A Data Structure for Efficient Analysis of Genetic Programs

The iTree and its application

Anikó Ekárt

Computer and Automation Research Institute Hungarian Academy of Sciences

ekart@sztaki.hu

Aston University, 19 July 2005 - p.1

1. Introduction

1. Introduction

2. The information hyper-tree (iTree)

1. Introduction

- 2. The information hyper-tree (iTree)
 - The construction of the iTree

1. Introduction

- 2. The information hyper-tree (iTree)
 - The construction of the iTree
 - Population measures based on the iTree

- 1. Introduction
- 2. The information hyper-tree (iTree)
 - The construction of the iTree
 - Population measures based on the iTree
- 3. Case study

- 1. Introduction
- 2. The information hyper-tree (iTree)
 - The construction of the iTree
 - Population measures based on the iTree
- 3. Case study
- 4. Conclusions & future directions

Our goal is to make exploratory analysis beyond simple measures more accessible

We introduce a data structure (the iTree) that

- is efficient to maintain
- offers a compact view on a population of tree structured genetic programs
- allows for the efficient computation of many population measures

We use the iTrees in comparing simple GP with fitness sharing

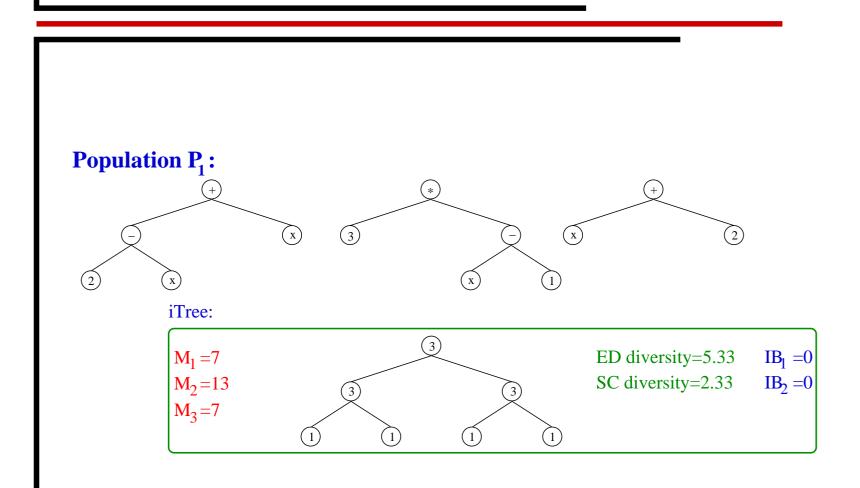
The information hyper-tree

A data structure that collects important details of individuals in a population in one easily accessible place

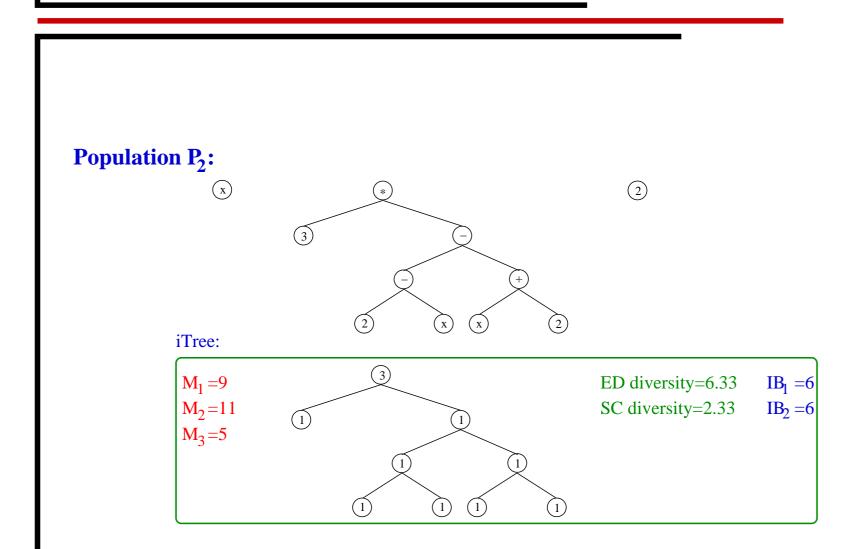
- 1. The structure of the iTree must be such that it incorporate the structure of any tree in the population
- 2. Each node of the iTree should capture the population information related to that particular node position

The iTree can be constructed for any set of genetic trees

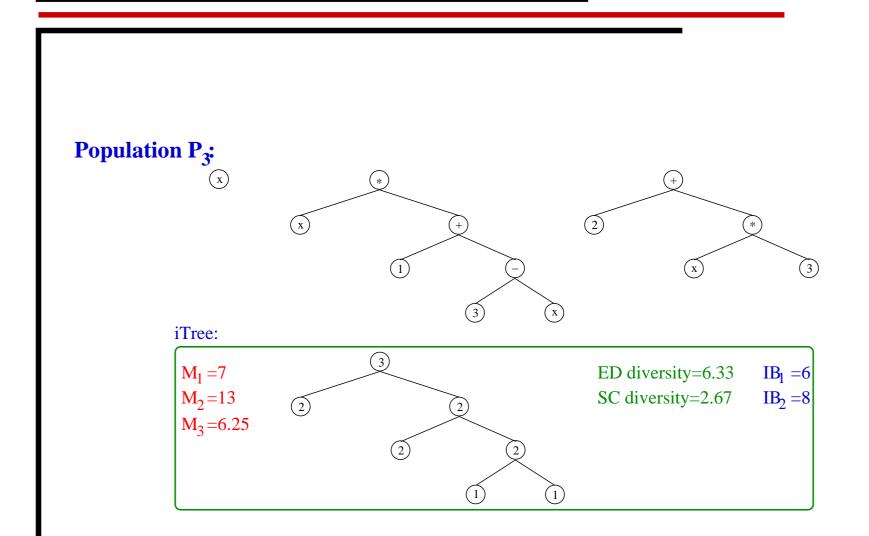
Example iTrees

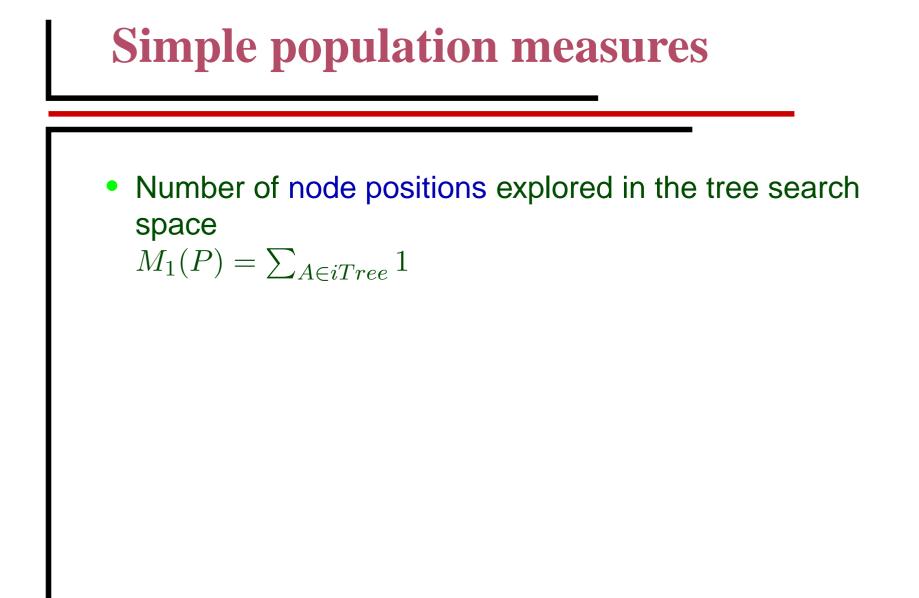


Example iTrees



Example iTrees





Aston University, 19 July 2005 - p.6

Simple population measures

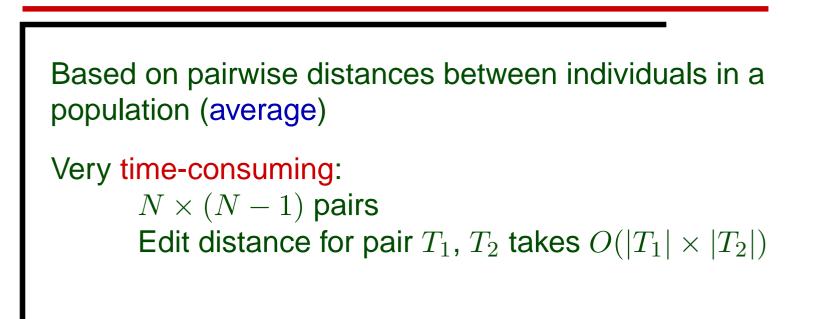
- Number of node positions explored in the tree search space $M_1(P) = \sum_{A \in iTree} 1$
- Number of genetic nodes in the population $M_2(P) = \sum_{A \in iTree} n_A$

Simple population measures

- Number of node positions explored in the tree search space $M_1(P) = \sum_{A \in iTree} 1$
- Number of genetic nodes in the population $M_2(P) = \sum_{A \in iTree} n_A$
- Degree of fullness $M_3(P) = \frac{1}{size(P)} \sum_{A \in iTree} \frac{1}{2^{depth(A)}} n_A$

Simple population measures

- Number of node positions explored in the tree search space $M_1(P) = \sum_{A \in iTree} 1$
- Number of genetic nodes in the population $M_2(P) = \sum_{A \in iTree} n_A$
- Degree of fullness $M_3(P) = \frac{1}{size(P)} \sum_{A \in iTree} \frac{1}{2^{depth(A)}} n_A$
- Entropy of a node A $E(A) = -\sum_{s \in F \cup T} \frac{D(s)}{\sum_{v \in F \cup T} D(v)} log \frac{D(s)}{\sum_{v \in F \cup T} D(v)}$



```
Based on pairwise distances between individuals in a population (average)
Very time-consuming:
N \times (N - 1) pairs
Edit distance for pair T_1, T_2 takes O(|T_1| \times |T_2|)
```

Edit distance diversity can be calculated by traversing the iTree and summing up the nodes' contributions

A node's contribution – the number of pairs of non-identical symbols encountered in that position in the iTree

Time complexity: $O(|F \cup T| \times size(iTree))$

Distance between populations

```
Pop dist(iTree1, iTree2, N1, N2)
begin
   dist := 0;
   for each symbol s found D1(s) times in iTree1
                        and D2(s) times in iTree2
       dist := dist + D1(s) \times (N2 - D2(s))
                     + (N1 - D1(s)) \times D2(s);
   dist := dist / (2 x (N1 x N2));
   if at least one root has nonempty left child
       dist := dist + Pop dist(iLeft1, iLeft2, N1, N2);
   if at least one root has nonempty right child
       dist := dist + Pop_dist(iRight1, iRight2, N1, N2);
   return dist;
end
```

Unbalanced iTree \Rightarrow biased sampling of nodes Balanced iTree \Rightarrow uniform sampling of nodes

Unbalanced iTree \Rightarrow biased sampling of nodes Balanced iTree \Rightarrow uniform sampling of nodes

Also indicates structural diversity

Unbalanced iTree \Rightarrow biased sampling of nodes Balanced iTree \Rightarrow uniform sampling of nodes

Also indicates structural diversity

 $IB_1 =$ sum of absolute differences between the sizes of the two subtrees of each node

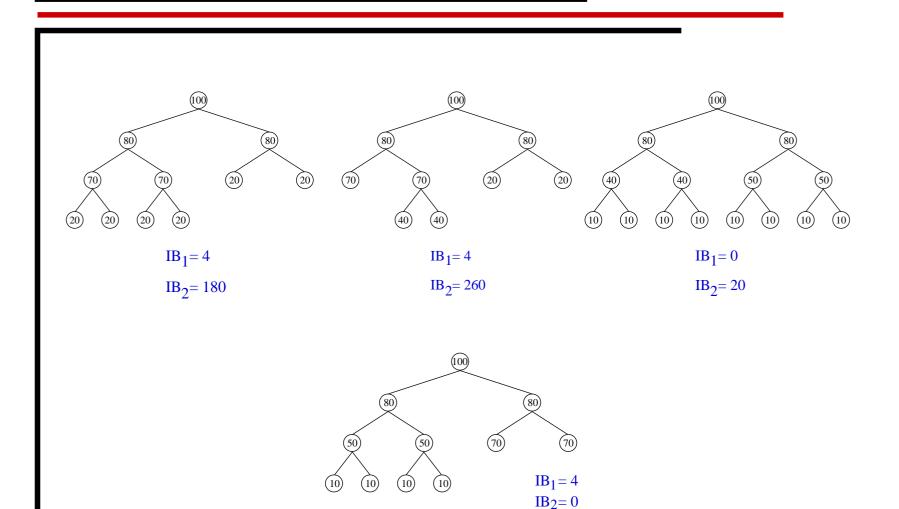
Unbalanced iTree \Rightarrow biased sampling of nodes Balanced iTree \Rightarrow uniform sampling of nodes

Also indicates structural diversity

 $IB_1 =$ sum of absolute differences between the sizes of the two subtrees of each node

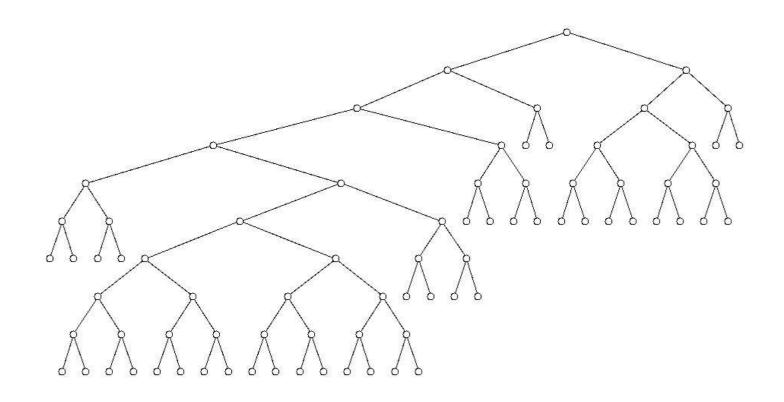
 IB_2 uses total number of genetic tree nodes instead of size

Examples of imbalance



Aston University, 19 July 2005 - p.10

What are the most common structures in the best genetic programs encountered during a run?



What are the most common structures in the best genetic programs encountered during a run?

What makes a good program different from a bad program?

What are the most common structures in the best genetic programs encountered during a run?

What makes a good program different from a bad program?

When do the good structures emerge?

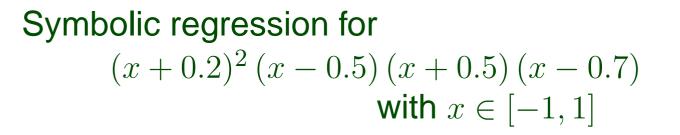
What are the most common structures in the best genetic programs encountered during a run?

What makes a good program different from a bad program?

When do the good structures emerge?

If there are common structures, do they heavily depend on the initial population?

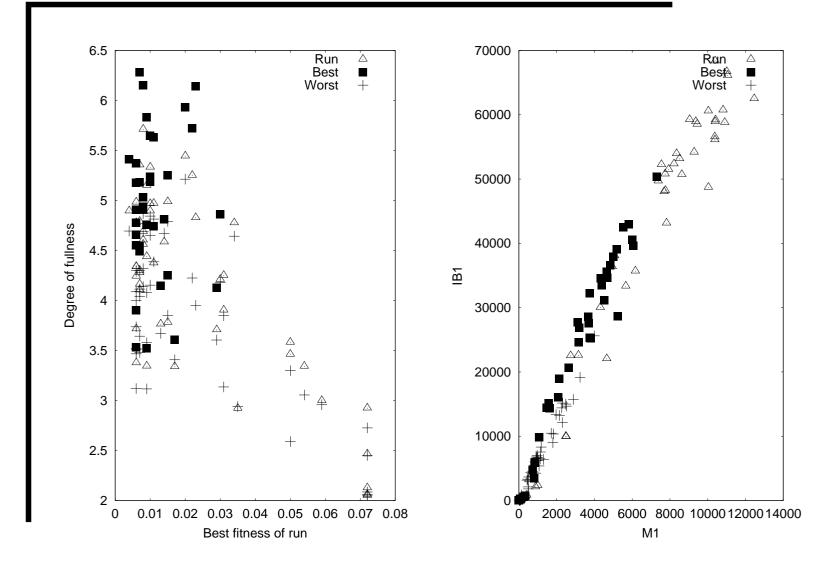
Case study



Analysis for three iTrees: run's, best and worst genetic programs'

	M_1	M_2	M_3	IB_1	IB_2
	$[\times 10^2]$	$[\times 10^{3}]$		$[\times 10^{3}]$	$[\times 10^4]$
R	59.7 ± 11.4	389 ± 73.1	4.24 ± 0.26	35.6 ± 6.8	185.6 ± 42.4
В	31.8 ± 6.5	249.9 ± 53.9	4.93 ± 0.23	23.5 ± 4.7	143.3 ± 33.6
W	10.6 ± 2.6	12.8 ± 4.6	3.78 ± 0.22	6.3 ± 1.6	5.1 ± 2.3

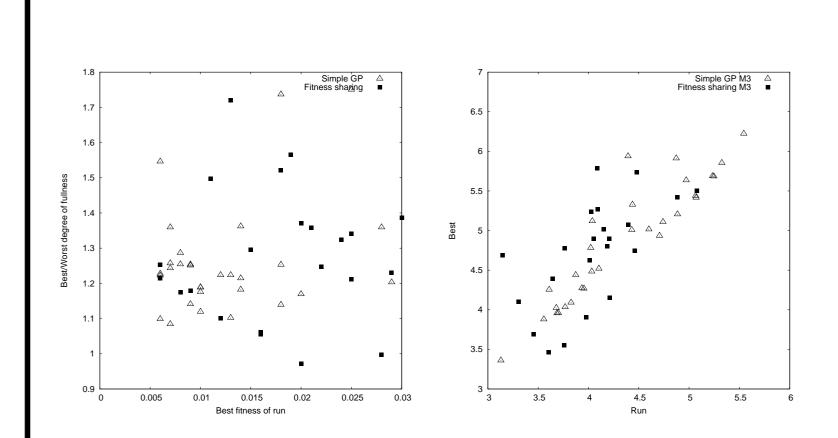
Population measure plots



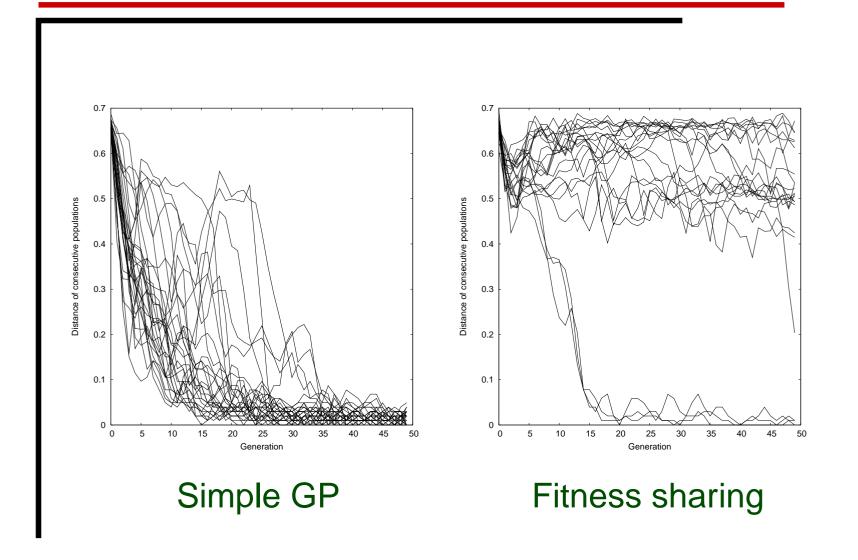
Simple GP vs fitness sharing

- Simple GP explores more nodes and the trees are more unbalanced
- Fitness sharing produces less, but smaller and more balanced solutions
- For fi tness sharing the good tree structures are more distinguishable from the bad ones

Population measure plots



Distance between populations



Conclusions & future directions

- We introduced an intermediate data structure for more efficient complex population measures and visualisations
- The iTree-based analysis showed that for fi tness sharing subsequent populations remain equidistant throughout evolution leading to less frequent convergence

- A methodology for efficiently analysing population dynamics will be built
- By providing feedback to the GP system throughout evolution we hope to both shorten evolution time and obtain better solutions