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Abstract: This paper describes parallel histogram modification techniques with embedded

morphological preprocessing methods within the CNN-UM framework. The procedure is

formulated in terms of nonlinear partial differential equations (PDE) and approximated through

finite differences in space, resulting in coupled nonlinear ordinary differential equations (ODE).

The I/O mapping of the system (containing both local and global couplings) can be calculated by

a complex analogic (analog and logic) algorithm executed on a stored program nonlinear array

processor, called the cellular nonlinear network universal machine (CNN-UM, [3]). We describe

and illustrate how the implementation of the algorithm results in an adaptive multi-thresholding

scheme when histogram modification is combined with embedded morphological processing at a

finite (low) number of gray-scale levels. This has obvious advantages if the further processing

steps are segmentation and/or recognition. Experimental results processing real-life and

echocardiography images are measured on different hardware/software platforms, including a

64x64 CNN-UM chip (ACE4k, [6], [17]).

Key words: cellular nonlinear/neural networks (CNN), analogic algorithms, CNN

Universal Machine, histogram modification, morphological processing, partial differential

equations
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1 Introduction

In this paper we analyze a set of PDEs designed for simultaneous contrast enhancement,

noise suppression and shape enhancement. Based on spatial approximations and using a discrete

set of gray-values these PDEs will be decomposed to spatially interacting ODEs (discrete in

space and continuous in time). The resulting analogic (analog and logic) CNN ([1]-[6], [17])

algorithms are implemented on different hardware-software platforms. Measurement results

prove that various process real-time image processing based solutions could use this technique as

an efficient front-end scheme. Furthermore, it is demonstrated that the implementations

accelerated by a CNN-UM chip [6], [17] are superior to the optimized solutions on a high-end

DSP (Texas 6x).

2 Contrast Enhancement Through Histogram
Modification

Due to poor or changing lighting conditions image snapshots (or video-flows) are often

captured at low contrast in different scenarios. On the other hand a number of algorithms taking

these images as inputs are in general fairly sensitive to huge (or rapid) contrast changes that could

significantly degrade the processing performance. Recent advances of different visual

microprocessors resulted in new hardware platforms for parallel algorithms and are also the basis

for the increased interest in the development of new parallel nonlinear techniques for contrast

improvement.

The most common way to improve the contrast of an image is to modify its gray-value

distribution, the image histogram. For example, histogram equalization is a basic method that

drives the image pixel values into different gray-scale levels in order to achieve a uniform

distribution [10],[11]. This global technique improves the contrast and does not modify the level-

sets (the family of binary shadows of the image). Histogram modifications can also be formulated

in terms of PDEs [12]-[14] that gives a hope to a fully parallel implementation. In this paper we

explore and modify some of these recent formulations, derive and implement efficient new

algorithms for cellular nonlinear array processor architectures.
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3 PDE Formulations

Let us consider the following PDE designed for histogram equalization ([12]-[14]):
2

2
( , , )

( , , )
( ( , , )) [ ( , , ) ]x y t

x y t N
N x y t A L v w t

t M Φ
∂Φ = − Φ −

∂
(1)

where Φ(x,y,t): [0,N]2 x [0,T] → [0,M] is the image intensity, N and M are constants, and

A[.]: R2 → R stands for the area measure of a level-set.

The level-sets L(v,w,t)φ(x,y,t): [0,N]2 x [0,T] → {0,M} are the “binary shadows” of the

image and can be described as follows:
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Then the calculation of the area measure is defined as follows:

0 0

[ ] [( , ) : ( , , ) ( , , )]
N N
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A L A v w v w t x y t L dv dwΦ Φ
= =

= Φ ≥ Φ = ∫ ∫ (3)

A modified and extended version of (3) that allows a simultaneous contrast enhancement

with noise suppression ([12]-[14]) is as follows:
2( , , )

( ( ( , , ) ) ) [ ]
x y t

N H x y t A L
t

α κ Φ
∂ Φ = + − Φ −

∂
(4)

where α is a constant, κ is a regularizing term, and H(.): R→R represents a prescribed

monotone increasing function.

A further novel generalization that adds shape enhancement by morphological processing

of the level-sets is as follows:
2

( )

( , , )
( ( ( , , ) ) ) [ ]g

x y t
N H x y t A L

t
α κ Φ

∂ Φ = + − Φ −
∂

(5)

where Lg (Φ) is a “threshold transformed” level set and g(.): R→R is a general nonlinear

function.

We make the function g(.) to depend implicitly (explained later) on Γ[U,B] that stands for

a morphological processing of U with a structuring element B (a disk).

Two forms of morphological processing will be investigated, the n-step “erode-dilate”

and “dilate-erode” operations (⊕ and ⊗ stand for dilation and erosion, respectively) described by

the following set-theoretic formulations:
( ) ( ) ( ) ( )[ , ] (( ) ) [ , ] (( ) )n n n nU B U B U B U BΓ = ⊕ ⊗ ∨ Γ = ⊗ ⊕ (6)

The input set U of these operations is either a level-set LΦ or a level-set section: LΦ1,Φ2 =

LΦ2 - LΦ1.
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4 Approximating the Histogram Modification PDEs

Mapping the PDEs introduced in the previous section into nonlinear ODEs we consider

two cases corresponding to (1), and (5) respectively. All these approximations could be

implemented as a complex analogic algorithm executable on an existing architecture [6], [17].

Case 1: Contrast enhancement through histogram equalization

Based on (1) assuming 1;1;/;0 22 ==== MNMNHα :

)1()(
)( )1(

ijij
ij At
dt

td
−+−= φ

φ
(7)

Case 2: Contrast enhancement, denoising and embedded morphological processing

Based on (5) assuming 2 21; ( ( )), / ; 1; 1div grad H N M N Mα κ φ= = = = = :

(2)
1 1 1 1

( ) 1
( ) (1 ) ( ( ) ( ) ( ) ( ))

4
ij

ij i j i j ij ijij

d t
t A t t t t

dt

φ
φ φ φ φ φ− + − += − + − + + + + (8)

In all cases A(1)
ij = A(2)

ij = const during the evolution [13], therefore should only be

calculated once. Though Aij is the output of a global transformation it is possible to give an

approximation based on purely local (analog and logic) operations. This “spatial decomposition”

will be discussed in the sequel.

The following operational notations and definitions will be used throughout the algorithm

descriptions (all templates referenced can be found in the CNN Software Library [16]):

Definition 1: Threshold – thresholds a gray-scale input image at a given gray-scale level.

The output is a binary image defined as follows:
1

( , )
0

i j

i j

i f
T h r

o t h e r w i s e

λ
λ

Φ ≥
Φ = 


(9)

CNN implementation: by using the THRESH template.

Definition 2: Area – calculates the area measure corresponding to a given level-set of the

input image. The output is a scalar defined as follows (Φij,Bin is the level-set calculated by the Thr

function):

, ,
1 1

( )
N N

i j B i n i j B i n
i j

A r e a
= =

Φ = Φ∑ ∑ (10)

CNN implementation: by using the DIFFUS template the average value of an image can be

calculated in the specified domain. If the initial state is a constant image (all pixels are set to +1)

over the specified level-set then the diffusion output at steady-state gives a normalized area

measure (a value in the range of [0, 1]) of the level-set domain related to the entire image area.

Definition 3: Set level – sets the value of all pixels over a given mask to a specified gray-

scale level. The output is a gray-scale image defined as follows:
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(11)

CNN implementation: by using the SETLEV template.

Definition 4: Erode – calculates erosion of a binary input image with a specified

structuring element B. The set theoretical definition of the erosion based on Minkowski

subtraction is as follows (- denotes translation):

, ,( , ) { : }i j B in ij B inE ro d e B B b b BΦ = Φ ⊗ = ∩ Φ − ∈ (12)

CNN implementation: by using the EROSION template (single-step erosion) or PROPE

(continuous erosion by a trigger-wave).

Definition 5: Dilate - calculates dilation of a binary input image with a specified

structuring element B. The set theoretical definition of the erosion based on Minkowski addition

is as follows (+ denotes translation):

, ,( , ) { : }i j B in i j B inD ila te B B b b BΦ = Φ ⊕ = ∪ Φ + ∈ (13)

CNN implementation: by using the DILATE template (single-step erosion) or PROPD

(continuous dilation by a trigger-wave).

Definition 6: Norm – calculates a normalized version of a gray-scale input image. The

formulation of the operation is as follows (Dmin and Dmax stand for the minimum and maximum of

the available dynamic range; Φmin and Φmax stand for the minimum and maximum of the input

image, respectively):

max min
min min min min

max min

( ) ( ) ( )ij ij ij

D D D
Norm D D

− ∆Φ = + Φ − Φ = + Φ − Φ
Φ − Φ ∆Φ

(14)

CNN implementation: first Φmin and Φmax is calculated by using the THRESH template and

global logic. Since ∆D is known a priori, the implementation of (14) leads to an analogic

algorithm based on template SCALE and simple arithmetics. Remark: the constant b0 = ∆D / ∆Φ
that is the central element of the B term in SCALE is image dependent, thus interaction with the

digital environment is needed. It should be noted though that Norm is not an essential part of the

histogram modification algorithm, it is included into the extended version (Algorithm 2, see

later) in order to increase the robustness in a physical implementation with a limited analog

precision (especially in case of very low input image dynamic range).

Definition 7: Diffuse – calculates a constrained linear low-pass filtered version of a gray-

scale input image. The formulation of the operation is as follows (* denotes convolution):

,1 ,2 1 1 1 2 2 2( , ) * ( ) (1 ) * ( )ij ijD iff G Gα σ α σΦ Φ = Φ + − Φ (15)

CNN implementation: equation (15) describes a homotopy in between two different linear

convolutions by a Gaussian kernel. Under fairly mild conditions at some time t this corresponds

to the solution of a constrained diffusion type partial differential equation. After spatial

discretization this can be mapped to a CNN structure ([8], [9]) programmed by template

CDIFFUS. In this form the B term directly approximates G2, while the transient length is explicitly

related to G1 (t ≈ √σ1).

The symbolic description of the histogram modification algorithm can be found in Fig. 1.
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Fig. 1. Pseudo code description of two versions of the histogram modification. Algorithm 1 implements histogram
equalization, while Algorithm 2 is the generalized histogram modification with embedded morphological processing
of the level-sets.

Algorithm 1 and 2 show the implementation steps of (7) and (8) including all necessary

calculations. The UMF (Universal Machines on Flows) description of the algorithmic core can be

seen in Fig. 2. The CNN flow-chart of the generalized histogram modification analogic algorithm

(Algorithm 2) can be seen in Fig. 3.

Fig. 2. UMF (Universal Machines on Flows) description of Algorithm 2.
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Fig. 3. The CNN analogic algorithm approximating the histogram modification PDEs discussed in Section 4. The processing
stages are as follows: (1) Initialization, (2) Set threshold level, (3) Detect regions above threshold, (4) Calculate area measure, (5)
Set Global Bias Map pixels, (6) Modify image histogram with noise suppression (regularization). Blocks 2-5 should be repeated q
times (the number of gray-scale levels that specify the accuracy of the approximation). In the flowchart *, **, and *** mark the
stages where the subroutines implementing further adaptive strategies can be embedded. Morphological operations are embedded
at *** processing the level-set function SMap.

(a) (b) (c) (d)

Fig. 4. Programmable global PDE on a cellular nonlinear architecture – simultaneous contrast enhancement with noise
suppression: original, low contrast image (a,c); enhanced – histogram equalized (b,d).

A(2)
ij in (8) differs from the first two versions, since it should include an embedded

morphological processing [15]. Also, contrast stretching and further desirable smoothing and

enhancement properties can be added to the algorithm, as it will be discussed in the next section.
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5 Extended Algorithmic Schemes – Morphological
Processing Of The Level Sets

An adaptive multi-thresholded output with shape enhancement can be obtained if a

morphological processing is embedded at each gray-scale level considered. This could be

implemented either through a multi-step erosion and dilation operations or using trigger-waves

that approximate a continuous-scale binary morphology with flat structuring elements [7]. The

description of the extended algorithm that contains the multi-step dilate-erode operations can be

seen in Fig. 1 (Algorithm 2).

(a) (b) (c) (d)

Fig. 2. Programmable global PDE on a cellular nonlinear architecture – simultaneous contrast enhancement and noise filtering
with embedded morphological processing of the level-sets: (a) original, low contrast image, (b) histogram equalized image, (c)-(d)
histogram modification with embedded differential morphological processing (implemented through expanding and shrinking
trigger-waves) at two different scales (3τ and 5τ) and 8 distinct gray-scale levels.

6 Experimental Results

For comparative analysis we have implemented the above-discussed histogram

modification method (Algorithm 2 without diffusion filtering, but including the morphological

processing of the level-sets) in 6 different hardware-software configurations listed bellow (the 7th

complete CNN-UM chip implementation is still an on-going experiment).

Version 1: in MATCNN MATLAB Toolbox simulating all analog CNN dynamics with

an optimized C-code running on a CISC. µP: Pentium 1 GHerz.

Version 2: as Version 1, except for simulating through the CNN fixed-points with an

optimized C-code.

Version 3: as Version 2, except for the C-code contains the entire algorithm.

Version 4: in Aladdin Professional with an optimized C-code that contains the entire

algorithm running on a DSP. µP: Texas TMS6x 250 MHerz.

Version 5: as Version 4, except for the morphology operation is optimized at the

assembly level.

Version 6: as Version 4, except for the morphology operation is optimized for the CNN-

UM chip. µP: Alcatel ACE4k [6], [17].
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Version 7: in Aladdin Professional running the entire algorithm on a CNN-UM chip (on-

going). µP: Alcatel ACE4k [6], [17].

Detailed measurement results can be seen in Fig. 5. Observe in Fig 5(b) that 7x2 binary

morphology operations including logic are completed within 100 µs on the ACE4k CNN-UM

chip.
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Fig. 3. Comparison of different algorithmic implemenentations (Ver1-Ver6). 5(a) Execution time of Histogram Modification
algorithms (q=8), 5(b) Execution time of binary morphology.

7 Conclusions

In this paper we have shown how a PDE, designed for simultaneous contrast

enhancement, noise suppression, and shape enhancement could be implemented as an analogic

algorithm relying on purely local operations. We have also performed an exhaustive comparative

experiment of different implementations on various hardware-software platforms with CISC,

DSP and CNN-UM microprocessors. These measurements show how the efforts toward a fully

parallel implementation (Version 7) of our algorithm could lead to an extremely efficient

preprocessing scheme for various process real-time applications (possibly up to 1000 frames/sec

with resolution of 64x64, see the results for binary morphology in Fig 5(b)).
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Appendix

Simulation results – Closing

Original image:

(algorithm input)

Fig.A. Simulation results of the extended histogram modification algorithm with embedded morphologic closing. The input of the
algorithm is the original image shown at the top. The columns of the montage stand for the morphological dimension, the number
of morphological operations performed at each equalization level (left-right:0-6). The rows reflect the number of equalization
levels (top-down:2,4,8,16,32,64,128).
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Original image:

(algorithm input)

Fig.B. Simulation results of the extended histogram modification algorithm with embedded morphologic closing. The input of the
algorithm is the original image shown at the top. The columns of the montage stand for the morphological dimension, the number
of morphological operations performed at each equalization level (left-right:0-6). The rows reflect the number of equalization
levels (top-down:2,4,8,16,32,64,128).
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Original image: Low contrast and

noisy image:

(algorithm input)

Fig.D. Simulation results of the extended histogram modification algorithm with embedded morphologic closing. The input of the
algorithm is a contrast supressed noisy version of the original image shown at the top. The columns of the montage stand for the
morphological dimension, the number of morphological operations performed at each equalization level (left-right:0-4). The rows
reflect the number of equalization levels (top-down:2,4,8,16,32).
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Original image: Low contrast and

noisy image:

(algorithm input)

Fig.E. Simulation results of the extended histogram modification algorithm with embedded morphologic closing. The input of the
algorithm is a contrast supressed noisy version of the original image shown at the top. The columns of the montage stand for the
morphological dimension, the number of morphological operations performed at each equalization level (left-right:0-4). The rows
reflect the number of equalization levels (top-down:2,4,8,16,32).

.



17

Original image: Low contrast and

noisy image:

(algorithm input)

Fig.F. Simulation results of the extended histogram modification algorithm with embedded morphologic closing. The input of the
algorithm is a contrast supressed noisy version of the original image shown at the top. The columns of the montage stand for the
morphological dimension, the number of morphological operations performed at each equalization level (left-right:0-4). The rows
reflect the number of equalization levels (top-down:2,4,8,16,32).
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Simulation results - Opening

Original image:

(algorithm input)

Fig.F. Simulation results of the extended histogram modification algorithm with embedded morphologic opening. The input of
the algorithm is the original image shown at the top. The columns of the montage stand for the morphological dimension, the
number of morphological operations performed at each equalization level (left-right:0-6). The rows reflect the number of
equalization levels (top-down:2,4,8,16,32,64,128).
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Chip experiments

Fig.G. Chip experiments of the extended histogram modification algorithm with embedded morphologic closing. The input of the
algorithm is the original image shown in the top left corner. The columns of the montage reflect the number of equalization levels
(left-right:2,4,8,16,32). The rows stand for the morphological dimension, the number of morphological operations performed at
each equalization level (top-down: 0-3).

Fig.G. Chip experiments of the extended histogram modification algorithm with embedded morphologic opening. The input of
the algorithm is the original image shown in the top left corner. The columns of the montage reflect the number of equalization
levels (left-right:2,4,8,16,32). The rows stand for the morphological dimension, the number of morphological operations
performed at each equalization level (top-down: 0-3).
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CNN templates:

A

a a a

a a a

a a a

B

b b b

b b b

b b b

z=
















=
















2 1 2

1 0 1

2 1 2

2 1 2

1 0 1

2 1 2

, ,

Template FeedBack (A) Control (B) Current BCond

a0 a1 a2 b0 b1 b2 I Bc

THRES 2 0 0 0 0 0 0 1

SETLEV 0 0 0 1 0 0 0 0

EROSION 1 1 0 0 0 0 -4 -1

DILATION 1 1 0 0 0 0 4 -1

DIFFUS 0 0,15 0,10 0 0,15 0,10 0 ZF

CDIFFUS 0 0,15 0,10 0 0,15 0,10 0 ZF

Table 1. Linear CNN templates used in the histogram modification algorithms. In boundary condition specification (Bc): ZF –
zero flux, [-1,1] – constant.


