B^{\prime}=B \otimes I_{d}, \quad A_{2}^{\prime}=\sum A_{i j} \otimes E_{j, j+1} \in \mathcal{A} \otimes F^{d \times d}$; $\mathcal{A}^{\prime}=\left\langle A_{1}^{\prime}, A_{2}^{\prime}\right\rangle$ (d large enough)
- Then the Wong seq. escapes $\operatorname{Im} B^{\prime}$ and $C^{\prime}=B^{\prime}+\lambda A_{2}^{\prime}$ has rank $>d \cdot \mathrm{rk} B$ for some λ
- Round up the rank of C^{\prime} in $\mathcal{A} \otimes F^{d \times d}$ to a multiple of d

The iterative algorithm

■ iterate the above "scaled" rank incrementation procedure (with iteratively "inflating" \mathcal{A})

- combine with the reduction tool to keep final "inflation" factor small.
- Result: $A \in \mathcal{A} \otimes F^{d \times d}$ of rank d. ncrk; and a maximally (by $(n-d \cdot$ ncrk $)$)) shrunk subspace (of $F^{n d}$) for $\mathcal{A} \otimes F^{d \times d}$. ($d \leq n-1$.)
- Use converse of inheritance to obtain a maximally (by n - ncrk) shrunk subspace of F^{n} for \mathcal{A}.
- Remarks:
(1) Actually, the smallest maximally shrunk subspace found. ((0) if ncrk $=n$.)
(2) The largest one can also be found (duality)

The echelon structure

- In bases resp. smallest and largest maximally shrunk subspaces:

$$
\mathcal{A} \subseteq\left(\begin{array}{ccccccc}
* & * & * & * & * & * & * \\
& & \bullet & \bullet & \bullet & * & * \\
& & \bullet & \bullet & \bullet & * & * \\
& & \bullet & \bullet & \bullet & * & * \\
& & & & & * & * \\
& & & & * & * \\
& & & & & * & *
\end{array}\right)
$$

- The " middle diagonal block" of \mathcal{A} (filled with \bullet) is of full ncrk. Can be:
- $n \times n($ if $\mathrm{ncrk} \mathcal{A}=n)$
- 0×0 (unique maximally shrunk subspace)
- Further maximally shrunk subspaces can be found by block triangularizing the \bullet-block.

Block triangularization in the full ncrk case

■ \sim finding flag of 0 -shrunk subspaces $U(\operatorname{dim} \mathcal{A} U=\operatorname{dim} U)$

- If $I \in \mathcal{A}$ then (as $\mathcal{A} W \geq W$) equivalent to $\mathcal{A} U=U$.
- U : a submodule for \mathcal{A},
- for many F, \exists good algorithms
- If $A \in \mathcal{A}$ of full rank found, $I \in A^{-1} \mathcal{A}$.

■ In the general case,

- Find $A \in \mathcal{A} \otimes F^{d \times d}$ of full rank,
- Block triangularize $\mathcal{A} \otimes F^{d \times d}$ as above
- Pull back by "reverse inheritance"
- Applicable in multivariate cryptography e.g, for breaking Patarin's balanced Oil and Vinegar scheme.

On Wong sequences and the commutative rank

Wong sequence: $U_{1}=\operatorname{ker} B ; U_{i+j}=B^{-1}\left(\mathcal{A} U_{j}\right)$.

- Bläser, Jindal \& Pandey (2017): deterministic rank approximation scheme based on the speed/length

In extreme cases, ncrk $=$ rk
■ Immediately escaping case: length 1
■ rk $\left(B+\lambda A_{i}\right)>\operatorname{rk} B$ for some i and $\lambda: \longrightarrow$ "blind" rank incrementing algorithm

- holds for $\mathcal{A}=\operatorname{Hom}\left(V_{1}, V_{2}\right)$ where V_{1}, V_{2} semisimple modules

■ holds when \mathcal{A} simultaneously diagonalizable

- Slim Wong sequence $\operatorname{dim} U_{j+1}=\operatorname{dim} U_{j}+1$
- rk $\left(B+\lambda \sum_{j=1}^{k} A_{j}\right)>\operatorname{rk} B$ for some λ
- holds for $k=2$
- can be enforced if \mathcal{A} spanned by rank 1 matrices (even if they are not given explicitly)

