Evolving Decision Principles

A. Ekárt 1 and S. Z. Németh 2

¹The University of Birmingham School of Computer Science ²Hungarian Academy of Sciences Computer and Automation Research Institute

AINC Seminar, 25th February 2002 - p.

Outline of talk

- 1. Motivation
- 2. Introduction
- 3. Stability with respect to alternative values
- 4. Stability with respect to weights
- 5. Results
- 6. Conclusions
- 7. Future work

AINC Seminar, 25th February 2002 - p.

Motivation

- Multicriteria decision problems many subjective decisions
- Subjective decisions not very exact
- Sensitivity analysis for small changes in the subjective values
- The need for stable solutions

Introduction

- Buying a TV set criteria: cost, quality of image, physical aspect, trade-name, etc.
- Ranking the alternatives by using some decision principle (a function of the values of an alternative with respect to the different criteria)
- Sensitivity analysis the analysis of the results, when we make small perturbations to the subjective values
- Stability index takes values between 0 and 1 and measures the stability of a solution

Multicriteria decision problem

- Criteria C_i with weights w_i
- Alternatives A_j with aggregate values x_j

Decision principle

$$f: \mathbf{R}^m_+ \times \mathbf{R}^m_+ \to \mathbf{R}_+$$

A1. $f(\lambda \mathbf{v}, \mathbf{z}) = f(\mathbf{v}, \mathbf{z})$ and $f(\mathbf{v}, \lambda \mathbf{z}) = \lambda f(\mathbf{v}, \mathbf{z})$ (Homogeneity)

A2.
$$f(v_{\sigma(1)}, \dots, v_{\sigma(m)}; z_{\sigma(1)}, \dots, z_{\sigma(m)}) = f(v_1, \dots, v_m; z_1, \dots, z_m)$$

A3. *f* is strictly increasing in variable z_i , i = 1, ..., n

A4.
$$\min_{i=1,...,m} z_i \leq f(v_1,\ldots,v_m;z_1,\ldots,z_m) \leq \max_{i=1,...,m} z_i$$

The aggregated value

$$x_j = f(w_1, \ldots, w_m; a_{1j}, \ldots, a_{mj})$$

α power mean as decision principle:

$$m_{\alpha}(w_1,\ldots,w_m;y_1,\ldots,y_m) = \left(\frac{\sum_{i=1}^m w_i y_i^{\alpha}}{\sum_{i=1}^m w_i}\right)^{1/\alpha}$$

AINC Seminar, 25th February 2002 - p.

Sensitivity with respect to alternatives

Minimum and maximum aggregate value

$$x_j^-(\varepsilon) = f(w_1, \dots, w_m; a_{1j}^-(\varepsilon), \dots, a_{mj}^-(\varepsilon))$$

$$x_j^+(\varepsilon) = f(w_1, \dots, w_m; a_{1j}^+(\varepsilon), \dots, a_{mj}^+(\varepsilon))$$

 $x_j^-(\varepsilon)$ is attained for $a_{ij}^-(\varepsilon) = a_{ij} - \varepsilon a_{ij}$ $x_j^+(\varepsilon)$ is attained for $a_{ij}^+(\varepsilon) = a_{ij} + \varepsilon a_{ij}$

AINC Seminar, 25th February 2002 - p.

Stability with respect to alternatives

Let
$$\sigma$$
, $x_{\sigma(1)} \geq \cdots \geq x_{\sigma(n)}$

- Stability of the order $x_{\sigma(j)} \ge x_{\sigma(j+1)}$ the greatest $\delta_j \in [0,1]$ for which $x_{\sigma(j)}^-(\delta_j \varepsilon) \ge x_{\sigma(j+1)}^+(\delta_j \varepsilon)$
- Stability index of decision principle f

$$S(\varepsilon) = \left(\prod_{j=1}^{n-1} \delta_j\right)^{\frac{1}{n-1}}$$

AINC Seminar, 25th February 2002 - p.1

Genetic programming setup

- Representation (only feasible solutions)
 - Terminals α power means applied to an alternative's values Functions - α power means with equal weights
- Evaluation method
 - 1. For each A_j compute x_j , $x_j^-(\varepsilon)$, $x_j^+(\varepsilon)$
 - 2. Order the alternatives: $x_{\sigma(1)} \ge \cdots \ge x_{\sigma(n)}$
 - 3. For each pair $A_{\sigma(j)}$, $A_{\sigma(j+1)}$ compute δ_j
 - 4. Compute $Fitness = S(\varepsilon)$

Sensitivity with respect to weights

Minimum and maximum aggregate value

$$x_{j}^{-}(\varepsilon) = f(w_{1j}^{-}(\varepsilon), \dots, w_{mj}^{-}(\varepsilon); a_{1j}, \dots, a_{mj})$$

$$x_{j}^{+}(\varepsilon) = f(w_{1j}^{+}(\varepsilon), \dots, w_{mj}^{+}(\varepsilon); a_{1j}, \dots, a_{mj})$$

- Maximum (minimum) of a monotone function on a subset of the simplex $S = \sum_{i=1}^{m} v_i = 1$ ($W_{\varepsilon} = [\mathbf{w} - \varepsilon \mathbf{w}, \mathbf{w} + \varepsilon \mathbf{w}]$)
- Branch and bound technique
- Starting from the initial simplex, we maintain a list of simplices
- We always divide the simplex with the largest upper bound and keep those of the resulting two simplices, which have intersection with the set of interest

Stability with respect to weights

Let
$$\sigma$$
, $x_{\sigma(1)} \geq \cdots \geq x_{\sigma(n)}$

- Stability of the order $x_{\sigma(j)} \ge x_{\sigma(j+1)}$ the greatest $\delta_j \in [0,1]$ for which $x_{\sigma(j)}^-(\delta_j \varepsilon) \ge x_{\sigma(j+1)}^+(\delta_j \varepsilon)$
- Stability index of decision principle f

$$S(\varepsilon) = \left(\prod_{j=1}^{n-1} \delta_j\right)^{\frac{1}{n-1}}$$

Example 1

	\mathbf{A}_1	\mathbf{A}_2	\mathbf{A}_3	\mathbf{A}_4	\mathbf{A}_5	\mathbf{A}_{6}	\mathbf{A}_7	\mathbf{A}_8	\mathbf{A}_9	\mathbf{A}_{10}
$w_1 = 0.1$ $\mathbf{C}_1 = \text{aesthetics}$	1	2	9	3	1	4	8	9	5	6
$w_2 = 0.2$ $\mathbf{C}_2 = warranty$	3	9	1	6	9	7	8	2	3	1
$w_3 = 0.3$ $\mathbf{C}_3 = trade-name$	9	1	7	1	8	8	3	6	2	9
$w_4 = 0.4$ $\mathbf{C}_4 = image$	5	6	2	9	1	2	4	3	7	4

best	order	\mathbf{A}_1	\mathbf{A}_7	\mathbf{A}_{6}	\mathbf{A}_{10}	\mathbf{A}_4	\mathbf{A}_9	\mathbf{A}_8	\mathbf{A}_2	\mathbf{A}_{5}	\mathbf{A}_3
GP	x_{j}	4.80	4.60	4.38	4.31	4.28	4.06	3.91	3.75	3.39	3.20
	δ_j	0.21	0.25	0.09	0.06	0.29	0.20	0.24	0.68	0.36	
orith				•			•		•		
anth-	order	\mathbf{A}_1	\mathbf{A}_4	\mathbf{A}_{10}	\mathbf{A}_{6}	\mathbf{A}_7	\mathbf{A}_2	\mathbf{A}_5	\mathbf{A}_9	\mathbf{A}_8	\mathbf{A}_3
metic	order x_j	A ₁ 5.4	A ₄ 5.4	A ₁₀ 5.1	A ₆ 5	A ₇ 4.9	A ₂ 4.7	A ₅ 4.7	A ₉ 4.5	A ₈ 4.3	A ₃ 4

Best solution

Example 2

$$\mathbf{A}_{1} \ \mathbf{A}_{2} \ \mathbf{A}_{3} \ \mathbf{A}_{4} \ \mathbf{A}_{5} \ \mathbf{A}_{6}$$
$$w_{1} = 0.3 \ \mathbf{C}_{1} \begin{bmatrix} 1 & 8 & 9 & 9 & 5 & 9 \\ 7 & 9 & 1 & 6 & 9 & 7 \\ w_{3} = 0.5 \ \mathbf{C}_{3} \begin{bmatrix} 9 & 1 & 7 & 1 & 8 & 8 \end{bmatrix}$$

best	order	\mathbf{A}_{6}	\mathbf{A}_5	\mathbf{A}_3	\mathbf{A}_1	\mathbf{A}_2	\mathbf{A}_4
GP	x_{j}	8.07	7.11	5.13	4.52	3.33	3.12
	δ_j	0.7	1	1	1	0.5	
arithmetic	order	\mathbf{A}_{6}	\mathbf{A}_5	\mathbf{A}_3	\mathbf{A}_1	\mathbf{A}_2	\mathbf{A}_4
mean	x_{j}	8.1	7.3	6.4	6.2	4.7	4.4
	δ_j	0.59	0.82	0.25	1	0.51	

Best solution

Conclusions

- A novel method for sensitivity and stability analysis of multicriteria decision problems with respect to alternative values and weights
- Alternatives genetic programming for generating more stable decision principles
- Weights special algorithm for computing stability

Future work

- Evolutionary stability analysis for weights
- Joint stability analysis for alternative values and weights
- More general stability analysis where only a number of alternatives are of interest