Contents

1 Order finding
 - Order finding - the problem
 - Order finding algorithm

2 Discrete log
 - Discrete log - the problem
 - Discrete log - the algorithm

3 The HSP
 - Common features of order finding and discrete log
 - Generalizations
 - The HSP
 - The Graph isomorphism problem
Given u in a group (say, $u \in \mathbb{Z}_N^*$). Find the (multiplicative) order of u.

Useful in factoring integers:

- N: a composite odd number
- Pick random $x \in \mathbb{Z}_N \setminus \{0\}$. With probability $> \text{constant/} \log \log N$), $x \in \mathbb{Z}_N^*$ such that
 - $y^2 = 1$, but $y \neq \pm 1$,
 where y is the smallest power of x s.t. $y^2 = 1$.
 - Either for $z = y + 1$ or for $z = y - 1$: $0 \neq z \in \mathbb{Z}_N \setminus \mathbb{Z}_N^*$
 - $\gcd(x, N)$ is a proper divisor of N

Here a much weaker version than Shor's, we assume the a multiple of the order is known:

Given u in a group (say, $u \in \mathbb{Z}_N^*$) and $n \in \mathbb{Z}_{>0}$ s.t. $u^n = 1$. Find the order of u.
Order finding algorithm 1.

1. \(\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} |i\rangle|1\rangle \)

 Compute \(u^i \) form \(i \) by repeated squaring.

2. \(\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} |i\rangle|u^i\rangle \)

 Measure the second register.

3. \(\frac{1}{\sqrt{|H_i|}} \sum_{k \in H_i} |k\rangle =: |H_i\rangle \)

 where \(H_i = \{ k \in \mathbb{Z}_n | u^k = u^i \} \).

 - \(i \in H_i \) and \(H_i = i + H = \{ i + k | k \in H \} \),
 where \(H = H_0 \).

 - the order of \(u \) is the smallest element of \(H \).
Order finding algorithm 2.

- for every \(i, k \in H \Leftrightarrow k + H_i = H_i \)

\[\updownarrow \]

- for every \(i, \) \(\text{Shift}_k |H_i\rangle = |H_i\rangle, \)

where \(\text{Shift}_k \sum_i \alpha_i |i\rangle = \sum \alpha_i |i + k\rangle \)

- \(|H_i\rangle \) is an eigenvector with eigenvalue 1 of \(\text{Shift}_k. \)

- convenient to work with the common eigenvectors of \(\text{Shift}_k \) \((k = 0, 1, \ldots) \)

- \(\text{Shift}_k = \text{Shift}_1^k \) are unitary transformation on \(\mathbb{C}^n, \)

have (common) orthonormal bases of eigenvectors
Order finding algorithm 3.

- The eigenvector of Shift_1 with eigenvalue ω^j:

$$|w_j\rangle = \frac{1}{\sqrt{n}} \sum_{i=0}^{n} \omega^{-ji} |i\rangle.$$

- $\sum_{i=0}^{n-1} \alpha_i |i\rangle = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} \sum_{i=0}^{n-1} \alpha_i \omega^{ij} |w_j\rangle,$

- basis transformation done by the Fourier transform:

$$\sum_{i=0}^{n-1} \alpha_i |i\rangle \mapsto \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} \sum_{i=0}^{n-1} \alpha_i \omega^{ij} |j\rangle.$$

4. Do the Fourier transform, measure in the (eigen)basis $|w_j\rangle$.
Order finding algorithm 4.

4. Do the Fourier transform, measure in the eigenbasis $|w_j\rangle$.

- If the eigenvalue of $Shift_k \ (k \in H)$ is not 1 on w_j then $Prob(j) = 0$, because $|H_i\rangle$ has no components with eigenvalue not 1 under $Shift_k \ (k \in H)$

- Other j's have equal probability (needs computation).

- With good probability, get j that generates the group

$$\{j \in \mathbb{Z}_n | \omega^{jk} = 1 \text{ for every } k \in H\} = H^\perp = \{j \in \mathbb{Z}_n | jk = 0 \text{ for every } k \in H\}.$$

5. Then $H = j^\perp = \{k \in \mathbb{Z}_n | jk = 0\}$
Again, we assume that a multiple of the orders are known. (In view of order finding, not really restrictive assumption.)

Given u, v in a group (say, $u, v \in \mathbb{Z}_N^*$) and $n \in \mathbb{Z}_{>0}$ s.t. $u^n = v^n = 0$. Find an integer t such that $v = u^t$ (if exists).

Instead we will find the set

$$H = \{(k, k') \in \mathbb{Z}_n^2 | u^k v^{-k'} = 1\}.$$

$u^t = v \iff (t, 1) \in H.$
Discrete log algorithm 1

1. \[
\frac{1}{\sqrt{n}} \sum_{i,i'=0}^{n-1} |i, i'\rangle|1\rangle
\]

2. \[
\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} |i, i'\rangle u^i v^{-i'}
\]

Measure the last register.

3. \[
\frac{1}{\sqrt{|H_{ii'}|}} \sum_{k,k' \in H_{ii'}} |k, k'\rangle =: |H_{ii'}\rangle
\]

where

\[H_{i,i'} = \{(k, k') \in \mathbb{Z}_2^n | u^k v^{-k'} = u^i v^{-i'} \}.\]

- \((i, i') \in H_{ii'}\) and \(H_{ii'} = (i, i') + H\), where \(H = H_00\).
- for every \(i, i', (k, k') \in H \iff |H_{ii'}\rangle\) is an eigenvector with eigenvalue 1 of \(\text{Shift}_{kk'}\), where

\[
\text{Shift}_{kk'} \sum_{i,i'} \alpha_{ii'} |i, i'\rangle = \sum_{i,i'} \alpha_{ii'} |i + k, i' + k'\rangle.
\]
Discrete log algorithm 2.

- \(\text{Shift}_{kk'} = \text{Shift}^k_{10} \text{Shift}^k_{01} \) are unitary transformations on \(\mathbb{C}^{n^2} \), have (common) orthonormal bases of eigenvectors;
- The common eigenvectors are

\[
|w_{jj'}\rangle = \frac{1}{n} \sum_{ii'=0}^{n} \omega^{-ji-j'i'} |i, i'\rangle.
\]

- \(\sum_{i,i'=0}^{n-1} \alpha_{i,i'} |i, i'\rangle = \frac{1}{n} \sum_{j,j'=0}^{n-1} \sum_{i,i'=0}^{n-1} \alpha_{ii'} \omega^{jj'+i'j'} |w_{jj'}\rangle, \)
 - basis transformation done by the Fourier transform in \(|i\rangle \) and than by a Fourier transform in \(|i'\rangle \)
 \[
 \sum_{i,i'=0}^{n-1} \alpha_{i,i'} |i, i'\rangle \leftrightarrow \frac{1}{n} \sum_{j,j'=0}^{n-1} \sum_{i,i'=0}^{n-1} \alpha_{ii'} \omega^{jj'+i'j'} |jj'\rangle.
 \]

4 Do the Fourier transform, measure in the eigenbasis \(|w_{jj'}\rangle \).
Discrete log algorithm 3.

- If eigenvalue of $\text{Shift}_{kk'} ((k, k') \in H)$ is not 1 on $w_{jj'}$, then $\text{Prob}((j, j')) = 0$ (easy)
- other (j, j')’s have equal probability (needs computation).
- with constant probability, in two steps we get (j_1, j'_1) and (j_2, j'_2) that generate the group
 \[
 \{(j, j') \in \mathbb{Z}_n^2 | \omega^{jk + j'k'} = 1 \text{ for every } (k, k') \in H\}
 \]
 \[= H^\perp = \{(j, j') \in \mathbb{Z}_n^2 | jk + j'k' = 0 \ \forall (k, k') \in H\}\]

5 Then $H = \{(j_1, j'_1), (j_2, j'_2)\}^\perp$
 \[
 = \{(k, k') \in \mathbb{Z}_n | j_1 k + j'_1 k' = j_2 k + j'_2 k' = 0\}.\]
1 Order finding
 - Order finding - the problem
 - Order finding algorithm

2 Discrete log
 - Discrete log - the problem
 - Discrete log - the algorithm

3 The HSP
 - Common features of order finding and discrete log
 - Generalizations
 - The HSP
 - The Graph isomorphism problem
Common features of order finding and discrete log

(and of Simon’s algorithm)

- Work in a abelian group G acting as unitary transformations.
 ($G = \{ \text{the shifts} \}$.)
- Start with the uniform superposition over G.
- In superposition, compute all the values of a function f on G in poly time.
- $f(x) = f(y)$ if x and y is in the same coset of a subgroup H.
- measuring the value gives the uniform superposition of a random coset of H.
- such a state is an common eigenvector of every element of H.
Common features of order and discrete log 2.

- Measure in a basis consisting of common eigenvectors of H.
- Eigenvectors with nonzero eigenvalue under some $h \in H$ have zero probability,
- the others are equal
- Collect generators of the group ”dual” to H.
- Obtain H by re-dualization.

Remark: Simon’s problem is in \mathbb{Z}_2^n.
The problems generalize to a problem including the graph isomorphism

The method does not generalize to noncommutative groups

but generalizes to commutative groups

Why: Common eigenvectors exist in the commutative case, much weaker can be stated in the noncommutative case.

This course: What can be done in the noncommutative case.
HSP - the hidden subgroup problem

- **G** (finite) group
- **f : G → {objects}** hides the subgroup **H ≤ G**, if
 \[f(x) = f(y) \iff xH = yH \]
 i.e., \(x\) and \(y\) are in the same left coset of \(H\).
 - In words, \(f\) is constant on the left cosets of \(H\) and takes different values on different cosets.
- \(f\) is provided by an oracle (or an efficient algorithm)
 performing \(|x⟩|0⟩ \mapsto |x⟩|f(x)⟩\)
- Task: find (generators for) \(H\).
- Examples:
 - **Order** \(G = \mathbb{Z}_n, f(k) = u^k, H = Z_{n/m},\) where \(m\) is the order of \(u\).
 - **Discrete log** \(G = \mathbb{Z}_n \times \mathbb{Z}_n, f(k, ℓ) = u^k v^{-ℓ}, H = \{(k, ℓ) = u^k = v^ℓ\}.\)
Graph automorphism

permuted graph

Γ graph on \{1, \ldots, n\}, \sigma \in S_n,
permuted graph \sigma(\Gamma), with edges:
(\sigma(i), \sigma(j)) where (i, j) edge of \Gamma.

Graph automorphism as HSP

- \(G = S_n \ f(\sigma) = \sigma(\Gamma) \).
- hidden subgroup = \(Aut(G) \)

Graph iso \leftarrow Graph auto

- \(\Gamma_1, \Gamma_2 \) connected.
- \(\Gamma_1 \cong \Gamma_2 \) iff
 \[|Aut(\Gamma_1 \cup \Gamma_2)| = 2 \cdot |Aut(\Gamma_1)| \cdot |Aut(\Gamma_2)|. \]