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Foreword

Foreword

Grammar Systems is a well-recognized field of formal language theory providing
both syntactic models for describing multi-agent systems at the symbolic level and
distributed models of language. The theory has been inspired and influenced by sev-
eral scientific areas: distributed and decentralized artificial intelligence, distributed
and parallel computing, artificial life, molecular computing, robotics, ecology, so-
ciology, etc. Computer networks, parallel and distributed computer architectures,
distributed and cooperative text processing, natural language processing are among
the candidates for possible applications.

So far approximately four hundred publications have been published in the area,
among other things a monograph in 1994, and a chapter of the Handbook of Formal
Languages in 1997. Grammar systems was the topic of several Ph.D and M.Sc
theses.

The workshop Grammar Systems Week 2004 is the fifth one in a series of work-
shops started in 1995 in Mangalia, organized by Gheorghe Păun; the series continued
in 1996, by a workshop organized by Erzsébet Csuhaj-Varjú in Budapest. The third
workshop was organized by Alica Kelemenová in Brno in 1998, and the fourth one
was organized by Rudolf Freund and Franziska Freund in Bad Ischl in 2000.

This volume is the proceedings of the Grammar Systems Week 2004, held in
Budapest, July 5-9, 2004, under the auspices of the European Molecular Computing
Consortium (EMCC) and the IFIP Working Group 1.2 on Descriptional Complexity.
It contains the revised versions of papers presented during the event.

The members of the steering committee of the grammar systems workshops
are Erzsébet Csuhaj-Varjú (Budapest, Hungary), Jürgen Dassow (Magdeburg, Ger-
many), Rudolf Freund (Vienna, Austria), Jozef Kelemen (Opava, Czech Republic),
Alica Kelemenová (Opava, Czech Republic), and Gheorghe Păun (Bucharest, Ro-
mania; Seville, Spain).

We would like to acknowledge the invaluable help of MTA SZTAKI, the Com-
puter and Automation Research Institute of the Hungarian Academy of Sciences,
in the frame of the project EU Centre of Excellence in Information Technology,
Computer Science, and Control, contract no. ICA1-CT-2000-70025, HUN-TING,
Workpackage 5. Last but not least, we thank the authors for participating and
presenting their valuable work at the workshop.

Budapest, September of 2004 Erzsébet Csuhaj-Varjú, György Vaszil,
organizers and editors
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Program

Program

Monday, July 5

9.00 - 9.40 Erzsébet Csuhaj-Varjú (Budapest, Hungary): Opening. Grammar
systems: Past, present, and future

9.40 - 10.30 Gheorghe Păun, invited speaker (Bucharest, Romania / Sevilla,
Spain): Grammar systems vs. membrane computing

10.30 - 11.00 Break

11.00 - 11.40 G. N. Sathana Krishnan, Kamala Krithivasan, invited speaker,
Ashish Choudhary (Madras, India): Distributed probabilistic fi-
nite automata

11.40 - 12.30 Jozef Kelemen (Opava, Czech Republic / Bratislava, Slovakia):
Embodiment - A computational point of view

12.30 - 14.00 Lunch

14.00 - Discussion session: General issues, descriptional complexity issues

Tuesday, July 6

9.00 - 9.50 Jürgen Dassow, invited speaker (Magdeburg, Germany): On co-
operating distributed grammar systems with competence based
start and stop conditions

9.50 - 10.40 Henning Bordihn (Potsdam, Germany), Markus Holzer (München,
Germany): CD grammar systems as models of distributed problem
solving, revisited

10.40 - 11.10 Break

11.10 - 11.40 Bettina Sunckel (Frankfurt am Main, Germany): On metalinear
CD grammar systems

11.40 - 12.10 Suna Bensch, Henning Bordihn (Potsdam, Germany): Active sym-
bols in pure systems

12.10 - 12.40 Liliana Cojocaru (Tarragona, Spain): On the time, space and com-
munication complexity of cooperating distributed grammar sys-
tems

12.40 - 14.00 Lunch

14.00 - Discussion session: Linguistic issues, descriptional complexity is-
sues
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Program

Tuesday, July 6, continued

14.00 - 14.30 M. Dolores Jiménez López (Tarragona, Spain / Pisa, Italy): What
can grammar systems do for linguistics?

14.30 - 14.50 Suna Bensch, Helmut Jürgensen (Potsdam, Germany): Modelling
dialogues by grammar systems

19.00 - Workshop Dinner

Wednesday, July 7

9.00 - 9.50 Alica Kelemenová, Michal Tupý (Opava, Czech Republic): Mono-
cultures and homogeneous environment in eco-grammar systems

9.50 - 10.20 Peter Sebestyén, Petr Sośık (Opava, Czech Republic): Multiple
robots in space: An adaptive eco-grammar model

10.20 - 10.50 Break

10.50 - 11.20 Francesco Bernardini, Marian Gheorghe (Sheffield, United King-
dom): Population P systems and grammar systems

11.20 - 11.50 Katalin Lázár (Budapest, Hungary): Eco-grammar systems: An
approach to the crawlers’ problem

11.50 - 12.20 Liliana Cojocaru (Tarragona, Spain): Parallel communicating
pushdown transducer systems

12.20 - 14.00 Lunch

14.00 - Discussion session: Evolutionary models, eco-grammar systems

Thursday, July 8

9.00 - 9.50 Rudolf Freund, Marion Oswald (Vienna, Austria): Modelling
grammar systems by tissue P systems

9.50 - 10.30 A. Arun Prasath, Kamala Krithivasan, invited speaker (Madras,
India): Distributed 2-way finite state quantum automata

10.30 - 11.00 Break

11.00 - 11.40 L. Kari (London, Canada), S. Konstantinidis (Halifax, Canada),
E. Losseva, P. Sośık, G. Thierrin (London, Canada): DNA invo-
lutions and hairpin structures

11.40 - 12.20 Gemma Bel Enguix (Tarragona, Spain / Milan, Italy), M. Do-
lores Jiménez López (Tarragona, Spain / Pisa, Italy): Explaining
language change with membranes

12.20 - 14.00 Lunch
14.00 - Discussion session: Biocomputing, unconventional models
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Program

Friday, July 9

9.00 - 9.40 Henning Bordihn (Potsdam, Germany), György Vaszil (Budapest,
Hungary): CD grammar systems with LL(k) conditions

9.40 - 10.10 K. S. Dersanambika, K. Krithivasan, K. G. Subramanian (Madras,
India): Simple splicing grammar systems

10.10 - 10.40 Maria Adela Grando, Victor Mitrana (Tarragona, Spain): Can PC
grammar systems benefit from concurrent programming?

10.40 - 11.10 Break

11.10 - 11.40 A. Roslin Sagaya Mary (Tarragona, Spain), K. G. Subramanian
(Madras, India): Image splicing grammar systems

11.40 - 12.10 Results obtained during the workshop. Closing
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Gheorghe Păun: Grammar systems vs. membrane computing: A prelimi-

nary approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
A. Roslin Sagaya Mary, K. G. Subramanian, K. S. Dersanambika: Image

splicing grammar systems . . . . . . . . . . . . . . . . . . . . . . . . 276
G. N. Sathana Krishnan, Kamala Krithivasan, Ashish Choudhary: Dis-

tributed probabilistic finite automata . . . . . . . . . . . . . . . . . . 287
Peter Sebestyén, Petr Sosik: Multiple robots in space: An adaptive eco-

grammar model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Bettina Sunckel: On metalinear CD grammar systems . . . . . . . . . . . 313

Author Index 329

11





Contributions





Distributed 2-Way Finite State Quantum Automata
A. Arun Prasath, Kamala Krithivasan

Dept of Computer Science and EngineeringIndian Institute of Technology, MadrasChennai, India -600036kamala@iitm.ernet.in
Abstract

We de�ne Multiple choice two-way quantum automata with multiple ob-servables. Distributed quantum automata are de�ned with four modes of co-operation. We show that multiple choice two way quantum automata and dis-tributed quantum automata have the same power as that of two way quantumautomata(having single choice) with multiple observables.
1 Introduction
The possibility that a quantum computational model can be more powerful than itsclassical counterpart, as has been elucidated by the celebrated Peter Shor's factoringand discrete logarithm algorithms [2] and Grover's quantum searching algorithm [3]has encouraged researchers to come up with various quantum computational models.Two-way quantum �nite state automata (2qfa) have been proposed as the quantumanalogue of deterministic (2dfa) �nite state automata, and it has been shown thatthese 2qfa's are strictly more powerful than the 2dfa's, the 2nfa's and the 2pfa's [1].Also, in the past, there have been attempts to come up with co-operative dis-tributed models of classical automata. In the case of push down stack automata, ithas been shown that, distribution results in increased power [4]. In fact, it has beenshown that the distributed push down stack automata are equivalent in power tothat of a Turing machine and hence are computationally complete. The main aimof this paper is to analyze the e�ect of distribution on the power of computation inquantum automata.The 2qfa model proposed by Kondacs and Watrous has one minor restriction.It is that only measurements with respect to one particular decomposition (observ-able) of the state space is allowed (that which decides if the machine halts withacceptance, halts with rejection or goes on). In this work, the 2qfa model is �rstgeneralized to a model ((2qfa-MOb)) that allows measurements with respect to oneor several of multiple decompositions (observables) of the state space. The signi�-cance of the new model is understood when distribution of computation in quantumautomata is attempted. Di�erent modes of cooperation are de�ned similar to thatin distributed �nite state automata. Then, it is shown that the distributed quantum�nite state automata (D-2qfa-MOb) can be reduced to a 2qfa-MOb, for any of its

Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varjú and Gy. Vaszil,
MTA SZTAKI, Budapest, pages 15 - 29, 2004.
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modes of acceptance.First, a multiple choice 2qfa-MOb (MC-2qfa-MOb) is formulated, and it is provedthat the behaviour of a multiple choice 2qfa-MOb can be simulated by a 2qfa-MOb toan arbitrarily close accuracy. Then, the D-2qfa-MOb is formulated, and by reducingthis to a MC-2qfa-MOb, in each one of its modes of cooperation, it is proved that aD-2qfa-MOb in any mode of cooperation, has the same power as that of a 2qfa-MOb,thus proving the result.
2 2-Way Quantum Finite State Automata (2qfa)
2.1 De�nition
Kondacs and Watrous [1] de�ne a 2qfa as a 6-tuple M = (Q;�; �; q0; Qacc; Qrej),where Q is a �nite set of states, � is a �nite alphabet (The tape alphabet � isde�ned as � [ f#; $g, where #; $ 62 � are used to mark the left and right ends ofthe tape respectively), � is the transition function for the automaton de�ned below,q0 2 Q is the initial state and Qacc 2 Q and Qrej 2 Q are the sets of accepting statesand rejecting states respectively (Elements of Qacc and Qrej are halting states andelements of Qnon = Q � (Qacc [ Qrej) are non-halting states. Also, q0 2 Qnon andQacc \Qrej = ;).The contents of any tape can be described by a mapping x : Zn ! �, n beingthe number of distinct tape squares on the tape. The number of con�gurations ofthe 2qfa M on any tape x of length n is njQj, since there are n possible locationsfor the tape head and jQj internal states. The con�guration of a tape can hence bedescribed by a mapping Cn = Q X Zn. A superposition of M on a tape x of lengthn is any norm 1 element of the �nite dimensional Hilbert space Hn = l2(Cn), whichis the space of mappings from Cn to C with the usual inner product. FollowingDirac's notation, for each c 2 Cn, jci denotes the unit vector which takes value 1 at cand 0 elsewhere. All other elements of Hn may be expressed as linear combinationsof these basic vectors. For a superposition j i = Pc2Cn �cjci, �c is the probabilityamplitude associated with c in superposition j i.The transition function � of the 2qfa M is a mapping of the form,� : Q X � X Q X f�1; 0; 1g ! C. For each q; q0 2 Q, � 2 � and d 2 f�1; 0; 1g,�(q; �; q0; d) represents the amplitude with which a machine currently in state q andscanning symbol � will change its state to q0 and move its tape head in directiond. For any tape x, � induces a time evolution operator Ux� on Hjxj as follows.Ux� jq; ki = Pq0;d �(q; x(k); q0; d)jq0; k + d(modjxj)i for each (q; k) 2 Cjxj, and is ex-tended to all of Hx by linearity.Since valid superpositions for the automata are of unit norm, the �nite dimen-sionality of Hn requires Ux� to be a unitary operator, so that any valid superpositionwill evolve into another valid superposition and the automataM is then well formed.Now, let V� : l2(Q)! l2(Q) be an unitary operator in the Hilbert space l2(Q), andlet D : Q! f�1; 0; 1g. Now, if the transition function � is de�ned as

�(q; �; q0; d) = � hq0jV�jqi D(q0) = d0 D(q0) 6= d �! Eqn:1

A. Arun Prasath, K. Krithivasan
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M is well-formed i� V� is unitary.
2.2 Observables and Measurements
2.2.1 De�nition

An observable O is a decomposition of the Hilbert space Hn into subspaces: Hn =E1 � � � � � Ek, where the Ei are pairwise orthogonal. Let j ii be the projection ofj i onto Ei, for each i, so that, j i = j 1i+ � � �+ j ki. Then, the result of measuringobservable O is that, the machine will collapse randomly to some outcome j withprobability jj j ji jj and the new superposition of the machine will be 1jj j ji jj j ji.
2.2.2 Deciding the Time of Measurement

The decision as to when to measure an observable, is a crucial requirement, forthe automaton to have the intended functionality. It is usually the case that, themachine is in a superposition of states, which means that, it essentially evaluatesmultiple paths simultaneously, and if the string on the tape has the desired structure,then the paths interfere either constructively or destructively. It is this aspect, that,in fact, distinguishes the qfa from classical automata, and is mainly responsible fortheir power. The point that is emphasized here, is that, the measurement is generallyassumed to be done only after the interference mentioned above is guaranteed to havecompleted. Any measurement before that, would not guarantee proper functionalityof the automaton. The instant of measurement, is also dependent on the string onthe tape. In general, it is assumed that, there is some mechanism (that is not part ofthe unitary evolution of the automaton), which ensures that measurements are doneonly at appropriate moments. Strictly speaking, the de�nition of the automatonshould include the speci�cations of the instants of measurement, along with thetransition function, for it is the both that together de�ne the functionality of theautomaton under consideration.
2.3 The Possibility of Allowing Multiple Observables and Its Sig-ni�cance
The 2-qfa discussed above, allows measurements only with respect to one observable.This observable (that is referred to, here, as the primary observable) is a decomposi-tion of the state space of the machine into subspaces constructed from non-haltingstates, halting states accepting the string on tape and halting states rejecting thestring on tape. This measurement alone decides whether the machine is to furtherevolve or not, and in case of halting, it decides whether the string is accepted ornot. Thus, it is this measurement that is used to de�ne the languages accepted bya quantum automaton.But, in general, it is possible to have di�erent decompositions of the state spaceof the automaton (multiple observables). Such quantum automata possess su�cientpower that, when distributed computation is attempted over these machines, addi-tional power is not obtained, as shall be proved below. So, an interesting variant ofthe qfa is proposed below, wherein, multiple observables are allowed.

Distributed 2-way finite state quantum automata
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3 2qfa Allowing Measurements of Multiple Observables(2qfa-MOb)
3.1 De�nition
A 2qfa-MOb is de�ned as a tuple

M = (Q;�; V;D; q0; Qacc; Qrej ;O)
where Q,�,q0,Qacc and Qrej are as before and the tape alphabet � being de�ned asbefore from � by including left and right end markers f#; $g. V is a set of unitaryoperators V� : l2(Q) ! l2(Q) for every � 2 � and D : Q ! f�1; 0; 1g. Moreover, itis understood that the transition function (�) for the automata is constructed fromV and D as in Eqn.1. Using V and D, instead of �, is just a notational simplicitythat provides convenience when dealing with distributed quantum automata. O is aset of observables for the automaton, excluding the primary observable (de�ned as thedecomposition into subspaces, Qacc�Qrej�Qnon, where Qnon = Q� (Qacc[Qrej)).Measurements can be performed with respect to any of the observables in O. Theinstant of measurement for any observable is assumed to be well-de�ned as in thecase of the usual 2-qfa.
3.2 Languages Accepted by 2qfa-MObs
For a given string w 2 ��, a tape xw is constructed with length jwj+2, with xw(0) =#, xw(jwj+ 1) = $ and xw(i) = wi for 1 � i � jwj. The computation begins in thesuperposition jq0; 0i and measurements can be made with respect to the primaryobservable and observables in O, the instants of these measurements being de�ned,as mentioned above. It is the measurement of the primary observable that decidesthe acceptance of w. When any measurement of the primary observable results ina halting state, the computation halts. If the state is in the subspace constructedfrom Qacc, w is accepted. Otherwise, the state is in the subspace constructed fromQrej , and the string is rejected.The computation can now be treated in the same manner as for a probabilisticmachine. For instance, if input w results in "accept" with probability greater than1/2, then w is an element of the language recognized by M , otherwise it is not.Just like probabilistic automata, restrictions such as running time and probabilityof error can be placed on the 2qfa-MOb as well.
4 Distributed 2qfa-MOb and Multiple-Choice 2qfa-MOb
4.1 Distributed 2qfa-MOb (D-2qfa-MOb)

4.1.1 Introduction

The D-2qfa-MOb is the quantum computational model corresponding to the classicaldistributed �nite state automata. Di�erent modes of acceptance can be de�ned here,in lines with the classical distributed automata.

A. Arun Prasath, K. Krithivasan
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4.1.2 De�nition

A Distributed 2qfa-MOb (D-2qfa-MOb) is de�ned as a tuple,
M = (Q;�; V 1; V 2; � � � ; V m; D; q0; Qacc; Qrej ;O)

whereQ,�,q0,Qacc andQrej are as before, the tape alphabet � being de�ned as beforefrom � by including left and right end markers f#; $g and O as in 2qfa-MOb is theset of observables excluding the primary observable, with the timings of measurementsfor every observable, assumed to be well-de�ned. V i = fV i� ; � 2 �g; i 2 f1; 2; � � � ;mg, where each V i� : l2(Q) ! l2(Q). Also, D : Q ! f�1; 0; 1g and it is understoodthat transition functions (�s) for the automaton are constructed from V i's and Das in Eqn.1, with V i replacing V in the equation. Each transition function obtainedis well de�ned for any i, since all V i� are unitary. The component of the machinedecides which transition function can be chosen at any moment.During any moment of evolution, the machine is in exactly one of the componentsi 2 f1; 2; � � � ;mg. If the symbol read by the head is �, then the next stage ofevolution operates V i� on the current internal state of the machine and the machinegoes to a new internal state. Di�erent modes of acceptance can be de�ned for thesedistributed automata. The di�erence between the modes arises from the de�nitionof allowed transitions from one component to another, for the machine. Acceptanceis de�ned exactly in the same way as in 2qfa-MOb with respect to the outcome ofmeasurements of the primary observable.
4.1.3 Modes of Acceptance

There are four possible modes of acceptance:
� � - mode - The transition from component i to some other component j canoccur at any arbitrary stage of the evolution.
� = k - mode - The transition from component i to some other component joccurs after exactly k transitions using the V is.
� � k - mode - The transition from component i to some other component joccurs after at least k transitions using the V is.
� � k - mode - The transition from component i to some other component joccurs before k + 1 transitions using the V is.

The language accepted by a D-2qfa-MOb M using mode of acceptance �; � 2 f�;=k;� k;� kjk � 1g is denoted by L(M;�). Note that, in some cases the automataconstructed is such that, all strings belonging to L are accepted de�nitely, whereasstrings not in L are accepted with a �nite probability bounded by a small value(Automata with one-sided bounded error). In such cases, the bound is also includedin the notation as L(M;�; bound).

Distributed 2-way finite state quantum automata
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4.2 Multiple-Choice 2qfa-MOb (MC-2qfa-MOb)

4.2.1 Introduction

TheMultiple-Choice-2qfa-MOb (MC-2qfa-MOb) is the quantum computational modelcorresponding to the classical non-deterministic �nite state automata(NFA). ie.,There are choices in the evolution at any stage, and one of the choices can be chosennon-deterministically.
4.2.2 De�nition

A MC-2qfa-MOb is de�ned as a tuple,
M = (Q;�; V;D; q0; Qacc; Qrej ;O)

where Q,�,q0,Qacc and Qrej are as before, the tape alphabet � being de�ned asbefore from � by including left and right end markers f#; $g and O as in 2qfa-MObis the set of observables excluding the primary observable, with the timings of mea-surements for every observable, assumed to be well-de�ned. Now, V = fV�j� 2 �g.Each V� is now, a �nite multiset of unitary operators, unlike the 2qfa-MOb wherein,V� is just a single operator. ie., V� = fV(�;i); i 2 Ng, and V(�;i) : l2(Q)! l2(Q).As usual, D : Q! f�1; 0; 1g and it is understood that transition functions (�s)for the automata are constructed from V and D as in Eqn.1, with any V(�;i) replacingV� in the equation. Any of the transition functions obtained can be used for theevolution of the automaton.At any moment of evolution, if the symbol at the head is �, then one of the op-erators in V� is chosen non-deterministically and is operated on the current internalstate.
4.2.3 Choice of an Operator at an Instant

It should be noted that V� is a multiset since repetition of operators is allowed. Thenumber of times a particular operator recurs in the set a�ects its probability of choicefrom the whole set. Suppose, a particular operator V occurs n times in V�, which is tosay, card(fijV(�;i) = Vg) = n. Then, the probability that V is chosen for evolution inthe next stage is equal to ncard(V�) . (Here, card(X) denotes the cardinality of the setor multiset X). Note that, for any MC-2qfa-MOb M(Q;�; V;D; q0; Qacc; Qrej ;O), anequivalentMC-2qfa-MObM 0(Q;�; V 0; D; q0; Qacc; Qrej ;O) with card(V 0�) = card(V 0�)for all �; � 2 � (ie., all V 0� having the same number of operators) can be constructedtrivially, in the following way:Let N be the L.C.M. (Least common multiple) of all the cardinalities, card(V�).For each � 2 �, �nd replication(�) = Ncard(V�) and construct V 0� from V� by repli-cating each operator V 2 V�, replication(�) times. (If the operator occurs n times,it is replicated n� replication(�) times). Now, card(V 0�) = N , for any � 2 �. Also,this operation leaves the probability of selection of any operator in V� unchanged.This is because, for any V occurring n times in V�, the probability of selection ofV from V 0� is given by n�replication(�)N = ncard(V�) . Hence, the probability remains thesame. So, M 0 is equivalent to M and also has the same number of operators in each

A. Arun Prasath, K. Krithivasan
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V 0(�) .From now on, it is assumed without loss of generality that, any MC-2qfa-MObMhas the same number of operators in each of its V�s, and this number is referred to asthe choice dimensionality (number of possible choices) of M . Also, it is understoodthat when simply written as 2qfa-MOb, it means that, there is no choice for theselection of operators. The language accepted by a MC-2qfa-MOb M is denoted byL(M). In case of automata with one-sided bounded error, the bound is also includedin the notation as L(M; bound).
5 Equivalence of MC-2qfa-MOb and 2qfa-MOb
5.1 Nature of Equivalence
In this section, the MC-2qfa-MOb is shown to be equivalent to the 2qfa-MOb. Anexact equivalence is got in the case when the choice dimensionality (number ofoperators to choose from) is of the form 2n, for some n 2 N. When it is not of sucha form, then an equivalence can be obtained arbitrarily accurately (with boundederror).
5.2 Derivation of the Result
Theorem 5.2.1 Any MC-2qfa-MOb M(Q;�; V;D; q0; Qacc; Qrej ;O) can be reduced

to an equivalent 2qfa-MOb M 0(Q0;�; V 0; D0; q00; Q0acc; Q0rej ;O0) with single choice for

evolution operators.

Proof: M 0 is constructed as follows:Let N be the choice dimensionality of M . Two cases are considered.
5.2.1 Case-I: N is of the form 2n, for some n 2 N - Exact Equivalence

Construction:Consider the set C = f1; 2; � � � ; Ng. The Hilbert space constructed with elementsin C (l2(C)), is denoted by 
. Now Q0 = Q 
 C. ie., Any valid state of M 0 is ofthe form Pq;i a(q;i)jq; ii; q 2 Q; i 2 C;P a2(q;i) = 1. (Here, the a(q;i)'s denote theamplitudes, and jq; ii stands for jqi 
 jii).D0(jq; ii) = D(q) for all q 2 Q; i 2 C.Q0acc = Qacc 
 C.Q0rej = Qrej 
 C.q00 = 1pN PNi=1(jq0; ii).O0 = (O
C)[!, where ! is the observable (Q
j0i)� (Q
j1i)�� � �� (Q
jNi)which is to say that, all the original observables are preserved here by expanding thesubspaces in the decompositions to the whole con�guration space corresponding toQ0, with the addition of a new observable, ! which measures the jii portion of thesuperposition Pq;i a(q;i)jq; ii. The original timing information of the observables inO is still carried over to the corresponding observables in O0. As far as measuring
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! is concerned, a measurement is made after every step in the evolution.Now, let
E(1) = 1p2

� 1 11 �1
�

Construct E(i)s recursively from E(i� 1)s using,
E(i) = 1p2

� (E(i� 1)) (E(i� 1))(E(i� 1)) (�E(i� 1))
�

The E(i) are matrices of order 2i. It is easily seen that, for any i, E(i) is unitary(since E(i) � E(i)T = I2i , where I2i is the identity matrix of order 2i). Also, E(i)has the property that, each element in it is either 1p2i or � 1p2i .Now, the V 0 is constructed from V and E(n) (Note that N = 2n) as follows: Ifthe internal state of the automaton is jq; ii and the symbol on the head is �, thenthe evolution on applying V 0� should be such that,
V 0�(jq; ii) = V(�;i)(jqi)
 E(n)(jii)

The construction is as below when the states and operators are expressed explicitlyin matrix form. Let Q = fq1; q2; � � � ; qsg, s = card(Q). The amplitudes of the thecurrent superimposition of states of the machine can be expressed as a column vectorof the amplitudes a(q;i)s as
(a(q1;1); a(q2;1); � � � ; a(qs;1); a(q1;2); a(q2;2); � � � ; a(qs;N))T :

Now, if

E(n) =
0
BBBBBB@

a11 a12 : : : a1Na21 a22 : : : a2N: : : : : :: : : : : :: : : : : :aN1 aN2 : : : aNN

1
CCCCCCA

then

V 0� =
0
BBBBBB@

(V(�;1))� a11 (V(�;2))� a12 : : : (V(�;N))� a1N(V(�;1))� a21 (V(�;2))� a22 : : : (V(�;N))� a2N: : : : : :: : : : : :: : : : : :(V(�;1))� aN1 (V(�;2))� aN2 : : : (V(�;N))� aNN

1
CCCCCCA

The construction of V 0(�) is very similar to that of a tensor product and it can beeasily veri�ed that V 0� is unitary using the fact that, all V�s and E(n) are unitary.Proof of equivalence:The proof rests on the fact that, the jii component of the internal state jq; ii forM 0 simulates the operation of V(�;i) on the current state jqi on M , when the symbol
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read by the head is �. Consider any intermediate step in the evolution of M . Letthe symbol read on one of the paths at instant t� 1 be � and the state be q. Now,one of the matrices in V� is chosen non-deterministically. Without loss of generality,we assume that, V(�;j) was chosen. Now, the new state of the machine becomesV(�;j)(jqi) = jvi (say), the head moves in the direction D(jvi) and all observablesthat can be measured at that instant, as per the timing speci�cation in O can bemeasured. If the primary observable is measured, then the halting/non-halting andacceptance/rejection decisions are made. The time now becomes t. If not halted, theevolution proceeds in the same manner for time instant t.The same situation translates into the construction and functionality of M 0 asfollows. At time t � 1, the symbol read on the path is � and the state of theautomaton is
r(t� 1) = 1pN PNi=1(jq; ii):

The form above corresponds to the state jqi of M , as will be evident, once theevolution is understood. Now, a measurement of ! is done. This collapses stater(t � 1) to the state jq; ji with the same probability 1N as in the case of M . Now,V 0� is applied on the state jq; ji to give
V 0�(jq; ji) = V(�;j)(jqi)
 E(n)(jji) = jvi 
PNi=1(jii)

which takes the machine to the state
r(t) = 1pN PNi=1(jv; ii)

which corresponds to the state jvi of M in the same way as before. This consistentcorrespondence of the states of M 0 to those of M is because, E(n) is such that,for any k 2 C and correspondingly jki 2 
, E(n)(jki) = 1pN PNi=1(jii). The headmoves in the direction D0(jv; ii) = D(jvi) for any i. The measurements mentionedabove are made with respect to corresponding observables in M 0 and as seen, theprimary observable of M 0 is de�ned consistently in terms of Q0acc and Q0rej . Also,the initial state q00 is such that a measurement of ! initially would set the stateto jq0; ji for some j. Thus, M 0 exactly simulates the behaviour of M , and hencethe languages accepted by them are exactly equivalent (the exactness here, also,includes acceptance with one-sided bounded error, since the probabilities of thechoice of operators have been taken care of, accurately).
5.2.2 Case-II: N is NOT of the form 2n, for any n 2 N - Equivalence with

bounded error

Construction:The equivalence in the previous case was proved when N is of the form 2n.The matrices E(i) de�ned above have order 2i. Matrices with similar properties(unitarity and equal distribution of amplitudes), but orders not of the form 2i can-not be constructed. Hence, when the choice dimensionality is not of the form 2n,equivalence cannot be proved in exactly the same way before. Here, equivalence
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is proved allowing small violations in the probability of choice of operators. Suchviolations in anyway do not a�ect the class of languages, accepted by automata withcertainty. Only the probability of acceptance or rejection, in the case of automatawith bounded error, is a�ected. This deviation can be made arbitrarily small, asshall be shown below. In this way, M 0 can simulate M as accurately as possible.The construction is done by choosing a large number N 0 = 2m, for some m 2 N,such that N 0 > N . Let f be the quotient and g the remainder when N 0 is dividedby N . For each � 2 �, replicate V(�;i), for every i, f times. Then, reinclude the�rst g operators, fV(�;i)j1 � i � gg. Let the set of operators now be denoted V "�.Consider the automata M" = (Q;�; V "; D; qo; Qacc; Qrej ;O). The number of oper-ators in each of V "� is now 2m. Then, the construction is done exactly as in Case-Iand the automata M 0 is got. Now, it is clear that, M 0 accepts the same class oflanguages accepted by M , and only in the case of languages accepted with �niteone-side bounded error, the probabilities of acceptance or rejection might slightlydi�er.The probability of choosing the ith operator, V(�;i) from V� at any moment is 1N ,whereas the probability of choosing the same operator from V " is equal to eitherfN 0 or f+1N 0 . As shown below, the di�erence in the two probabilities can be madearbitrarily small, by appropriately choosing N 0, and hence, M" (and hence M 0) canbe made to simulate M arbitrarily accurately.Choice of N':Suppose the bound that we impose on the di�erence in the probabilities is ". ie.,
f+1N 0 � 1N < ":

To achieve this bound, N 0 is chosen as follows. Find numbers m and �, with � � "such that, 12m > � > (N�1N ) 12mm and � can be found for any given �, since it is always possible to choose as highan m as possible (corresponding to lower and lower � values). Now, N 0 = 2m. Thischoice of m and � gives
1� > 2m(= N 0) > (N�1N ) 1� ) N �NN 0� < 1:

Since the remainder g is non-zero (at least one), we have
1 � N 0 �Nf < N

) N 0 �Nf > N �NN 0�
) N(f + 1) < N 0(1 +N�)

which reduces to, f+1N 0 � 1N < � � ":
In an exactly similar way, the choice of N 0 for the bound,

1N � fN 0 < "
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can be done. In order for both the bounds to hold good, we choose the bound cor-responding to the lesser of the two di�erences, and choose N 0 based on that.The bound on the probability di�erence translates directly to the bound on thedi�erence in the probabilities of one-sided rejection. Hence, if the choice dimension-ality is not of the form 2n, an equivalence with bounded error can be obtained.
5.3 Result
Thus, the MC-2qfa-MOb are reducible to the 2qfa-MOb, exactly when the choicedimensionality is of the form 2n and arbitrarily closely otherwise. ie., for every MC-2qfa-MOb M , there exists a 2qfa-MOb M 0 such that, L(M) = L(M 0). If M hasacceptance with bounded error (bound "), then a 2qfa-MOb M" can be constructedsuch that, L(M; ") = L(M"; #), such that, j"� #j < &, for any arbitrarily small &.
6 Equivalence of D-2qfa-MOb and MC-2qfa-MOb
6.1 Theorem:
For any D-2qfa-MOb M , there exists a MC-2qfa-MOb M 0, such that, L(M;�) =L(M 0), for any � 2 f�;= k;� k;� kg. In the case of M being a D-2qfa-MObwith one-sided bounded error " for acceptance, then, a MC-2qfa-MOb M 0 can beconstructed such that, L(M;�; ") = L(M 0; ")
6.1.1 Proof:

The result is proved by reducing a D-2qfa-MOb M to a MC-2qfa-MOb M 0, for eachmode of transition, as below:Case-I: � = �Let M = (Q;�; V 1; V 2; � � � ; V m; D; q0; Qacc; Qrej ;O). The equivalent MC-2qfa-MOb is constructed as follows. M 0 = (Q0;�; V 0; D0; q00; Q0acc; Q0rej ;O0).Let C = f1; 2; � � � ;mg. Let H = l2(C) denote the Hilbert space constructed usingthe elements of C as basis. Also, let s = card(Q).Q0 = Q 
 H. ie., Q0 can be represented as f[q; i]j1 � i � m; q 2 Qg. Theamplitudes of the current superimposition of states of the machine can be expressedas a column vector of amplitudes,(a1q1 ; a1q2 ; � � � ; a1qs ; a2q1 ; � � � ; amqs)T , where Q = fqij1 � i � sg and aiqj is the amplitudecorresponding to the internal state qj 2 Q, when the machine is in componenti. Since the machine can be in only one of the components at any instant, theamplitudes corresponding to all other components are zeroes.D0([q; i]) = D(q), for all q 2 Q and i 2 C.q00 = [q0; 1].Q0acc = f[q; i]jq 2 Qacc; i 2 Cg.Q0rej = f[q; i]jq 2 Qrej ; i 2 Cg.O0 is obtained as follows. For an observable (decomposition) O 2 O with O =S1�S2�� � ��Sl, for some l, then an observable O0 = (S1
H)�(S2
H)�� � ��(Sl
H)is included in O0, with the same timing speci�cations as that of O.
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To construct V 0, the various possible transitions among the components of Vare represented as permutations over the set C . A permutation over C is a one-onemapping P : C ! C. It can be conveniently represented as am-tuple (P (1); P (2); � � � ;P (m)). For any given mode of transition inM , there are many allowed permutations.Let Pal denote the set of all allowed permutations over C for the mode of transitionde�ned inM . As shown below, each allowed permutation corresponds to a choice inthe operators in V 0. When the machine is in component i, the head reads symbol �and the permutation (m-tuple) P = (P (1); P (2); � � � ; P (m)) is chosen, the followingis done.
� The operator V i� is used to transform the current internal state of the machine.This is achieved through the function matrices described below.
� The machine then transits to the component P (i) in the next step. This isachieved through the transition matrices described below.

Let P = (P (1); P (2); � � � ; P (m)) be an allowed permutation over C, for the mode oftransition in M . P induces a transition matrix T (P) which speci�es the transforma-tion of the state in M 0 corresponding to the change of component in M . Also, foreach � 2 �, there is a function matrix F (�) which speci�es the evolution of the statein M 0, when the symbol read is �. F (�) is essentially derived from the V s of thevarious components in M ..To understand the construction of these matrices, it is helpful to think of themas m�m grids of cells, with matrices of order s� s in each cell. Let I(s) and O(s)denote identity and zero matrices of order s � s respectively. The grid cell at thekth row and lth column is denoted by C(k; l).Now, F (�) is de�ned as the matrix of cells CF (k; l); 1 � k; l � given below.
CF (k; l) = � O(s) k 6= lV k� k = l

T (P) is de�ned as the matrix of cells CT (k; l); 1 � k; l � given below.
CT (k; l) = � I(s) P (l) = kO(s) otherwise

For instance, the construction of the matrices are shown for the case m = 4, s = 2and P = (4; 1; 3; 2) (Take component 1 to component 4, component 2 to component1, etc...) is shown below.
F (�) =

0
BB@

(V 1� ) (O(2)) (O(2)) (O(2))(O(2)) (V 2� ) (O(2)) (O(2))(O(2)) (O(2)) (V 3� ) (O(2))(O(2)) (O(2)) (O(2)) (V 4� )

1
CCA

T (P) =
0
BB@

(O(2)) (I(2)) (O(2)) (O(2))(O(2)) (O(2)) (O(2)) (I(2))(O(2)) (O(2)) (I(2)) (O(2))(I(2)) (O(2)) (O(2)) (O(2))

1
CCA
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ie.,

T (P) =

0
BBBBBBBBBB@

� 0 00 0
� � 1 00 1

� � 0 00 0
� � 0 00 0

�
� 0 00 0

� � 0 00 0
� � 0 00 0

� � 1 00 1
�

� 0 00 0
� � 0 00 0

� � 1 00 1
� � 0 00 0

�
� 1 00 1

� � 0 00 0
� � 0 00 0

� � 0 00 0
�

1
CCCCCCCCCCA

T (P) =

0
BBBBBBBBBB@

0 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 10 0 0 0 1 0 0 00 0 0 0 0 1 0 01 0 0 0 0 0 0 00 1 0 0 0 0 0 0

1
CCCCCCCCCCA

since I(2) = � 1 00 1
� and O(2) = � 0 00 0

�
Now suppose the machineM was in component 2 in state (a1; a2)T , where a1; a2 arethe probability amplitudes corresponding to states q1; q2, the only states inQ and thecurrent symbol read is �. Then the state of the machine M 0 is the column vector� = (0; 0; a1; a2; 0; 0; 0; 0)T . Now, the choice of the permutation P = (4; 1; 3; 2)would mean that, the component should change to 1 after the application of V 2� .This is essentially accomplished by the operation T (P)� (F (�)��). Suppose V 2� �(a1; a2)T = (b1; b2), then the above operation (T � F � �) would result in the state� = (b1; b2; 0; 0; 0; 0; 0; 0)T in consistence with the description of the correspondenceof states in M 0 to states in M .Since V i� is unitary for all i, F (�) is also unitary (F (�)F T (�) = I). Also, itis evident that, the transition matrices are unitary too (since there is exactly one 1in each row (column) with the rest being zeroes, the rows (columns) are linearlyindependent). Now,

V 0� = fT (P)� F (�) j P 2 Palg
Thus, M 0 simulates the function of M , provided the allowed permutations in M 0clearly reect the mode of transition of M . In the "*-mode" of transition, sincea transition from the current component i to some component j can occur at anyinstant, Pal includes all permutations over C. ie., all permutations are valid, sinceany permutation speci�es a valid transition between components for M . Hence,when V 0 is constructed as above, using the permutations in Pal, M 0 simulates Mexactly. Since the event of choosing any of the matrices from V 0� is equally likely, all
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permutations are equally likely, which means that, the probability of switching fromthe current component i to a component j is the same as that of switching to anyother component k (There are equal number of permutations that take componenti to component j, as there are for transitions from i to k). Also, it is easy to seethat, acceptance in M 0 is de�ned in exact correspondence to observables in M , andthe initial state is de�ned consistently.Thus, M 0 is exactly equivalent in behaviour to M , and henceL(M; " � �mode") = L(M 0).Case-II: � = " = k"The proof for the "=k mode" is very similar to that of the "*-mode". Thederivation is looked in the following way. The system M , is looked upon as anequivalent systemM" = (Q;�; V 11; V 12; � � � ; V 1k; V 21; � � � ; V mk; D; q0; Qacc; Qrej ;O), where for all i,V ik of M" is a component created by an exact replication of V i of M , and now, thetransitions are to be forced between components 11 and 12, etc... whereas, there isa choice in transition between ik and j1, for any i; j 2 C. This is accomplished byconstructing the MC-2qfa-MOb M 0 in the same way as before, except for a changein Pal. All permutations are not allowed, since as said above, some transitionsare to be forced. Hence, only permutations that translate ij to i(j + 1), if j < kand to m1 otherwise, are allowed. The transition matrices corresponding to thesepermutations are constructed and V 0� are constructed as before, by premultiplyingthe function matrix with these matrices. Then, M 0 simulates M exactly, and hence,L(M; " = k �mode") = L(M 0).Cases-III and IV: � = " � k"j" � k"The proof for these cases is exactly similar to that of the previous cases. Thekey to the proof lies in the fact that, the mode of transition in M can be exactlysimulated in M 0 by appropriately de�ning Pal by identifying the permutations thatspecify valid transitions of components for M .
6.2 Result
Hence, any D-2qfa-MOb is exactly reducible to a MC-2qfa-MOb, for any of its modesof acceptance. Combining this result with the equivalence of MC-2qfa-MOb and2qfa-MOb, the following result is also true. For any D-2qfa-MOb M , there existsa 2qfa-MOb M 0, such that, L(M;�) = L(M 0), for any � 2 f�;= k;� k;� kg. Inthe case of M being a D-2qfa-MOb with one-sided bounded error " for acceptance,then, a 2qfa-MOb M 0 can be constructed with, L(M;�; ") = L(M 0; #) such that,j"� #j < &, for any arbitrarily small &.
7 D-1qfa-MOb
In a way exactly similar to 2-qfa, distributed and multiple choice 1-qfa can also bede�ned. The corresponding results also hold good here, once multiple observablesare allowed. Thus, both D-1qfa-MOb and MC-1qfa-MOb are equivalent in power tothe 1qfa-MOb with single choice, and acceptance with certainty, whereas, in the case
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of automata with bounded error, D-1qfa-MOb and MC-1qfa-MOb can simulate thebehaviour of 1qfa-MOb arbitrarily closely.
8 Conclusion
Thus, in this work, �rst, quantum automata were generalized to include multipleobservables. Then, distribution was attempted. Multiple Choice quantum automataand Distributed quantum automata were considered, in lines with classical NFA anddistributed �nite state automata, and it is found that, the power of these automataare the same as that of the simple quantum automata with multiple observables andsingle choice. But the question as to whether allowing multiple observables resultsin increase in power (whether the 2qfa-MOb are more powerful than 2qfa) has notbeen answered in this work.
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Abstract
An application of membrane systems to natural languages study is pre-sented. Speci�cally, we show how semantic change can be explained by usinga new variant of membrane systems: Dynamic Meaning Membrane Systems(DMMS). By using DMMS, we explain the three basic types of changes in mean-ing -this is, broadening, narrowing and shift. Finally, we relate the membranesystems' application to language evolution with the suggested application of theso-called cultural grammar systems to the same topic. Collaboration betweenthe two frameworks may provide a useful formalism that, due to its naturalnessand simplicity, might o�er interesting results in a discipline traditionally faraway from any formalization.

1 Introduction
An application of membrane systems to natural languages study is presented. Specif-ically, in this paper, we show how semantic change can be explained by using a newvariant of membrane systems. An initial application of membrane systems to linguis-tics was introduced in [2]. The most important intuition for translating this naturalcomputing model to natural languages is that membranes can be understood as con-texts. Contexts may be di�erent words, persons, social groups, historical periods,languages. They can accept, reject, or produce changes in elements they have inside.�This research has been supported by a Marie Curie Fellowship of the European Communityprogramme Human Potential (IHP) under contract number HPMF-CT-2002-01582 and by a MarieCurie European Reintegration Grant (ERG).

Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varjú and Gy. Vaszil,
MTA SZTAKI, Budapest, pages 30 - 49, 2004.
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At the same time, contexts/membranes and their rules evolve, that is, change, ap-pear, vanish, etc. All these features make of membrane systems an attractive modelto deal with natural language.If there is something obvious is that languages change. Languages are continu-ously in ux. Changes in languages will occur in all realms of linguistic organization:the pronunciation, the sound system, the morphology, the lexicon, the semantics,the syntax. A language can change so much as to become a di�erent language orevolve into several di�erent languages. Related languages, which belong to the samegroup or family, were once the same language. This is, they are derived, due tothe operation of `linguistic change' over long periods of time, from a single, earlierancestor language. Taking into account that every dimension of language evolves,it is necessary to study language change at di�erent levels. In this paper we willconcentrate only on semantic change. It has been said that semantics is most easilyand radically a�ected by change than phonology, morphology and syntax. Para-doxically, even though being the dimension of language that changes most easily,semantic evolution is the area of historical linguistics that is least well understood.However, in the literature of diachronic linguistics, taxonomies of semantic changecan be found as well as generalities about the mechanics of meaning evolution. Fora general introduction to historical linguistics, see [11, 6, 15, 14, 8, 17, 1].In this paper we will try to approach semantic change in a completely newway. We will provide a membrane system model to explain semantic change andwe will suggest the possibility of combining this framework with an already de�nedvariant of eco-grammar systems, the so-called cultural grammar systems ([9], [10]).Collaboration between the two frameworks may provide a useful formalism that,due to its naturalness and simplicity, might o�er interesting results in a disciplinetraditionally far away from any formalization.In what follows, we �rst introduce Linguistic Membrane Systems (LMS) as ageneral framework that can be used to model in terms of membrane systems di�erentlinguistic issues. By modifying some de�nitions of LMS we obtain Dynamic MeaningMembrane Systems (DMMS), a dynamic model for semantics that can be used in theexplanation of semantic change in natural language. By using DMMS, we explain thethree basic types of changes in meaning -this is, broadening, narrowing and shift.We conclude the paper by briey relating the membrane systems' application tolanguage evolution with the suggested application of the so-called cultural grammarsystems to the same topic (cf. [9, 10]).
2 Linguistic Membrane Systems
As generative devices for formal languages, membrane systems do not take intoaccount the problem of meaning in their output. In the initial formalization, mem-branes are aseptic contexts, this is, contexts which do not have anything to do withthe derivation carried out in the system. However, in linguistics contexts matter.Therefore, if membrane systems have to be applied to linguistics, the �rst requiredadaptation is to make them able to deal with meaning. Thus, we need to introduceseveral new notions in order to de�ne Linguistic Membrane Systems (LMS). One of
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the �rst notions we need is the notion of the domain of a membrane. The domain isto be understood as the set of words, statements, ideas and elements a membrane isable to work with in a given state of the computation. The domain is an active con-text. During computation a membrane receives some elements which are acceptedby its domain and some which are not. We have to explain what to do with elementsthat are not part of the con�guration of the membrane. Another interesting featureis the fact of working with several alphabets, this can be used as a tool for explainingadaptation of a linguistic element from a context to another one. In what followswe will de�ne one by one all those useful concepts for the application of membranesystems to linguistics:
� Alphabets: A LMS has one or more alphabets, which can change or evolveduring the computation. Each alphabet evolves independently.
� Domains: The domain D of a membrane is the de�nition of the symbolsit accepts. Domains are related to one or more alphabets (for example, thedomain DMn can be the union of two alphabets, Vm [ Vj). The domain ofthe skin membrane1 is the union of the domains of its internal membranes.Several membranes of the same system can have the same domain.
� Adaptation of elements which are not in the domain:

{ Function of transposition. The function h, called function of transposi-tion, establishes a correspondence between symbols placed in di�erentmembranes. For instance, the function h(Mn $Mm) establishes the cor-respondence between symbols belonging to the membrane Mn and sym-bols belonging to the membrane Mm. The rules of this function have thefollowing form: h(Mn $ Mm) = fainMn $ �inMm ; : : : ; binMn $ �inMmg.They are called rules of transposition. Sometimes, transposition ruleshave the symbol \!" instead of \$". They are non-returning transpo-sition rules.{ Non-adapted symbols. The subscript i attached to an element in a mem-brane means that this element is not accepted by the domain of themembrane which it belongs to. If a is not included in the domain ofMm and the rule h(Mn $ Mm) = ainMn $ �inMm does not exist, thenainMm = ai. Elements marked with i are not taken into account as outputof the membrane system when computation stops.
One of the most interesting points of the theoretical formalization of membranesystems is the concept of evolution: the system evolves. Notice that this is a veryimportant feature in order to ful�ll our goal because natural languages {as membranesystems{ are constantly evolving. However, we need to construct systems able tochange in any con�guration and this is the case of LMS where not only membranesevolve, but alphabets, domains and rules evolve as well, as shown in what follows:1In a membrane structure {understood as a hierarchical arrangement of membranes{ the skinmembrane is the one that separates the system from its environment.
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� Evolution of alphabets:
1. Addition of some symbols: for example, for V1 = f1; 2; 3g, the ruleADD f4g TO V1 increases the alphabet so as V1 = f1; 2; 3; 4g.2. Deletion of some symbols: for example, for V1 = f1; 2; 3g, the ruleDEL f3g FROM V1 decreases the alphabet so as V1 = f1; 2g.

� Processes for the evolution of domains, which are called variable domains:
1. Addition of new symbols to the alphabets belonging to the domain. Forexample, for V1 = f1; 2; 3g and DMn = V1, the rule ADD f4g TO V1increases the domain.2. Deletion of some symbols from the alphabets belonging to the domain.For example, for V1 = f1; 2; 3g andDMn = V1, the ruleDEL f3g FROM V1decreases the domain.3. Addition of new alphabets to the domain. For example, for V1 = f1; 2; 3g,V2 = fa; b; cg and DMn = V1, the rule ADD V2 TO DMn has as a resultDMn = V1 [ V2.4. Deletion of some alphabets from the domain. DEL V1 FROM DMn ,applied to DMn = V1 [ V2, has as a result DMn = V2.

3 Dynamic Meaning Membrane Systems
3.1 Some Semantic De�nitions
Croft points out in [5] that it is possible to give two di�erent de�nitions of meaning,based on \the distinction between a language as a population of utterances producedby a speech community, and a grammar as an individual speakers knowledge aboutthe conventions of the speech community". Such de�nitions are the following:

� The community's meaning of a linguistic form -a lingueme- is the lineageof replication of its use, in their full encyclopedic, contextual value.
� The individual's meaning of a lingueme is a mental structure that emergesfrom the individual's exposure to (necessarily partial) lineages of the com-munity's meaning, including of course the use of the lingueme by that sameindividual.

In order to adapt semantic de�nitions to Dynamic Meaning Membrane Systems(DMMS) we take the notion of lingueme referred to in the above de�nitions. Linguemeis a linguistic unit, an utterance. No matter if it is a word, a sentence or a discourse.A lingueme, in the �rst state, has no meaning. From the concept of lingueme weinfer another concept, semanteme, which is a semantic unit. The process of mean-ing assignment is given by the application of a semanteme to a lingueme. Suchapplication is called convention.Since linguemes and semantemes will be two notions that we will use in thede�nition of DMMS, we have to de�ne the following two alphabets:
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� V = fa; ::; zg, the set of linguemes.
� � = f�; ::; !g, the set of semantemes.

And �nally, we formally de�ne the concepts of individual meaning and community'smeaning as follows:
� The individual's meaning, I, of an utterance is an application of the functionF (� ! V ), this is the application of a semanteme to a lingueme. The indi-vidual's meaning of a lingueme a in membrane Mm, I(a)Mm is given by thefunction F (� a! V )Mm.
� The community's meaning, K, of an utterance is the composition of individualmeanings in each step of the computation of a system. In each step, commu-nity's meaning of an utterance a is K(a) = Smi+1 I(a)Mi.

3.2 De�ning DMMS
De�nitions of membrane systems can be found in [12] and [13]. We will modify nowsome de�nitions of LMS {introduced in section 2{ in order to obtain a DMMS:
Statement 1 In DMMS every membrane is an output membrane, except the skinmembrane.
Statement 2 Semantic domain D of a membrane M1 is a set over � associated tothe membrane in every state of the computation. It is the set of semantemes thismembrane accepts.
Statement 3 Linguistic domain E of a membrane M1 is a set over V associatedto the membrane in every state of the computation. It is the set of linguemes thismembrane accepts.
Statement 4 A membrane Mn, in a DMMS, is de�ned in each state by means oftwo items: a) its semantic domain, D, and b) its linguistic domain, E. Thus, Mn= (DMn; EMn).
Statement 5 The function h applied to a membrane Mn establishes a correspon-dence between elements of E and D associated to this membrane. For instance, thefunction h(DMn ! EMn) establishes the correspondence between semantemes andlinguemes belonging to the membrane Mn. The rules of this function, called trans-position rules, have the following form: hMn(D ! E) = f� ! a; : : : ; � ! mg.Non-injective functions are allowed.
Statement 6 The subscript i attached to an element in a membrane Mn meansthat there is not a transposition rule for this element in h(Mn). When computation�nishes, every lingueme will be converted in the corresponding semanteme, followingtransposition rules. Elements marked with i are not taken into account as output ofthe membrane system when computation stops, this is, they disappear.
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Statement 7 For a given skin membrane Ms, DMs is S(DMa; ::;DMn)8 Ma; ::;Mn 2 �
Domains associated to each membrane can evolve. If they do it, they are calledvariable domains. The processes for changing domains are the following four:

1. New semantemes are added to the domain.For example, for DMn = f�; �g, the rule ADD fg TO DMn increases thedomain, being DMn = f�; �; g.
2. Some semantemes are deleted from the domain.For example, for DMn = f�; �; g, the rule DEL f�g FROM DMn decreasesthe domain, being DMn = f�; g. When a semanteme is deleted for a domain,any rule containing it disappears.
3. New linguemes are added to the domain.For example, for EMn = fa; bg, the rule ADD fcg TO EMn increases thedomain, being EMn = fa; b; cg.
4. Some linguemes are deleted from the domain.For example, for EMn = fa; b; cg, the rule DEL fbg FROM EMn decreasesthe domain, being EMn = fa; cg. When a lingueme is deleted for a domain,any rule containing it disappears.

Now, starting by the con�guration given in Figure 1, we de�ne some rules withmembranes:
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Figure 1: Basic Con�guration.
1. Deletion is the operation by means of which a membraneMn is dissolved andits elements go to the immediately external membrane. These elements willbe accepted or rejected according to the de�nition of the new membrane. Therule for deleting membrane Mn is written as �Mn.

Example 1 Let � be a membrane system with three membranes, [1 [2 ]2 [3 ]3 ]1,where V1 = fa; b; c; dg, V2 = f�; �g, DM2 = V1, DM3 = V2, DM1 = DM2 [DM3.
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Figure 2: Deletion.
Assume that after some evolution steps the con�guration reached is as shownin Figure 1. In this moment, the rule �M3 is applied, with the result shown inFigure 2.

2. Expansion is the operation by means of which a membrane Mn can be ex-panded to other adjacent or external membranes using the rule  Mn TOMm;Mk. That means that membranes Mm and Mk are dissolved in Mn andtheir elements must be reformulated following the de�nition of Mn.
Example 2 By applying the rule  M3 TO M2 to the system in the previousexample, we obtain the situation in Figure 3.
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Figure 3: Expansion.

3. Absorption is the operation by means of which a membrane Mn disappearsdissolved in another adjacent or external membrane Mm. Its elements mustbe reformulated according to the de�nition of Mm. The rule is �Mn IN m.
Example 3 If we apply �M3 IN M2 to �, the result is the system in Figure4.
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Figure 4: Absorption.
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4. Erasing is the operation by means of which, given a membrane Mn, it cancompletely disappear with all its elements. The rule is �Mn.
Example 4 If we apply �M3 to �, the result is the system in Figure 5.
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Figure 5: Erasing.
5. Fusion is the operation by means of which, given two membranes Mn, Mm,they joint creatingMz in such a way that DMz = DMn[DMm, Ez = En[Em.The rule is Mm�Mn.

Example 5 If we apply M2�M3 to �, the result is the system in Figure 6.
'

&

$

%
�
�

�
�

1
4a b c � � � a b b � �

Figure 6: Fusion.
Above we have introduced rules that can be applied to membranes. Now, we referto possible relations among membranes. Given two membranesM1, M2, we callthe relation between them:

� Nesting, when one is inside the other. It is denoted by M1 �M2.
� Sibling, when they are adjacent or they are inside adjacent membranes andthey have the same depth. It is denoted by M1 �M2.
� Command, they are not nested and they do not have the same depth. It isdenoted by M1 ^M2.

Membranes in a system are related by what we call communication channels. Thisis, they can be communicated among them or not. There are three states of com-munication:
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� Connexion: Two membranes are connected when the communication channelbetween them is open. It is denoted by �. A membrane is connected when ithas the relation of connexion with every membrane in the system. A systemis called supra-connected when every communication channel is open.
� Isolation: Two membranes are isolated when the communication channelbetween them is closed. It is denoted by �. A membrane is isolated whenthe communication with every membrane in the system is closed. A system iscalled supra-isolated when every communication channel is closed.
� Inhibition: Two membranes are related by inhibition when the communica-tion between them is closed and it cannot be opened. It is denoted by 
. Amembrane is inhibited when every communication channel is closed to it, andit cannot be opened. A system is supra-inhibited when every membrane in itis inhibited. An inhibited system cannot work. It is not a system.

There are some properties of connexion which can be established depending on therelation between membranes:
� Two nested membranes are connected by de�nition.
� If a membrane is connected to a sibling membrane, then it is connected to anymembrane nested to it.
� If a membrane is isolated with respect to a sibling membrane, then it is isolatedfrom any membrane nested to it.
� If a membrane M1 is connected to a membrane M2, and M2 is connectedto M3, then there is a way of communication between M1 and M3, even ifM1 �M3.

During the process of computation some speci�c rules can break the initial relationamong membranes described above.
Example 6 We have a membrane system with the following structure:

� = [S [1 [2 ]2 ]1 [3 ]3[4 ]4 ]S ;where:
� M2 �M1,� M1 �M3,� M1 �M4,� M3 �M4.

This system is represented as shown in Figure 7.
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Figure 7: Example.
4 Explaining Semantic Change with DMMS
4.1 Generalities about Semantic Change
Language change can, and should, be studied at di�erent levels. Even though nocomponent of natural language is totally immune to change, they show a distinctlevel of susceptibility to change. In general, it has been said that semantics is mosteasily and radically a�ected by change than phonology, morphology and syntax, inthat speci�c order. This is, it seems that there is less resistance to change in thesemantics that in other areas of the grammar, so that meaning changes relativelyquickly and easily.According to [15], semantic change is so ubiquitous that hardly a word in thedictionary lacks earlier meanings more or less di�erent from the present-day sense(s).However, semantic change seems to be the area of diachronic linguistics that is leastwell understood, perhaps because semantics has for a long time been the weakpoint in synchronic language study. In contrast with this, phonological change hasbeen fairly intensively studied in the world's languages and grammatical change,even being less well studied than phonology, it is an area that is receiving a lotof attention from linguists at the present. Anyway, it is not di�cult to �nd inthe historical linguistics literature lots of observations about the kinds of semanticchanges that take place in natural languages as well as about the aspects of languagethat allow semantic change to occur. It is precisely on these aspects in which wewill concentrate on in this section. For more information about semantic change see[11, 6, 15, 1].There seem to be di�erent aspects of language in general, and meaning in par-ticular, which allow semantic change to occur. Two of this aspects are the following(cfr. [11]):

1. Polysemy: words are typically polysemic each has various meanings or coversa whole range of shades of meaning. This exibility is necessary since wordsare used in a wide variety of contexts by many di�erent speakers, who mayvary in the meaning they wish to convey. Words can lose or gain meanings
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relatively easily due to this elasticity, and they do not have to lose an earliersense to gain a new one.
2. Arbitrariness of the linguistic sign: they sign is bipartite, made up of a signi�erand a signi�ed. These two components are arbitrarily linked. Arbitrarinessallows us to regard the signi�er and the signi�ed as essentially independent,either may therefore change with time.

Following [6], we can establish the following taxonomy of semantic evolution thatconsiders three basic types of changes in meaning. Notice that the classi�cationbelow refers to the evolution of meaning (signi�er). However, according to thearbitrariness of the linguistic sign we have said that signi�er and signi�ed are in-dependent and they may change also independently. Later we will briey considerpossible changes in the signi�er, but now we are only interested on the followingtypology of semantic change, this is changes that a�ect the signi�ed of a word:
� Broadening, extension or generalization. The term broadening is usedto refer to a change in meaning that results in a word acquiring additionalmeanings to those that it originally had, while still retaining those originalmeanings as part of the new meaning. So, it refers to the increase of thenumber of contexts in which a word can be used, paradoxically reducing theamount of information conveyed about each one.
� Narrowing, restriction or specialization. Semantic narrowing is the ex-act opposite of the previous kind of change. We say that narrowing takesplace when a word comes to refer to only part of the original meaning. Therestriction of meaning paradoxically involves an increase in the informationconveyed, since a restricted form is applicable to fewer situations, but tellsmore about each one.
� Shift occurs when a word completely loses its original meaning and acquiresa new meaning. Words obviously do not jump randomly from one meaning toanother when they undergo semantic shift. They may shift in smaller steps.But, as some original meanings are lost, the points of connection betweenintermediate semantic stages may also be lost.

The taxonomy we have just presented is the most general (and maybe useful) oneabout semantic change. In the literature, we can �nd di�erent subtypes of eachof the above three main categories of meaning changes. For example, subtypesof generalization are metonymy, metaphorical extension and radiation. A subtypeof narrowing can be the so-called contextual specialization. And �nally, subtypesof shift can be the phenomena referred to as melioration, pejoration and semanticreversal, etc. Since what we want to o�er is a general formal framework for semanticchange, we will concentrate in what follows just in the general taxonomy of meaningevolution, this is in the main three types of change: generalization, narrowing andshift.
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4.2 Semantic Change from DMMS
Let us consider the above classi�cation of semantic change and look at DMMSfeatures introduced in section 3. Dynamic meaning membrane systems o�er twopowerful mechanisms that allow us to provide a membrane's explanation of thethree above types of semantic change. These two mechanisms are what we havecalled variable domains and transposition rules.The �rst type of semantic change we have referred to is the so-called broaden-ing, extension or generalization. We have said that it consists on a change inmeaning that results in a word acquiring additional meanings to those that it origi-nally had, while still retaining those original meanings as part of the new meaning.This can be easily explained in DMMS by postulating the addition of new seman-temes to the semantic domain of a membrane without adding any new lingueme.Notice that if we add new semantemes, they should be related, via h(Mn), to exist-ing linguemes. If it is the case that such linguemes, to which we associate the newsemantemes, already exist in the membrane and they are already related to di�erentsemantemes, what we obtain is the extension of meaning. So, by postulating theaddition of semantemes to a membrane domain we account for the gain of meaningof a word.Formally, in DMMS, broadening is explained as follows: Given a semantic do-mainDMn = f�; �g and a linguistic domain EMn = fa; bg, applyADD fgTO DMn.The result of this rule is the increasing of the semantic domain ofMn that changes toDMn = f�; �; g. Now, if the linguistic domain EMn does not su�er any modi�ca-tion, we will have to relate the added semanteme  to an already existing lingueme,changing in this way transposition rules. The function h(DMn ! EMn) establishesthe correspondence between semantemes and linguemes belonging to the membraneMn. If in the �rst state of computation hMn(D ! E) = f� ! a; � ! bg, nowbecause of the application of ADD fg TO DMn, we should modify the function:hMn(D ! E) = f�! a;  ! a; � ! bg. See Figure 8.
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Figure 8: Broadening, Extension, Generalization.
From here, membranes easily explain examples in real life. Let us consider thefollowing two examples:

1. The modern English dog derives from the earlier form dogge, which was orig-inally a particularly powerful `breed of dog' that originated in England. Thisin DMMS is explained as shown in Figure 9.
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Figure 9: Example of Broadening: dog.
2. Let us consider the Latin word muliere whose meaning was `woman'. TheSpanish evolution of that Latin word {mujer{ has acquired an additional mean-ing to the one that it originally had: mujer < muliere means both `woman'and `wife', thus we can say that an extension of meaning has taken place. Thisis easily explained by using the DMMS framework as shown in Figure 10.
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Figure 10: Example of Broadening: muliere.
Narrowing, restriction or specialization is the second type of semantic changewe have identi�ed in the taxonomy introduced in the above section. Semantic nar-rowing is the exact opposite of the previous kind of change. Here a word comesto refer to only part of its original meaning. In order to account for restriction ofmeaning in terms of DMMS, what we do is to delete semantemes from the domainof a membrane. Notice that using this process we can easily account for the loss ofmeaning of a word. If a lingueme is related to several semantemes and we deleteone of those semantemes from the semantic domain of the membrane, we lose onemeaning of this word. So, as it could not be otherwise, deletion of semantemesaccount for restriction of meaning.Formally, in DMMS, narrowing is explained as follows: Given a semantic do-main DMn = f�; �; g and a linguistic domain EMn = fa; bg, we apply the ruleDEL fg FROM DMn. The result of this rule is the deletion of a semanteme fromthe semantic domain of Mn that changes to DMn = f�; �g. When a semanteme isdeleted from a domain, any rule containing it disappears. So, if in the �rst stateof computation the function hMn(D ! E) = f� ! a;  ! a; � ! bg, now becauseof the application of DEL fg FROM DMn, we should cancel the transposition
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42



rule that contained the deleted semanteme, changing in this way the function tohMn(D ! E) = f�! a; � ! bg. See Figure 11.
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Figure 11: Narrowing, Restriction or Specialization.
This formalization helps to give account of some changes in the meaning of wordslike the following ones:

1. The word hound in English (originally pronounced hund) was the generic wordfor `any kind of dog' at all. Over the centuries, however, the meaning of hundin English has become restricted to just those dogs which are used to chasegame in the hunt, such as beagles. This restriction of meaning is formalizedas shown in Figure 12.'
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Figure 12: Example of Narrowing: hound.
2. The word meat originally referred to `any kind of food' at all (and this originalmeaning is still reected in the word sweetmeats) though now it only refersto food that derives from the esh of slaughtered animals. In fact, in modernEnglish, meat came to mean `the esh of animals as opposed to the esh of�sh'. Figure 13 shows how to explain this restriction of meaning by usingDMMS.

The third and last type of semantic change is the so-called shift. We have anexample of shift whenever a word completely loses its original meaning and acquiresa new meaning. So, in order to account for this by using DMMS we have to centeron transposition rules. In contrast with narrowing and extension, here we will notspeak about addition or deletion of semantemes, but we have to postulate a changein the transposition rule that relates a given semanteme to a given lingueme. Let usconsider that, at a given moment of computation, lingueme a is related to semanteme
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Figure 13: Example of Narrowing: meat.
�, we will have a case of shift if, in the next computation step, a will be related notto � anymore but to, for example, �.Formally, in DMMS, shift is explained as follows: Consider that in the �rst stateof computation we have a semantic domain DMn = f�; �g, a linguistic domainEMn = fa; bg, and a function hMn(D ! E) = f� ! a; � ! bg. We will speakof shift if, in the next computation step, we will perform some modi�cation in thetransposition rules, in such a way that for a given lingueme the semanteme associatedto it in the second step of computation will be di�erent from the one it had associatedin the �rst step. So, we have shift if there is a modi�cation of the initial function,as for example the following one: hMn(D ! E) = f� ! a; �! bg. See Figure 14.'
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Figure 14: Shift.
Semantics provides a large number of examples of linguistic shift. An example ofshift can be the history of the word silly in English. This word is cognate with theGerman word selig `blessed', and it is derived from Seele `soul'. The meaning ofthe German word represents the original meaning of the word, so there has clearlybeen a major semantic shift to get from the meaning `blessed' to the meaning inmodern English of `stupid' or `reckless'. This semantic shift is formalized in DMMSas shown in Figure 15.From what we have said above, the proposed taxonomy of semantic change canbe explain in terms of DMMS as follows:

� Broadening: addition of new semantemes to the domain of a membranewithout addition of linguemes, with the obligation of relating these new se-mantemes to already existing linguemes (related to other semantemes).
� Narrowing: deletion of semantemes from the semantic domain of a mem-
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Figure 15: Example of Shift: silly.
brane, with the consequent deletion of every rule that contains the deletedsemantemes.

� Shift: a change in the transposition rule that relates a given semanteme to agiven lingueme, relating in this way the given lingueme to a di�erent seman-teme.
Therefore, by using the process of addition/deletion of semantemes we can explainextension and restriction of meaning while modi�cation of the transposition canexplain shift of meaning.Up to now we have account for semantic change, this is for evolution in thesigni�ed of words (semantemes, in our terminology). But, not only the signi�ed isallowed to change, in fact, in the previous section, we have said that both signi�erand signi�ed can change independently. So, in order to complete the picture ofDMMS utility in language change, and even though it is not the topic of this paper,we will briey refer to the possible DMMS' explanation of the evolution of signi�ersof words (linguemes, in our terminology). We can use again the idea of variabledomains and play, now, with addition/deletion of linguemes:

1. New linguemes can be added to a membrane domain. The addition of newlinguemes can account for the introduction of a new signi�er that may thenbe related to new or already existing meanings (semantemes). In this caseh(Mn) associates a new or already existing semanteme to the new introducedlingueme.
2. Some linguemes can be deleted from the domain. This process account for theelimination of a signi�er whose meaning should be absorbed by another newor existing lingueme. Notice that in order to describe this fact we just needthat h(Mn) associates the semanteme that was associated to the lost linguemeto a di�erent lingueme.

Above we have account separately for the change (evolution) of meaning and forthe change (evolution) of signi�ers. Notice that, with DMMS, we can also accountfor the total deletion of a word by using subscript i: all elements marked with asubscript i disappears because there is not a transposition rule for this element inh(Mn) (see page 5). So every word marked will this subscript will stand for totalloss of a word.
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Summing up, in this section we have tried to account for semantic changeby using DMMS. At the end, what we have is that DMMS can account sepa-rately for semantic change {understood in terms of addition/deletion of semantemesfrom a membrane domain{ and for lexical (signi�er) change {understood as addi-tion/deletion of linguemes.
5 DMMS and GS: Suggestions for the Future
In the above section we have de�ned in terms of DMMS di�erent types of semanticchange. Note that by doing this what we have done is to answer to the question`what?', this is what does it happen when a semantic change takes place?'. As wehave seen, there are three possible answers to this question in terms of membranesystems: 1) a new semanteme is added to the membrane domain; 2) an existingsemanteme is deleted from the membrane domain; 3) or there is a modi�cation inthe transposition rule that relates a given lingueme to a given semanteme. But, byjust answering to the question what? we do not o�er a complete view of language(semantic, in this case) change. There are other questions that must be answered ifwe like to o�er a formal framework for evolution in language. Questions such as thefollowing ones:

� `How do linguistic changes spread through a language community? Changesin language are interesting when they become general in a community, butobviously innovations does not originate collectively. In fact they have to beuttered for the �rst time by a single speaker. Some of these novelties will beimitated by other speakers, and then imitated by still others. If the process issustained, the innovations will spread through the whole speech community.According to [11], if we recognize that there are individual idiolects, sharednorms and an idealised linguistic system, we can study language change in allof these areas, and their possible interrelations: that is, an individual or groupof individuals may produce a novel pronunciation or other form of speech,which contributes to variation in the speech community; this may be adoptedby more speakers, and cause a change in the norms of the community; and�nally, it may become the expected, or standard usage, being incorporatedinto a shared linguistic system of native speakers of the language.
� `Why do particular changes spread?. According to [6], language change can beseen as natural. If speakers of natural languages let things take their naturalcourse, language will inevitably change in one way or another, given su�cienttime. However there are situations in which the deliberate action of speakerscan a�ect the future of a language. In times of rapid social, cultural andtechnological change, speakers of a language need to add new words to theirvocabulary in order to talk about new things. So, some changes take placebecause a particular language must change in order to meet new demands thatits speakers place upon it. As the functional needs of a language change, someaspects of the language may be lost, while others may be added. These kinds
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of pressures do not generally a�ect the phonology, or even the grammar, butthey can have drastic e�ects on the vocabulary.
� `Who makes language change? There is still a great deal of research anddiscussion about which social groups introduce linguistic changes. One answerseems to be that a linguistic change may enter a speech community through anysocial group. Members of the group with most social status, for example, tendto introduce changes into a speech community from neighbouring communitieswhich have greater status and prestige in their eyes.

In order to account, in a formal way, for the above issues we cannot use membranesystems, but it is preferably to resort to grammar systems theory, and in particularto the so-called cultural grammar systems, introduced in [9] as a formal-languageframework to account for cultural evolution, in general, and language evolution inparticular. Cultural grammar systems {represented in Figure 16{ o�er a simple ma-chinery to account for the dynamics of cultural evolution, pointing out the di�erencebetween cultural and genetic change and stressing the role of man in the evolutionof culture. Taking into account that language can be seen as a part of culture, wecan explain language change by using the model de�ned for cultural evolution.
GENETIC SYSTEM
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Figure 16: Cultural Grammar Systems.
Lack of space prevent us from present here the formal framework of cultural grammarsystems (for formal de�nitions see [9]) and from describing language change by usingthe model. We just want to point out that with a cultural grammar system we canformally de�ne how a semantic innovation spreads �rst from a single speaker to themost immediate linguistic community (dialect), and then to the whole linguisticcommunity. We can capture also the idea that speakers and only speakers are whochange languages. It remains clear in the model that it is not languages that change,but speakers who change them. And last but not least, the model o�ers an answer tothe question why semantic change takes place: language changes as far as speaker'snecessities change.
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The only question that seems to remain unanswered in the grammar systemsmodel is what happens when a semantic change takes place. And here is whenenters the model we have presented in this paper. We think that there exists acomplementarity between DMMS and cultural grammar systems since the formero�ers a model of what happens when a semantic change is implemented, while thelatter provides explanation of the reasons, agents and procedure of the evolutionof meaning. Taking into account this and considering the fact that in grammarsystems we can postulate any mechanism as component of the system, we proposeto de�ne cultural grammar systems with dynamic meaning membrane systems ascomponents in order to give a complete formal-language-model of semantic change.We are fully convinced that collaboration between both models {cultural grammarsystems and DMMS- may provide a useful formalism that, due to its naturalnessand simplicity, might o�er interesting results in a discipline traditionally far awayfrom any formalization as linguistic evolution is.
6 Final Remarks
One of the most challenging problems in linguistics is the possibility of dealing withmeaning contexts, in order to be able to formalize one of the most important compo-nents of human language, which is the semantic module. Semantics cannot be solvedin the standard theories of language because of its ambiguity and change. More-over, the multiplicity of meanings is a constant handicap for developing computationresources applicable to linguistics.In this paper, we have introduced a very simple model for explaining semanticchange in the framework of membranes. Just a few examples have been given,related to very well known phenomena of meaning evolution. The model is basedin two important ideas: a) the meaning is de�ned as a dynamic concept, with twocomponents which are not joint in a consistent way, b) membranes related betweenthem understood as di�erent contexts for a lingueme can give account of semanticprocesses without involving syntactical or structural changes in it.It is worthwhile to emphasize the simplicity of the model and the possibility ofreaching a computational implementation which can help to solve some practicalproblems in computer programming.Moreover, the inclusion of domains in membranes can be combined with othervery fruitful concepts of standard theory of membrane systems to integrate syntaxand semantics in the same process of language generation.Finally, we suggest the integration of the model with the one provided by gram-mar systems, in order to give a whole explanation of the process of semantic changeand language evolution.
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Abstract
In this paper, we consider the number of (statically measured) active sym-

bols for Lindenmayer systems without interaction and some variants thereof as
well as for pure CD grammar systems, where no distinction between terminal
and nonterminal symbols is made. This measure of descriptional complexity
gives rise to in�nite hierarchies in all cases considered here. Moreover, all the
devices under consideration are compared with respect to their generative power
when the number of active symbols is bounded. Finally, some closure and non-
closure properties of the corresponding language families with a �xed number
of active symbols are proved.

1 Introduction
In the last years the concept of active symbols was studied in several papers [5, 8,
10, 14, 15] within the framework of extended tabled Lindenmayer systems without
interaction (ET0L systems). A symbols is said to be active if and only if it can be
non-identically rewritten. >From the biological point of view active symbols can be
interpreted as the maximum number of cells which are simultaneously contributing
to the growing of the organism.

The authors in [2] investigate the concept of active symbols for deterministic
ET0L systems (EDT0L systems) as well as for cooperating distributed grammar
systems (CD grammar systems for short) working in the t-mode of derivation. Fur-
thermore, they introduce the notion of dynamically active symbols.

In this paper we will only consider the statically measured active symbols which
we will refer to as active symbols throughout the paper.

CD grammar systems have been introduced in [3] and have further been inves-
tigated in [4] as models of distributed problem solving. CD grammar system with
context-free productions can be viewed as a generalization of context-free grammars
in which the set of rules is divided into parts which are called components of the
system. These components work on a common sentential form in turns according to
some cooperation protocol, which determines when a component is allowed to start
and to stop rewriting the sentential form. For example, in the so-called t-mode of
derivation a component, once started, has to remain active as long as possible, that
is, until none of its productions can be applied to the current sentential form. In

Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varjú and Gy. Vaszil,
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what follows, we always consider context-free CD grammar systems in the t-mode
of derivation without further mentioning.

Context-free CD grammar system working in the t-mode of derivation can be
considered as the sequential counterparts of ET0L systems, just having components
instead of tables. Analogously, pure CD (pCD) grammar systems, where no distinc-
tion between terminal and nonterminal symbols is made, may be viewed as sequential
counterparts of T0L systems. For a more detailed discussion see [1].

In this paper we investigate the number of active symbols in pure grammar
formalisms, that is, we will study T0L systems and languages as well as their se-
quential counterparts, namely the pCD grammar systems and languages, within the
framework of active symbols.

One reason why such pure grammars and systems are of interest is that there
is no distinction between a sentential form and a word in the language generated.
Thus, all information about the derivation process is stored in the language. This
may be useful for purposes of syntax analysis. Moreover it may help to improve the
understanding of the relationship between parallel and sequential rewriting mecha-
nisms.

The paper is organized as follows. Section 2 provides the necessary de�nitions
of the language generating devices under consideration. In section 3 we will de�ne
the notion of active symbols and show that various kinds of Lindenmayer systems
without interaction as well as pCD grammar systems lead to in�nite hierarchies
induced by the measure of active symbols. In section 4 we will reprove and partly
extend known hierarchies of some basic families of languages de�ned by Lindenmayer
systems and show that these families of languages build the same kind of hierarchies
when the number of active symbols is regarded and disregarded. Some closure
and non-closure properties for the respective language families are investigated in
section 5. In the conclusions we will summarize our results and state some unsolved
problems.

2 De�nitions and Preliminaries
We assume the reader to be familiar with basic notions in the theory of formal lan-
guages. With our notation we mainly follow [6]. In general, we have the following
conventions: � denotes set inclusion, while � denotes strict set inclusion. Set dif-
ference will be denoted by n. The set of positive integers is denoted by IN and the
cardinality of a set M is denoted by #M . Let V be some alphabet, that is, a �nite
and non-empty set; by V + we denote the set of all nonempty words over V ; if the
empty word � is included, then we use the notation V �. For a word x 2 V �, its
length is denoted by jxj. For any set W � V , jxjW is the number of occurrences of
letters of W in the word x. Frequently, for singletons fag we simply write a. We
consider two families L1 and L2 of languages to be equal if they distinguish from
each other at most by the empty set, that is, if L1 n f;g = L2 n f;g. The fami-
lies of regular, context-free and context-sensitive languages are denoted by L(REG),
L(CF) and L(CS), respectively.

A pure CD grammar system (pCD grammar system for short) of degree n is an
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(n + 2)-tuple G = (V; P1; P2; : : : ; Pn; S), where V is some alphabet, ! 2 V + is the
axiom and, for 1 � i � n, Pi � V �V � is a �nite set of pure context-free productions,
which are called the components of G. A production sets Pi is called �-free, if there
are no productions of the form A! � in Pi.

The t-derivation step according to component Pi is de�ned as follows: for x; y 2
V �, we write x t=)i y if and only if one of the following conditions hold:

(i) there exist strings x0; x1; : : : ; xk, k � 0, such that x0 = x, xk = y, xj =)i xj+1,
0 � j � k � 1, and there is no z such that y =)i z, or

(ii) y = x.
Here xj =)i xj+1 denotes a direct derivation step in which the component Pi is
applied, that is, xj = z1az2, xj+1 = z1vz2, for some a ! v 2 Pi and z1; z2 2 V �.
The set SF(x t=)i y) of the sentential forms of the t-derivation step according to
Pi is (i) the set SF(x t=)i y) = fx0; x1; : : : ; xkg or (ii) the set SF(x t=)i y) = fxg,
respectively. Note that the second case (ii) in this de�nition is not just a special
case of (i) with k = 0, since there may be derivations x �=)i y, y 6= x, but all these
derivations will not terminate.

A t-derivation in a pCD grammar system is a sequence of t-derivations according
to arbitrary components of the system: for x; y 2 V �, we write x t�=) y if and only
if there are strings x0; x1; : : : ; xk, k � 0, such that x0 = x, xk = y, and xj t=)ij xj+1,
for 1 � ij � n, 0 � j � k � 1. The set SF(x t�=) y) of its sentential forms is de�ned
to be the union of the sets SF(xj t=)ij xj+1). The language L(G) generated by a pCD
grammar system G is the set of all sentential forms in a t-derivation in G starting
with the axiom !:

L(G) = fw 2 V � j w 2 SF(! t�=) y) for some y 2 V � g :
Note that the language consists of all words generated by iterated t-derivation steps
and all the intermediate words appearing along these derivations. Sentential forms
of derivations where the active component will not terminate remain excluded.

The family of languages generated by pCD grammar systems in the t-mode of
derivation is denoted by L(pCD).

In order to clarify this de�nition, we repeat an example given in [1], characterizing
all pCD languages over a one-letter alphabet.
Example 2.1 (see [1, Example 2.2]) Every language over a one-letter alphabet in
L(pCD) is either of the form L0�n = fan; an�1; an�2; : : : ; a; �g or it contains exactly
one nonempty word.
A TF0L system is a triple G = (�; H;
), where � is the alphabet, H is a �nite set
of �nite substitutions from � into ��, and 
 is a �nite, non-empty subset of �+,
called the set of axioms of G. A substitution h in H is called a table of G. If H
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only contains homomorphisms or non-erasing substitutions, the TF0L system is said
to be deterministic or propagating and is referred to as DTFOL or PTF0L system,
respectively. If for some TF0L system #H = 1, then the TF0L system is called an
F0L system and if for some TF0L system #
 = 1, then the TF0L system is called
a T0L system.

If v 2 h(a), a 2 �, the we say that a ! v is a production in the table h. For
x and y in ��, we write x =)h y for some h 2 H if and only if y 2 h(x). Hence,
subscript h refers to the table which is used. Let x �=)h y denote the reexive and
transitive closure of the relation x =)h y.

The language generated by G is de�ned as

L(G) = fw 2 �� j 9! 2 
; ! =)hi1 w1 =)hi2 � � � =)him wm = w for some
m � 0 and hij 2 H with 1 � j � m g:

Any combination of the denotations D, P, T and F leads to various classes of lan-
guages. In what follows, we will consider all the families of languages L(X) with
X 2 fP;D;PD; �gfT; �gfF; �gf0Lg. The set fP;D;PD; �gfT; �gfF; �gf0Lg will be
denoted by M for better readability.

Figure 1 and Figure 2 show some known hierarchies of these language families
(for proofs see [7, 9, 11, 12, 13]). In these �gures we write X instead of L(X) in
order to obtain a better appearance of the �gures; moreover an arrow denotes strict
inclusion of the lower language family in the upper one, and if two families are not
connected, then they are incomparable.

In [1], the language family L(pCD) is located in a part of this hierarchy, proving
the strict inclusion L(pCD) � L(CS) and showing the incomparability of L(pCD)
with L(CF) as well as with each L(X), X 2 fP,D,PD,�gfT,�gf0Lg.

Moreover, by de�nition and [9, 12] the hierarchy in Figure 2 holds.

3 Active Symbols as Connected Measure of Syntactical
Complexity

First, we provide the formal de�nition of the number of active symbols for TF0L
systems and languages.

De�nition 3.1 Let G = (�; H; !) be a TF0L system. We de�ne the number of
active symbols in a table h 2 H by

as(h) = #f a j a! w 2 h with a 6= w g.
For G we set

as(G) = maxf as(h) j h 2 H g,
and for a language L in L(TF0L), we de�ne

asT0L(L) = minf as(G) j G is a TF0L system and L = L(G) g:
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For X 2 M the notion asX(L) for a language L in L(X) is de�ned analogously to
De�nition 3.1.

In the case of pCD grammar system or CD grammar system, where components
are used instead of tables, the number of the active symbols is de�ned analogously.

For n � 0 and X 2M[ fpCDg, let
L(X;n) = fL 2 L(X) j asX(L) � n g

be the family of languages which can be generated by some X system with at most
n active symbols. By de�nition, L(X;n) �  L(X;n + 1) holds.

Moreover, the following lemmata hold by de�nition.
Lemma 3.1 (i) Let X 2 fP,D,PD,�gfT; �gf0Lg [ fpCDg. For any language L,

L 2 L(X), we have
asX(L) = 0 i� #(L) � 1.

(ii) Let X 2 fP,D,PD,�gfT; �gfF0Lg. For any language L, L 2 L(X) we have
asX(L) = 0 i� L is �nite (or empty).

Lemma 3.2 Let L be a language over a single-letter alphabet. If L 2 L(X) with
X 2M, then L 2 L(X; 1).
Next, we are going to show that the number of active symbols is a connected measure
of syntactical complexity with respect to all systems under consideration, that is,
this measure induces in�nite hierarchies of language families for all the system types
considered here. More precisely, the following two theorems hold.
Theorem 3.3 Let X 2 M. For every n � 0, there exists a language L in L(X)
such that asX(L) = n.
Proof. The statement has been proved for n = 0 by Lemma 3.1. Let n � 1 and set
�n = fa1; a2; : : : ; ang.

The language

Ln = f a2i1 a2i2 : : : a2in j i � 0 g
is generated by the PD0L system with n active symbols

Gn = (�n; f ai ! a2i j 1 � i � n g; a1a2 : : : an):
Hence, asX(Ln) � n, for all X 2M.

Let us assume that there is an TF0L system G0n = (�n; h1; h2; : : : ; hk; !n) with
L(G0n) = Ln and as(G0n) < n. Then for each i, 1 � i � k, there is at least one symbol
aj 2 �n such that hi(aj) = fajg. Due to the structure of the words in Ln, any
derivation step according to G0n is of the form u =)hi v, for some u = a2l1 a2l2 : : : a2ln ,
v = a2m1 a2m2 : : : a2mn . Since aj is inactive in hi, m = l has to hold. Therefore,
L(G0n) = f!ng, and this contradicts L(G0n) = Ln.

In conclusion, asX(Ln) = n, for all X 2M. 2
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Theorem 3.4 For every n � 0, there exists a language L in L(pCD) such that
aspCD(L) = n.
Proof. For n = 0 the statement has been proved by Lemma 3.1. Consider the pCD
grammar system of degree 2,

Gn = (�n [�n; Pn;1; Pn;2; !n); where
�n = fa1; a2; : : : ; ang, �n = fb1; b2; : : : ; bng, !n = a31a32 : : : a3n, and

Pn;1 = f ai ! b3i j 1 � i � n g;
Pn;2 = f bi ! ai j 1 � i � n g:

Starting o� with a word a3i1 a3i2 : : : a3in , i � 1, only Pn;1 is applicable, yielding the
word b3i+11 b3i+12 : : : b3i+1n in the t-mode of derivation.

Since the ai's are sequentially replaced in arbitrary order, all the sentential forms
in Kn;i = fu1u2 : : : un j uj 2 faj ; b3jg3ig can be obtained during all possible t-mode
derivation steps starting o� with a3i1 a3i2 : : : a3in .

Next, only Pn;2 can be applied to b3i+11 b3i+12 : : : b3i+1n , where the intermediate
sentential forms of all possible t-mode derivation steps build the set

Mn;i = f v1v2 : : : vn j vj 2 faj ; bj g3i+1g:
Hence, Ln = Lt(Gn) = S

i�0(Kn;i [Mn;i).
Since Gn has n active symbols, we have aspCD(Ln) � n.
Let G0n = (�n[�n; Pn;1; Pn;2; : : : ; Pn;k; !0n) be a pCD grammar system generating

Ln in t-mode of derivation with as(G0n) < n. Since for any two words w and w0 of
L with jwj 6= jw0j, we have jjwj � jw0jj � 2, G0 is �-free.

Thus, the shortest word in L is the axiom, that is, !0n = a31a32 : : : a3n. Let Pn;l be
a component which can successfully be applied to the axiom, that is, there is some
u, u 6= !0n, such that a derivation !0n t=)n;l u is possible according to G0n.

If ai ! y 2 Pn;l, for some 1 � i � n and y 2 (�n [ �n)�, then this production
can be applied to each occurrence of ai in !0n. Therefore, y 2 fai; b3i g has to hold.
Analogously, if bi ! y 2 Pn;l, then y 2 fai; big has to hold. Since as(Pn;l) < n,
there is at least one j, 1 � j � n, such that aj is not active, i.e., there is no
production replacing aj in Pn;l. Note that !0n t=)n;l u is a t-mode derivation step,
where the presence of the production aj ! aj would be blocking this derivation. In
conclusion, u = u1u2 : : : un with ui = fai; b3i g3, for 1 � i � n, where uj = a3j holds.

Therefore, the word x = a21b31a22b32 : : : a2nb3n does not appear as intermediate sen-
tential form during !0n t=)n;l u.

On the other hand, because of u 6= !0n, there is at least one j, 1 � j � n, such
that uj = b9j .Therefore the word x cannot be obtained during further derivations, since G0n is
�-free.

Hence, x =2 Lt(G0n), contradicting Lt(G0n) = Ln. 2
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Figure 3: Hierarchy of language families with bounded number of active symbols (1)

4 Hierarchies Induced by a Bounded Number of Active
Symbols

In this section we will extend the known hierarchies presented in section 2 involving
the family L(pCD). We compare the generative power of the mechanisms when the
number of active symbols is taken into consideration. We are going to prove that the
same hierarchical relationships are obtained both when regarding and disregarding
this syntactical measure. More precisely Theorems 4.1 and 4.2 hold.

In Figure 3 and Figure 4 which are given below we write X;n instead of L(X;n),
for X 2M[ fpCDg (or we write REG, CF, CS instead of L(REG), L(CF), L(CS),
respectively) in order to obtain a better appearance of the �gures; moreover an
arrow denotes strict inclusion of the lower language family in the upper one, and if
two families are not connected, then they are incomparable.
Theorem 4.1 For any integer n � 1, the hierarchy presented in Figure 3 holds.
Proof. Let n � 1. The strict inclusion L(pCD; n) �  L(CS) follows from the fact
L(pCD) � L(ET0L) which has been shown in [1, Theorem 3.6]. The reader may
readily verify that it is su�cient to show the following 10 facts.
i) Since every �nite language is in L(DF0L; 0), the language

L1 = fa2; ab; ba; b2; ab2; b2a; b4g
is contained in L(DF0L; n), but L1 is not a T0L language (see [1, Theorem 3.5]).
Hence, L1 2 L(DF0L; n) n L(T0L; n) holds.
ii) Consider the P0L language

L2 = fag+
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which can be generated by a P0L system with one active symbol, but L2 is not a
DTFOL language (see [12]). Hence, L2 2 L(P0L; n) n L(DTFOL; n) holds.
iii) The PDT0L language

L3 = f $w$w$w j w 2 fa; bg� g
can be generated by the PDT0L system with one active symbol

G = (fa; b; $g; ff$ ! $a; a! a; b! bg; f$ ! $b; a! a; b! bgg; $$$) ;
but L3 is not an E0L language (see [13, Exercise IV.1.2]). Since every F0L language
is an E0L language [7], L3 2 L(PDT0L; n) n L(F0L; n) holds.
iv) The D0L language

L4 = fa; abg
can be generated by the D0L system (fa; bg; fa ! a; b ! �g; ab) having only one
active symbol, but L4 is not a PT0L language. Assume the contrary, that is, there
exists a PT0L system generating L4. Since the shortest word in L4 is the axiom,
! = a has to hold. Then there exists at least one table h with a ! ab 2 h and a
derivation a =)h ab =)h ab� , where � 6= �. Therefore jab�j � 3 has to hold, and
ab� =2 L4. Hence, L4 2 L(D0L; n) n L(PT0L; n) holds.
v) The PD0L language

L5 = f a2i j i � 0 g
can be generated by a PD0L grammar system with one active symbol, but L5 is not
a pCD language due to Example 2.1. Hence, L5 2 L(PD0L; n) n L(pCD; n) holds.
vi) Conversely, consider the pCD grammar with one active symbol

G = (fa; b; c; dg; fa! bg; fa! b2g; fa! a; c! dc; c! dg; da2c) :
Since the components fa! bg and fa! b2g are applicable to the axiom da2c, the
words b2 and b4 are obtained by the respective t-mode derivations, such that the
set f cxd j x 2 fa2; ab; ba; b2; ab2; b2a; b4gg is a subset of the language L6 = L(G). A
derivation using the component fa ! a; c ! dc; c ! dg can not terminate if an a
occurs in the sentential form; thus it is applicable only to b2 and b4. Therefore, G
generates the language

L6 = fda2c; dabc; dbac; db2c; dab2c; db2ac; db4cg
[ f db2dic; db4dic; db2di; db4di j i � 1 g

Hence, L6 2 L(pCD; 1), but L6 is not a TF0L language.
Suppose there exists a TF0L system G = (fa; b; c; dg; H;
) generating L6. For

all h 2 H, the following properties hold.
(1) If d ! � in h, then j�jfa;b;cg = 0 since h can be applied to db4d4 and no

words in L6 contain more than two a, more than two c, or more than four b.
Furthermore, since all words in L6 have a pre�x da or db, j�j = j�jd � 1, hence
� 2 f�; dg has to hold.
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(2) If b! � is a rule in h, then j�jfa;cg = 0, since x�4y 2 h(db4c) for some x; y 2
fa; b; c; dg�, but there are no words in L6 containing at least four occurrences
of a or four occurrences of c. Analogously, j�jb � 1 has to hold. If j�jb = 1
and j�jd > 0, then x�4y 2 h(db4c) contains more than one subwords db, hence
it is not in L7. Thus, � 2 fbg [ f di j i � 0 g has to hold. By item (1),
h(d) 2 f�; dg. Hence, if � 2 d+, then a word with pre�x d4 is contained
in h(db4d), a contradiction to the structure of the words in L6. Therefore,
� 2 f�; bg.

(3) Because of items (1) and (2) we can argue as follows: since ��2� 2 h(db2d),
neither � nor � can be the empty word. Hence, b! b and d! d are the only
rules for b and d, respectively.

(4) Let a! � be a rule in h, then d�b2 is pre�x of all words in h(dab2c). Therefore,
� 2 f�; a; b2g has to hold. Since h is applicable to db4c, h(c) must be taken
from d�c or from d�. Thus, � = � implies h(da2c) � fc; dg+, a contradiction.
On the other hand, � = b2 implies jxjb = 3 for all x 2 h(dabc), which is a
contradiction, too. Hence, � = a.

(5) According to the above arguments, all words h(da2c) have the pre�x da2.
Hence, c! c is the only rule for c in h.

In conclusion, each table h in H is the identity, and L(G) is �nite. This contradicts
the assumption L(G) = L6.

In conclusion, L6 2 L(pCD; n) n L(TF0L; n) holds.
vii) The regular language

L7 = f aib j i � 1 g [ f abi j i � 1 g
is not a TF0L language (see [12, Lemma 5]). Hence, L7 2 L(REG) n L(TF0L; n)
holds.
viii) The regular language L8 = fa; a2g is no pCD language due to Example 2.1,
hence L8 2 L(REG) n L(pCD; n).
ix) The language L5 = f a2i j i � 0 g 2 L(PD0L; 1) is not a CF language. Hence
L5 2 L(PD0L; n) n L(CF) holds.
x) The language Lt(G1) of the proof of Theorem 3.4 is contained in L(pCD; 1).
Assume that it is context-free. Then, its intersection with the regular set fag+
is context-free as well, but f a3i j i � 0 g is not context-free, a contradiction. In
conclusion, Lt(G1) 2 L(pCD; 1) n L(CF). 2

Theorem 4.2 For any integer n � 3, the hierarchy presented in Figure 4 holds.
Proof. The statement follows from Theorem 4.1 and the following facts. Let n � 3.
i) Consider the DF0L language

L9 = f bc(ab2)2i j i � 0 g
which can be generated by the DF0L system with 3 active symbols

G = (fa; b; cg; fa! ab2ab2; b! �; c! bcg; bcab2) ;
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Figure 4: Hierarchy of language families with bounded number of active symbols (2)

but L9 is not a PTF0L language (see [9, Theorem 12.1]).
Hence, L9 2 L(DF0L; n) n L(PTF0L; n) holds.

ii) The language L2 = fag+ 2 L(PF0L; 1) is not a DTFOL language (see [12]).
Hence, L2 2 L(PF0L; n) n L(DTFOL; n) holds.
iii) The language L3 = f $w$w$w j w 2 fa; bg� g 2 L(PDTF0L; 1) is not an F0L
language (see [13, Exercise IV.1.2]). Hence, L3 2 L(PDTF0L; n) n L(F0L; n) holds.

2

5 Closure Properties
In this section, we investigate whether or not certain operations on languages lead
out of the families of languages generated by some pure system with a bounded
number of active symbols. For the de�nitions of the considered operations we refer
to any standard text book on formal languages or to [6].

Due to Lemma 3.1, we immediately obtain the following result.

Theorem 5.1 (i) For X 2 fP,D,PD,�gfT,�gf0Lg [ fpCDg, each of the families
of languages L(X; 0) is closed with respect to product, intersection, homomor-
phism, and intersection with a regular set, but it is not closed with respect to
union, complement, Kleene star, Kleene plus, and inverse homomorphism.

(ii) For X 2 fP,D,PD,�gfT,�gfF0Lg, each of the families of languages L(X; 0)
is closed with respect to union, intersection, product, homomorphism, and in-
tersection with a regular set, but it is not closed with respect to complement,
Kleene star, Kleene plus, inverse homomorphism.

Apart from this, we obtain only non-closure properties.
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Theorem 5.2 For any integer n � 1, the family of languages L(pCD; n) is not
closed with respect to union, intersection, complement, product, Kleene star, Kleene
plus, intersection with a regular set, homomorphism, inverse homomorphism.
Proof. Let n � 1.

Union.
Consider the languages fag and fa3g which are both in L(pCD; n), but their union
fa; a3g is not in L(pCD), thus it is not in L(pCD;n).

Complement. The language fag� n fag is not contained in L(pCD), hence not in
L(pCD; n).

Kleene star and Kleene plus.
The languages fag� and fag+ are not contained in L(pCD; n).

Intersection with a regular set.
The pCD grammar system G = (fa; bg; fa ! a2; a ! bg; a) generates the language
fa; bg+. The intersection fa; bg+ \ fag+ = fag+ is not in L(pCD; n).

Intersection.
The languages fa; cg+ and fa; bg+ are both in L(pCD; 1), but their intersection
fa; cg+ \ fa; bg+ = fag+ is not contained in L(pCD;n).

Product.
Consider the languages f�; ag and fa2g which are both in L(pCD; 1) (see Exam-
ple 2.1). Their product f�; agfa2g = fa2; a3g is not in L(pCD), hence not in
L(pCD; n).

Homomorphism.
The pCD grammar system G = (fa; bg; fa ! bg; a), generates the language fa; bg,
hence it is contained in L(pCD; 1).

Let � : fa; bg� ! fa; bg� be a homomorphism such that �(a) = a and �(b) = a3,
then �fa; bg = fa; a3g, which is not contained in L(pCD; n) (see Example 2.1).

Inverse homomorphism.
Consider the language f�; ag 2 L(pCD; 1) and let � : fag� ! fag� a homomorphism
such that �(a) = �. Then h�1(L) = fag� which is not in L(pCD; n). 2

Theorem 5.3 (i) For any integer n � 1, the following statements hold.
(a) Each of the families L(X;n) with X 2 M is not closed with respect

to union, complement, product, homomorphism, and intersection with a
regular set.

(b) Each of the families L(X;n) with X 2 M n fPD0L;D0Lg is not closed
with respect to intersection.

(c) Each of the families L(X;n) with X 2 M is not closed with respect to
Kleene star and Kleene plus.

(d) Each of the families of languages L(X;n) with X 2 Mn
fPF0L;F0L;PTF0L;TF0Lg is not closed with respect to inverse homo-
morphisms.

(ii) For any integer n � 2, the following statements hold.
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(a) The families L(D0L) and L(PD0L) are not closed with respect to inter-
section.

(b) Each of the families L(X;n) with X 2 fP,�gfT,�gfF,�gf0Lg is not closed
with respect to Kleene star and Kleene plus.

(c) Each of the families L(X;n) with X 2 fPF0L;F0L;PTF0L;TF0Lg is not
closed with respect to inverse homomorphisms.

Proof.
(i) Let n � 1.

Union.
Consider the languages fa3g and f a2i j i � 1 g which are both in L(PD0L; n), but
their union fa3g [ f a2i j i � 1 g is not in L(TF0L) (see [12, Theorem 2]), thus it is
not in L(TF0L; n).

Complement.
The language f a2i j i � 1 g is in L(PD0L; n), but fag� n f a2i j i � 1 g is not in
L(TF0L) (see [12, Theorem 2]) and therefore not contained in L(TF0L; n).

Intersection.
Consider the P0L systems G1 = (fa; b; cg; fa ! a; b ! b; c ! acb; c ! abg; c) and
G2 = (fa; b; dg; fa! a; b! b; d! adb; d! abg; d).

Then, L(G1) \ L(G2) = f aibi j i � 1 g.
Assume that this language is generated by some TF0L system G. If a! � is a

rule in some table of G, then � 2 a� has to hold, and for any rule b ! �, � 2 b�
has to hold. If there are two productions of these forms in one table with j�j 6= j�j,
then a string of the form ajbk with j 6= k can be obtained from ab. In conclusion,
G is deterministic. Since L(G) is in�nite, j�j = j�j > 0 in each table of G. But
this leads to an exponential progression, a contradiction to our assumption. Hence,
f aibi j i � 1 g =2 L(TF0L). This shows the non-closure for all propagating classes.

Clearly, L(G1) and L(G2) are in L(DT0L; 1), as well (just divide the productions
appropriately into two tables). Thus, the non-closure for all tabled classes is proved.

Intersection with a regular set.
Use the language L(G1) of the proof for the non-closure under intersection (see iii)),
and the regular set a�b�. This proves the non-closure for all propagating or tabled
classes.

In order to complete the argument, consider the language f a2i j i � 0 g 2
L(PD0L; 1), again. Its intersection with the regular set fa2; a4g is no T0L language,
see [11, Theorem 2].

Product.
Consider the languages fag and f a2i j i � 0 g. Their product fagf a2i j i � 0 g is
not in L(TF0L) (see [12, Theorem 2]) and hence not in L(TF0L; n).

Kleene star and Kleene plus.
The claim is shown using fag and the fact that neither fag� nor fag+ is a DTFOL
language [12].

Homomorphism.
First, consider the PD0L language fa2; b4g which is generated by the PD0L system
G = (fa; bg; fa! b2; b! bg; a2). Hence, the language fa2; b4g is in L(PD0L; 1).
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Let � : fa; bg� ! fa; bg� be a homomorphism such that �(a) = �(b) = a,
then �(fa2; b4g) = fa2; a4g which is not a T0L language (see [11, Theorem 2]) and
therefore also not in L(T0L; n).

Now, consider the PDF0L system G = (fa; bgfa ! a2; b ! bg; fa; b3g) that is
generating the language fb3g[f a2i j i � 1 g which is therefore in L(PDF0L; n). Let
� : fa; bg� ! fa; bg� be a homomorphism such that �(a) = �(b) = a, then

�(fb3g [ f a2i j i � 1 g) = fa3g [ f a2i j i � 1 g ;
which is not a TF0L language (see [12, Theorem 2]) and therefore also not contained
in L(TF0L; n).

Inverse homomorphism.
At �rst, fa2; b3g = ��1(fc6g), if � is the homomorphism � : fa; bg� ! fcg� with
�(a) = c3 and �(b) = c2. On the other hand, it is proved in [11, Theorem 2] that
fa2; b3g is no T0L language.

Furthermore, fag� = h�1(fa; �g), if h is the homomorphism de�ned by h(a) = �,
but fag� =2 L(DTFOL).
(ii) Now, let n � 2.

Intersection. The D0L systems G1 = (fa; b; cg; fa ! a2b; b ! a2bg; a) and
G2 = (fa; bg; fa ! �; b ! ag; a2b) generate the languages fag [ f (a2b)3i j i �
0 g and f�; a; a2bg, respectively, each with two active symbols. The intersection
L(G1) \ L(G2) = fa; a2bg is known to be no D0L language (see [11, Theorem 2]).

The PD0L systems G1 = (fa; b; cg; fa ! ab; b ! c; c ! cg; a) and G2 =
(fa; b; dg; fa ! ab; b ! d; d ! dg; a) generate the languages f a; abcn j n � 0 g
and f a; abdn j n � 0 g, respectively. The intersection L(G1) \ L(G2) = fa; abg is no
PT0L language (see iv) in the proof of Theorem 4.1).

Kleene star and Kleene plus.
The language f a2ib2i j i � 0 g is in L(PD0L; n), but f a2ib2i j i � 0 g� is not
in L(TF0L) (see [12, Theorem 2]) and hence not in L(TF0L; n). The non-closure
under Kleene plus is shown analogously.

Inverse homomorphism. Consider the PF0L system
G = (fa; b; c; dg; fa! a; b! b; c! ac; c! b; d! bd; d! ag; fac; adg) :

Let � : fa; b; c; dg� ! fa; b; c; dg� be the homomorphism de�ned by �(a) = a,
�(b) = b, �(c) = �(d) = cd. Then, we have

��1(L(G)) = f aib j i � 1 g [ f abi j i � 1 g ;
which is no TF0L language [12, Lemma 5]. 2

6 Concluding Remarks
The number of (statically measured) active symbols, which has extensively been
investigated for ET0L , EDT0L , and CD grammar systems, is considered in the
present paper for the pure versions of these systems and several variants thereof. It
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is shown that this measure of syntactical complexity is connected for all cases under
consideration. Next, the known hierarchies of the underlying families of languages
are proved to be valid also if one bounds the number of active symbols by any
constant n � 1 (or n � 3 in a few cases). One should remark that the condition
n � 3 is needed only in one of the numerous constructions (which is only used for
proving certain incomparability results, not a�ecting the strictness of any inclusion).
Therefore, in principle a better result than that stated in Theorem 4.2 has been
shown. Finally, some closure and, mainly, non-closure properties of the considered
families of languages with bounded number of active symbols are proved, where
except from a few marginal cases, optimal results could be achieved.

The problems which have been left open are:
1. Is there a language in L(DF0L; 1) n L(PTF0L; 2)?
2. Which of L(D0L; 1) and L(PD0L; 1) is closed under intersection?
3. Is L(X; 1) for nondeterministic types X of systems closed under Kleene star

or plus?
4. Is L(X; 1) with X 2 fPF0L;F0L;PTF0L;TF0Lg closed under inverse homo-

morphism?
In [1] also deterministic pCD grammar systems and languages have been considered.
Due to the proof of Theorem 3.4 the number of active symbols induces an in�nite
hierarchy also in this deterministic case, more precisely

For every n � 0, there exists a language L generated by a deterministic
pCD grammar system such that aspCD(L) = n.

Unfortunately, some constructions used in the subsequent proofs make use of non-
deterministic pCD grammar systems. This leads to a lot of open problems.

Moreover, the computability of the number of active symbols for given pure
languages is of interest. Finally, also the dynamic interpretation of the number of
active symbols could be treated in the framework of pure systems.
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Abstract

The paper introduces two preliminary variants of population P systems with
string-objects. The former one is inspired by CD grammar systems regarded
as a population of interacting/cooperating cells that use rewriting rules to ma-
nipulate set of strings placed inside them. In this case, cells are restricted
to communicate only by means of the environment and no direct communica-
tion among the cells can take place in the system. The second variant instead
uses the notion of communication mediated by query symbols considered for
PC grammar systems in order to de�ne the features of bond making rules in
context of population P systems with string-objects. Some preliminary results
concerning the computational power of these population P systems are reported
and some directions for future research are briey discussed.

1 Introduction

Membrane computing represents a new and rapidly growing research area which is
part of the natural computing paradigm. Already a monograph has been dedicated
to this subject [10] and some fairly recent results can be found in [12], [8]. Membrane
computing has been introduced with the aim of de�ning computing devices, called P
systems, which abstract from the structure and the functioning of living cells [9]. A
new variant of P systems, called population P systems, has been recently introduced
in [1] that extends the existing notions of P systems in the following senses:

� the structure of the system is de�ned as an arbitrary graph rather than as a
tree; each node in the graph corresponds in an one-to-one manner to a cell in
the system; cells are the basic functional units of a population P systems and
they are allowed to communicate alongside the edges of the graph;

� the graph de�ning the structure of the system can change during a compu-
tation; these changes involve both the set of nodes and the set of edges in
the graph; new cells can therefore be introduced in the system and new links
can be formed among these cells by altering in this way their communication
capabilities.

From a biological point of view, population P systems can be considered as an
abstraction for populations of of bio-units aggregated in more complex bio-entities.
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Cells represent individuals in the population that are allowed to interact/cooperate
according to a speci�c communication model. Links between the cells model the fact
that, in order to communicate, these individuals need to \get in touch" somehow.
Furthermore, the operations of cell di�erentiation, cell division and cell death are
considered for population P systems as generic mechanisms to alter the nature and
the number of individuals in the system [1].

Grammar systems is another active area of theoretical computer science that
advocates the use of a grammatical approach to model distribution and coopera-
tion in a computing system [3]. Grammar systems, in their basic variant called
CD grammar systems, consist of a number of distinct grammars cooperating each
other according to a given protocol in order to rewrite a common string shared
by all the grammars in the system. The initial motivation for CD grammar sys-
tems were related to two-level grammars and to arti�cial intelligence issues. In this
respect, CD grammar system can be seen as a model for describing autonomous
agents cooperating each other in order to solve a common problem in such a ways
that resembles the blackboard paradigm used in arti�cial intelligence [3]. Further
variants of grammar system have been then proposed that introduce in the model
extra features from other areas of parallel/distributed computing and/or with some
biological inspiration [3], [4].

There are evident similarities between the P system model and the grammar sys-
tem model: both of them de�ne devices where computing resources are distributed
among di�erent individual components and interaction/cooperation between these
components is fundamental to achieve successful and meaningful computations. In
particular it is natural to think of a grammar systems as a population of interact-
ing/cooperating grammars that work in a common shared environment. This is the
approach we adopt in this paper where we investigate population P systems that use
rewriting as the basic operation to manipulate sets of strings placed inside the cells
in the system. All over the paper, the reader is supposed to be familiar with the
basic notions of formal language theory, the notation commonly used in membrane
computing and in grammar systems as well. We refer to [13], [6], [10], [3] for further
details.

2 Modelling CD Grammar Systems

A CD grammar system [3] is a construct � = (N;T; P1; P2; : : : ; Pn; S) where: N is
a �nite set of non-terminal symbols, T is a �nite set of terminal symbols, Pi, for
each 1 � i � n, is a �nite set of context-free rules of the form X ! w, with X 2 N ,
w 2 (N [ T )�, and S 2 N is the initial symbol of the system. Notice that, without
loss of generality, CD grammar systems are presented here in the form that imposes
the restriction of not rewriting the terminals of a component in the other ones. In
the case of context-free rules, this restriction in fact does not alter the generative
capacity of CD grammar systems (see Theorem 6.1 in [3]).

Each component in a CD grammar system � always operates according to a
speci�c derivation mode � 2 fk;� k;� k; �; t j k � 1 g adopted by the system � (see
[3] for a formal de�nition of these derivation modes). Speci�cally, given two strings
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x; y 2 (N [ T )� we write x =)�
� y if and only if x =)�

Pi y, for some 1 � i � n.
Thus, the language L�(�) generated by the grammar system � using the derivation
mode �, is the language that contains all the strings y 2 T � such that there exists
a derivation in � of the form S =)�

� z1 =)�
� : : : =)�

� zh =)�
� y, with h � 0,

zj 2 (N [ T )+.

In this framework, a population P system model for systems of cooperating gram-
mars can be de�ned in a straightforward manner by considering systems consisiting
of a number cells with some �nite sets of context-free rule and sharing a common en-
vironment; this environment is used to move the strings to be rewritten from one cell
to another one and to collect the result of a computation. More precisely, an unstruc-
tured population P system is de�ned as a construct P = (V; T;E;C1; C2; : : : ; Cn)
where: V a is �nite set of symbols, T � V is a �nite set of terminal symbols,
E � V � is a �nite language assigned to the environment and, for each 1 � i � n,
Ci = (Ri; Fi) with Ri a �nite set of context-free rules of the form a ! (v; out), for
a 2 V , v 2 V �, and Fi a �nite set of �lters of the form (a; in), for a 2 V .

A computation in an unstructured population P system is performed by dis-
tributing to the cells, according to their respective sets of �lters, the strings in the
environment, where they are rewritten by means of some rules and immediately re-
turned to the environment so that the process can be iterated. A �lter (a; in) 2 Fi,
with a 2 V , speci�es that a string in the environment can enter cell i if and only
if the symbol a is present inside that string; a rule a! (v; out) in Ri speci�es that
a string can be rewritten inside cell i by replacing the symbol a with the string v

and, after that, the string has to exit cell i and be associated with the environment.
The language generated by an unstructured population P system P is the language
L(P) that consists of all the strings in T � that are produced inside the environment
and that cannot enter the cells anymore.

Thus, by having this notion of population P systems, it is easy to verify that the
following proposition holds.

Proposition 2.1. Let � be a CD grammar systems with n � 1 components. It

is always possible to construct an unstructured population P system P such that

L(P) = L1(�).

On the other hand, it is not so immediate to simulate in the context of (popula-
tion) P systems derivation modes other than the 1-mode. This might require the
introduction of speci�c operations to manipulate the cells in the system or the in-
troduction of speci�c control mechanisms to regulate the communication of strings
from one place to another one. However, as we will see in the next section, popula-
tion P systems are in general more powerful than CD grammar systems in terms of
generative capacity.

3 Unstructured Population P Systems

In this section we introduce a more general notion of unstructured population P
systems and we report some results concerning their computational power.
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De�nition 3.1. An unstructured population P system with string-objects is a con-
struct

P = (V; T; L;E;C1; C2; : : : ; Cn; R);

where:

1. V is a �nite alphabet;

2. T � V is a �nite set of terminal symbols;

3. L is a �nite set of labels that de�nes a set of possible types for the cells in the
system;

4. E � V � is a �nite language initially assigned to the environment;

5. Ci = (Mi; ti), for each 1 � i � n, with Mi � V � a �nite language de�ning the
initial content of cell i, and ti 2 L the initial type of cell i;

6. R is a �nite set of rules of the forms:

(a) ( a! y )t, for a 2 V , v 2 V �, t 2 L (transformation rules that allow a cell
of type t to rewrite one of its internal strings by replacing the symbols a
with the string v ),

(b) ( a )t ! v ( )t, for a 2 V , v 2 V �, t 2 L (output rules that allow a
cell of type t to rewrite one of its internal strings and move it into the
environment),

(c) a( )t ! ( v )t, for a 2 V , v 2 V �, t 2 L (input rules that allow a cell of
type t to rewrite a string in the environment and add it to the content of
the cell),

(d) ( a )t ! ( v )p, for a 2 V , v 2 V �, t; p 2 L(cell di�erentiation rules that
allow a cell of type t to rewrite one of its internal strings and change its
type from t to p)

(e) ( a )t ! ( v )t ( z )t, for a 2 V , v; z 2 V �, t 2 L (cell division rules that
allow cell of type t to rewrite one of its internal strings in order to produce
two cells of type t, containing the same set of string as the originating
one except for the string to be rewritten where the symbol a is replaced
by the string v in one cell and by the string z in the other one).

This de�nition is obtained as a straightforward adaption to the case of string-objects
of the de�nition given in [1] for population P systems with active cells in the case of
symbols objects. In particular, communication of strings through the environment is
achieved by means of a �nite set of output and input rules: these rules allow a string
to be rewritten inside a cell and then moved out from that cell or, alternatively, to
be rewritten inside the environment and moved into a cell.

As usual, a computation in an unstructured population P system P is obtained by
applying in a non-deterministic maximal parallel manner the rules in R to the strings
in the system by starting from the initial con�guration, with the further speci�cation
that each string is rewritten in a sequential way and that at most one rule of the

Population P systems and grammar systems

69



form (d), or (e) per each cell can be used at a time. The output of a computation is
given by the set of strings in T � that are produced inside the environment and that
cannot enter the cells anymore; as usual in P systems with string-objects, we do not
work with halting computations but we accept all the strings of the aforementioned
form produced by any computation in P. The language generated by P in this way
is then denoted by L(P). Then, we introduce the families of languages of the form
ELPPn;k(op), with n; k � 1, and op � fa; b; c; d; eg that represent the families of
languages generated by (unstructured) population P systems where: the number of
cells in a step of computation is always less than or equal to n, the cardinality of
the set of possible types for the cells is at most k, and rules of the forms speci�ed
in op.

As well as this, we consider the families of languages of the form ELPn(tar)
as the families of languages generated by standard rewriting P systems with at
most n membranes where: the structure of the system is de�ned as a hierarchical
arrangement of membranes represented as a tree, and communication of strings from
one cell to another one is performed by using the target here, inj , out. We refer
to [10] for a formal de�nition of the basic model of rewriting P systems. Finally,
we denote by MAT the family of languages generated by matrix grammars without
appearance checking [6].

The �rst result we present here shows that unstructured population P systems
without cell di�erentiation rules and cell division rules are no more than rewriting
P systems.

Lemma 3.1. ELPPn;�(fa; b; cg) � ELPn+1(tar), for each n � 1.

Proof. The proof is based on the observation that an unstructured population P
system with n � 1 cells can be interpreted as being a rewriting P system with
n � 1 elementary membranes embedded in a unique main membrane, which is the
skin membrane of the P system and play the same role as the environment in the
population P system. More precisely, given a population P system P with n � 1
cells C1; : : : ; Cn as speci�ed in De�nition 3.1, we construct a rewriting P system �
with n+ 1 membranes labeled by 0; : : : ; n where:

� 0 is the label of the skin membrane;

� i, for each 1 � i � n, is the label of an elementary membrane that is contained
inside membrane 0;

� for each transformation rule ( a ! y )i in R , with 1 � i � n, there exists a
corresponding rule a! (v; here) in Ri;

� for each output rule ( a )i ! v ( )i in R, with 1 � i � n, there exists a corre-
sponding rule a! (v; out) in Ri;

� for each input rule a( )i ! ( v )i in R, with 1 � i � n, there exists a rule
a! (v; ini) in R0;

Notice that, without loss of generality, we are assuming L = f1; : : : ; ng and each
cell Ci to be of type i, for each 1 � i � n. Moreover, in order to correctly simulate
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the behaviour of P, we add to R0 a rule a ! (a; out), for each symbol a in the
system (i.e., at any moment a string produced inside the skin membrane can be sent
out of the system), and we consider for the P system � the set of terminal symbols
T 0 = f a j a 2 T; 6 9a( )t ! ( a )i 2 R g, for T the set of terminal symbols of P (i.e.,
we accept only strings in the environment that are terminal and that cannot enter
anymore the cells in the system). This means the language L(�) containing all the
the strings in T 0� sent out of the system during all the possible computations in �
is exactly the language L(P).

Then, as a direct consequence of the equivalence ELP3(tar) =MAT established in
the existing literature [7], [10] and the previous result, we obtain immediately the
following result.

Corollary 3.1. ELPP�;�(fa; b; cg) � ELP3(tar) =MAT .

As well as this, we can prove the opposite inclusion: rewriting P systems can be
simulated by unstructured population P systems without using cell di�erentiation
and cell division.

Lemma 3.2. ELPn(tar) � ELPPn;n(fa; b; cg), for each n � 1.

Proof. Let � be a rewriting P system with n � 1 membranes labeled in an one-to-
one manner by 1; : : : ; n where 1 is the label of the skin membrane. We construct a
population P system P with n cells where:

� L = f1; : : : ; ng;

� for each rule a! (v; here) in Ri, with 1 � i � n, there exists a corresponding
output rule ( a )i ! v$herei ( )i in R;

� for each rule a ! (v; out) in Ri, with 1 < i � n, there exists a corresponding
output rule ( a )i ! v$outi ( )i in R;

� for each rule a ! (v; out) in R1, there exists a corresponding output rule
( a )1 ! v ( )1 in R;

� for each rule a ! (v; inj) in Ri, with 1 � i � n, there exists a corresponding
output rule ( a )i ! v$inj ( )i in R;

� there exists an input rule $herei ( )i ! (� )i in R, for each 1 � i � n;

� there exists an input rule $ini ( )i ! (� )i in R, for each 1 � i � n;

� there exists an input rule $outj ( )i ! (� )i in R, for each 1 � i 6= j � n, with
membrane i the membrane that contains membrane j.

The simulation of the P system � by means of the population P system � is done in
the following way. We rewrite all the strings inside the cells in P in the same way as
in � by inserting in each of them a special symbol $t carrying the target information t
needed to move the strings in the right places. These strings are immediately moved
out from the cells into the environment and, in the next step, they will be distributed
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to the cells according to their respective target indications by using the input rules
in R so that the process can be iterated. Moreover, the strings that are sent out of
the skin membrane are moved into the environment without any special symbol $t,
which means these strings will never be able to enter again the cells in the system.
Therefore, the language L(P) is exactly the language of terminal strings that are
sent out of the system during all the possible computations in P.

Thus, by combining the previous result with Corollary 3.1, we obtain the following
characterisation of the languages generated by unstructured population P systems
without cell division rules and cell di�erentiation rules.

Corollary 3.2. ELLP�;�(fa; b; cg) = ELLP3;3(fa; b; cg) =MAT .

Finally, the case of population P systems with cell division rules and/or cell di�er-
entiation rules remains to be considered. In this respect, the sole operation of cell
division is expected not to increase the power of population P systems, whereas pop-
ulation P systems with cell di�erentiation rules are expected to be computationally
complete.

Conjecture 3.1. ELLP�;�(fa; b; c; dg) = RE.

In fact, it should be easy to prove that population P systems with cell di�erentiation
rules are able to simulate matrix grammars with appearance checking. This result, if
proved, would be coherent with what was achieved in [1] where a similar universality
result based on the operation of cell di�erentiation is provided for population P
systems with symbol-objects.

4 Using Bond Making Rules

Direct communication among the cells (or membranes) in the system is one of the
de�ning features of the membrane computing paradigm. Cells work in parallel on
di�erent sets (or multisets) of objects, which can then be moved from one cell to
another one by means of some dedicated mechanisms typically expressed as a �-
nite set of communication rules [10], [12], [8]. Moreover, population P systems
[1] introduces the possibility of altering communication capabilities of the cells by
modifying the set of links existing between the cells. This is done by considering a
�nite set of bond making rules which are used after each application of transforma-
tion/communication rules to the objects contained in the cells; this makes possible
to modify the set of edges in the graph de�ning the structure of the system. Notice
that a communication rule inside a cell can be used if and only if the cell is linked
to some other cells by means of some edges in the underlying graph.

In grammar systems, these features of parallelism and communication among the
components were �rstly considered by introducing the notion of parallel communi-
cating grammar systems (PC grammar systems, for short): a model for networks of
Chomsky grammars communicating strings by emerging requests [3]. More precisely,
in each step, each grammar in the system rewrites its string and communication is
done by requests through so-called query symbols, each one of them referring to a
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speci�c grammar in the system. When a query symbol appears in the string of a
grammar, the rewriting process stops and one or more communication steps are per-
formed by replacing all occurrences of the query symbols with the current string of
the queried grammars providing that this string does not contain any query symbol.
When no more query symbols are present in the system the rewriting process can
start again.

From a P system point of view, this communication by request can be considered
as a mechanism to open communication channels between the cells in the system.
Speci�cally, here we want to use query symbols for de�ning bond making rules that
make possible to link two cells provided that these cells contain a pair of correspond-
ing query symbols. Then, once a link has been established, communication between
the two cells can take place by rewriting their respective query symbols by means
of some particular communication rules associated with the cells.

De�nition 4.1. A population P system with bond making rules is a construct

P = (V; T;Q; �;C1; C2; : : : ; Cn)

where:

1. V is a �nite alphabet;

2. T � V is a �nite set of terminal symbols;

3. Q is a �nite of set of query symbols;

4. � is a �nite set of bond making rules of the form (i; q1; q2; j), with 1 � i 6= j � n

and q1; q2 2 Q;

5. Ci = (Mi; Ri; Si), for each 1 � i � n, with:

(a) Mi � V � a �nite language de�ning the initial content of cell i;

(b) Ri a �nite set of transformation rules of the forms a ! v, a ! v q,
a! (v; out), for a 2 V , v 2 V �, and q 2 Q;

(c) Si is a �nite set of communication rules of the forms q ! v, q ! v q0, for
q; q0 2 Q, and v 2 V �.

Here, with respect to De�nition 3.1, we are considering population P systems without
cell di�erentiation and cell division where the number and the type of cells in the
system cannot vary during a computation. As well as this, we do not need a notion
of environment as cells are allowed to communicate directly by using their respective
sets of communication rules in combination with the set of bond making rules. In
this respect, the structure of a population P system with bond making rules P is
given by the the set of communication links existing among the cells in the system
that are created time by time by applying the bond making rules in �.

Each cell Ci, with 1 � i � n, gets assigned a �nite language Mi that de�nes its
initial content. Each string contained in cell i is rewritten by using the transfor-
mation rules in Ri. A rule a ! v 2 Ri speci�es that a string containing a symbol
a can be rewritten inside cell i by replacing the symbol a with the string v. In a
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similar way, a rule a! (v; out) 2 Ri allows cell i to rewrite one of its internal strings
but, after that, the string has to exit the cell without any chance to enter again any
cell of the system. Finally, a rule a ! v q 2 Ri makes possible to rewrite a string
inside cell i and introduce in this string the query symbol q. After the application
of one of these rules, the rewriting of the string containing the query symbol q in-
side cell i stops and it will restart only when the symbol q has been satis�ed and
removed from the string. However, this does not stop the rewriting of the other
strings contained in cell i. In order to satisfy a query symbol, the system operates
as follows. Consider a bond making rule (i:q1; q2; j), with q1; q2 2 Q, 1 � i 6= j � n,
and suppose that, after one application of the respective transformation rules in Ri
and in Rj , a string x q1 y is produced inside cell i and a string u q2 z is produced
inside cell j, with x; y; u; z 2 V �. This means a bond between cell i and cell j can be
created by connecting the string x q1 y with the string u q2 z, and the query symbol
q1 can be satis�ed by using the communication rules in Sj whereas the symbol q2
can be satis�ed by using the rules in Si. Notice that, for each 1 � k � n, the set Sk
contains both rules of the form q ! v that remove the query symbol from the string,
and rules of the form q ! v q0 that introduce a new query symbol, which makes the
string to wa!it for another communication to take place.

As usual, we assume a non-deterministic maximal parallel strategy for the ap-
plication of the rules:

� in each step, in each cell i, with 1 � i � n, each string that can be rewritten by
some rules inRi must be rewritten by using one rule inRi non-deterministically
chosen (i.e., each string inside cell i is rewritten in a sequential manner); at the
same time, each query symbol in each cell j linked to cell i that can be satis�ed
must be satis�ed by using one communication rule in Si non-deterministically
chosen;

� after each application of the transformation/communication rules, for each
bond making rule (i:q1; q2; j), with q1; q2 2 Q, 1 � i 6= j � n, we establish
a link between cell i and cell j for each pair of strings x q1 y, u q2 z, with
the former one contained in cell i and the latter one contained in cell j, for
x; y; u; z 2 V �; the restriction here is that the same string containing a query
symbol can be used by only one bond making rule non-deterministically chosen.

Therefore, a step of computation in a population P system with bond making rules
is done in two separate stages: a stage where transformation/communication rules
are applied to the strings contained inside the cells and a stage where bond making
rules are used in order to create links between the cells in the system. Notice that
the query symbols introduced by the application of the transformation rules can be
satis�ed only in the next step of computation after having used the bond making
rules. Furthermore, these bond making rules make possible to create multi-links
between the cells that are represented by sets of pairs of corresponding strings.

The language generated by a population P system with bond making rules P is
the language L(P) containing all the strings sent out of the cells during all the possi-
ble computations in P. The family of languages generated by population P systems
with bond making rules and with at most n � 1 cells is denoted by ELPPn(query).
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Next, we prove that these population P systems are quite powerful from a compu-
tational point of view: systems with only two membranes can generate the whole
family of languages in MAT .

Lemma 4.1. MAT � ELPP2(query).

Proof. Consider, without loss of generality, a matrix grammar without appearance
checking G in binary normal form. This is because it is known from [6] that, for each
matrix grammar generating a language L, there always exists an equivalent matrix
grammar in binary normal formal generating the same language L. Moreover, we
assume all the matrices in G but the initial matrix (S ! XA) to be labeled in an
one-to-one manner by values in f1; 2; : : : ;mg. We construct a population P system
P with 2 cells where:

� C1 = (M1; R1; S1) with

{ M1 = fXg, for (S ! XA) the initial matrix of G;

{ R1 = fX ! Xi jX 2 N1; 1 � i � n g;

{ S1 = fAi ! v j i : (X ! Y;A! v) is a matrix in G; 1 � i � n g
[fAi ! v f j i : (X ! �;A! v) is a matrix in G; 1 � i � n g;

� C2 = (M2; R2; S2) with

{ M2 = fAg, for (S ! XA) the initial matrix of G;

{ R2 = fA! Ai jA 2 N2; 1 � i � n g [ f f ! (f; out) g;

{ S2 = fXi ! Y j i : (X ! Y;A! v) is a matrix in G; 1 � i � n g
[fXi ! � j i : (X ! �;A! v) is a matrix in G; 1 � i � n g;

for Q = fXi; Ai jX 2 N1; A 2 N2; 1 � i � n g. Now, by having this construction,
it is easy to see that the population P system P correctly simulates the matrix
grammar G and therefore we have L(P) = L(G).

At the moment, we are not able to provide an upper bound for the generative
capacity of population P systems with bond making rules and answer the question
whether they are more than usual rewriting P systems or not.

5 Final Remarks

Membrane computing and grammar systems are two active areas of theoretical com-
puter science, with di�erent starting points, but with several similarities (both areas
deal with distributed computing devices, where such notions as parallelism, cooper-
ation, decentralisation are crucial). Nevertheless, as we have seen, important di�er-
ences between the two models emerge from a deeper investigation especially in terms
of computational power. Population P systems even of a very basic form are able to
characterise the whole family of languages generated by matrix grammars without
appearance checking (see Corollary 3.2). A similar result was already established
for the basic model of rewriting P systems as reported in Corollary 3.1. The power
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of (population) P systems is in fact determined by the underlying communication
structure that allows the cells to exchange strings in a controlled way. In this sense,
P systems with string-objects appears to be more similar to the already existing
notions of networks of evolutionary processors [5], [2].

On the other hand, a general claim in the area of P systems with string-objects
is that rewriting is not enough to achieve the computational completeness but it is
necessary to introduce in rewriting P systems some extra features such as priority,
replicated rewriting or conditional communication [10]. In the case of unstructured
population P systems, we expect the universality to be obtained by including the
operation of cell di�erentiation, which makes possible to change the types of the
cells in the system (see Conjecture 3.1). Furthermore, the claim \rewriting is not
enough" might represent a motivation for introducing grammar system features in
(population) P systems. In this respect, Section 4 introduces a variant of population
P systems where the notion of query symbols considered for PC grammar systems
is used to de�ne bond making rules and the related communication model. Notice
that, according to De�nition 4.1, communication in a population P system with
bond making rules consists in just rewriting a query symbol in a cell by means of
some rules associated with another cell without an e�ective movement of the strings
from a cell to another one. In other words, a string containing a query symbol is
temporarily given access to the rules in a cell di�erent from the one where the string
is placed. Nevertheless, we could easily de�ne a variant of this model where strings
are moved from a cell to another one by replacing a query symbol in a cell with all
the strings contained in the queried cell and producing all the resulting strings inside
the querying cell. As well as this, we might consider multisets of strings instead of
sets of strings as, for instance, proposed in [11] where PC grammar systems with
multisets of strings are investigated in relationship with P systems.

Finally, further investigations of population P systems with string-objects might
be directed to clarify the role of the environment in achieving successful and mean-
ingful computation; this might be done by pointing out analogies with the existing
models of eco-grammar systems [4].

Acknowledgements

This research was supported by the Molecular Computing Network (MolCoNet),
European Union Contract IST-2001-32008 and by the Engineering and Physical
Science Research Council (EPSRC) of United Kingdom, Grant GR/R84221/01.

References

[1] Bernardini, F., Gheorghe, M., (2004). Population P systems. Journal of Uni-
versal Computer Science, 10, 509-539.

[2] Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J., M., (2003). Net-
works of Evolutionary Processors. Acta Informatica, 39, 517-529.

F. Bernardini, M. Gheorghe

76



[3] Csuhaj-Varj�u, E., Dassow, J., Kelemen, J., P�aun, Gh., (1994). Grammar Sys-
tems. A Grammatical Approach to Distribution and Cooperation. Gordon and
Breach, London.

[4] Csuhaj-Varj�u, E., Kelemen, J., Kelemenova, A., P�aun, Gh., (1997). Eco-
Grammar Systems: A Grammatical Framework for Studying Life-Like Inter-
actions. Arti�cial Life, 3, 1-28.

[5] Csuhaj-Varj�u, E., Salomaa, A., (1997). Networks of Parallel Languages Pro-
cessors. In New Trends in Formal Languages (P�n, Gh., Salomaa, A., eds.),
Lecture Notes in Computer Science, 1218, Springer, Berlin, Heidelberg, New
York, 299-318.

[6] Dassow, J., P�aun, Gh., (1989). Regulated Rewriting in Formal Language Theory.
EATCS Monograph in Theoretical Computer Science, Springer-Verlag, Berlin,
Heidelberg, New York.

[7] Madhu, M., (2003). Studies of P Systems as a Model of Cellular Computing,
PhD Thesis, Indian Institute of Technology, Madras, India.

[8] Martin-Vide, C., Mauri, G., P�aun, Gh., Rozenberg, G., Salomaa, A., eds.,
(2004). Membrane computing. International workshop, WMC 2003, Tarragona,

Spain, July 2003. Revised papers. Lecture Notes in Computer Science, 2933,
Springer, Berlin, Heidelberg, New York.

[9] P�aun, Gh., (2000). Computing with Membranes. Journal of Computer and Sys-
tem Sciences, 61, 108{143.

[10] P�aun, Gh. (2002). Membrane Computing. An Introduction. Natural Computing
Series, Springer, Berlin, Heidelberg, New York.

[11] P�aun, Gh., (2004). Grammar Systems vs. Membrane Computing: A Prelimi-
nary Approach. In Pre-Proceedings of Grammar Systems Week 2004, Budapest,

Hungary, July 5-9, 2004 (Csuhaj-Varj�u, E., Vaszil, G., eds.), MTA SZTAKI,
Budapest, 225-244.

[12] P�aun, Gh., Rozenberg, G., Salomaa, A., Zandron, C., eds., (2003). Membrane

Computing. International Workshop, WMC-CdeA 02, Curtea de Arges, Roma-

nia, August 19-23, 2002. Revised papers. Lecture Notes in Computer Science,
2597, Springer, Berlin, Heidelberg, New York.

[13] Rozenberg, G., Salomaa, A., eds., (1997). Handbook of Formal Languages. 3
volumes, Springer, Berlin, Heidelberg, New York.

Population P systems and grammar systems

77



CD Grammar Systems as Models of Distributed Problem
Solving, Revisited

Henning Bordihn
Institut f�ur Informatik, Universit�at Potsdam,

August-Bebel-Stra�e 89, D-14482 Potsdam, Germany
henning@cs.uni-potsdam.de

Markus Holzer
Institut f�ur Informatik, Technische Universit�at M�unchen,

Boltzmannstra�e 3, D-85748 Garching bei M�unchen, Germany
holzer@informatik.tu-muenchen.de

Abstract
Based on a derivation mode f for cooperating distributed (CD) grammarsystems, we introduce a new form of cooperation protocol, the so called \cut-f -mode" of derivation. Intuitively, a cut-f -mode derivation, partitions (cuts)a sentential form into several subwords, where some of these subwords are dis-tributed to the components, which derive words according to the original f -mode of derivation, and �nally combines all these words together again. It isargued that these derivation modes are much closer to the original AI moti-vation of CD grammar systems. We investigate the cut-mode versions of theclassical derivation modes �, � k, = k, and � k, of the competence based modes tand sf , as well as the cut-mode versions of the combined t-modes. It turns outthat in most cases, the cut-f -mode turns out to be as most as powerful thanthe corresponding non-cut-mode, that is, the f -mode itself. Nevertheless, thereare also some cases, where the power is even reduced to that of context-freegrammars.

1 Introduction
The theory of cooperating distributed grammar systems|for an overview we refer
to [7]|has become a vivid �eld in formal language theory since its origin in [4], with
forerunner papers [10] and [1]. Cooperating distributed grammar systems have been
introduced for describing, in terms of formal grammars and languages, communities
of cooperating autonomous problem solving agents which use the blackboard model
of problem solving. Furthermore, grammar systems are motivated in connection
with the syntax of programming languages, since they can be seen as generalization
of two-level substitution grammars to a multi-level concept [10]. Finally, in recent
papers they have been considered as sequential counterparts of tabled Lindenmayer
systems [2].
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A cooperating distributed (CD, for short) grammar system consists of a �nite
set of (context-free) grammars, called components, performing derivation steps on a
common sentential form in turns, according to some cooperation protocol. In terms
of the blackboard model of problem solving, the components correspond to the in-
dependent problem solving agents, representing autonomous knowledge sources, the
sentential form to the current state of the problem solving (the blackboard), where
the knowledge sources can make changes, and the generated language represents
the set of problem solutions (cf. [5]). Simple cooperation protocols are the so-called
�-mode, � k-mode, = k-mode, or � k-mode, where a component, once started, has
to perform an arbitrary number, at most k, exactly k, or at least k derivation steps,
respectively. Moreover, there are two cooperation protocols which are based on the
feature of competence of the problem solving agents on the current state of the prob-
lem solving: (1) In the t-mode, a component can start and has to remain deriving
unless and until there is no nonterminal left in the sentential form to which one of
its productions is applicable (that is, the component is not able to contribute to
the problem solving any more), and (2) in the sf -mode, a component is allowed to
become and has to remain active unless and until there is some nonterminal present
in the sentential form which cannot be rewritten by this component (that is, the
component does not possess the full competence on the current state of the problem
solving).

We try to model the e�ect when agents contribute to the solution by solving sub-
tasks of the whole problem. From the AI motivation this approach seems to be more
adequate: In contrast to di�erent rule-based architectures of problem solving sys-
tems, the blackboard model of problem solving emphasizes the highly opportunistic
way in which the knowledge sources are applied during the problem solving process,
cf. [11]. That is, there is no rigid prescription for the cooperation strategy of the
knowledge sources. In terms of CD grammar systems, solving sub-tasks corresponds
to working on a substring of the current sentential form. This led the authors to the
concept of CD grammar systems working in the cut-f-mode of derivation, where f
is one of the aforementioned cooperation protocols. In these cut-f-modes, in any
derivation step the sentential form is partitioned (cut) into several substrings which
can be associated to di�erent components. In order to be as little rigid as possible,
this association is done via a partial mapping, such that both some substrings of the
sentential form and some components may be disregarded. Then, each component
to which a substring has been associated works in (one and the same) derivation
mode, more precisely, in the f -mode of derivation if the CD grammar system as a
whole is driven in the cut-f-mode.

The overall picture that emerges from our investigates on this newly de�ned
derivation mode is, that for some modes, the generative capacity is not a�ected at
all, but there are also some cases, where the power is reduced to that of context-free
grammars, if parts of the sentential forms can be distributed to several components
in one and the same derivation step. In particular, the former is true for derivations
like, e.g., �-, = 1-, � 1-, or � 1-mode, while the latter is true for instance, for the
t-mode of derivation, which describes the family of all ET0L languages in the non-
cut variant. Moreover, we also �nd situations, where the cut-mode derivation does
not become context-free. For instance, the sf -mode of derivation characterizes the
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family of programmed context-free languages, while its cut-mode version describes
an intermediate class between the families of recurrent programmed context-free and
programmed context-free languages. The former language family equals the biolog-
ically motivated family of languages generated by ET0L systems with random con-
text [15]. This is yet another result, where recurrent programmed languages appear
in relation with CD grammar systems and unconventional derivation modes|see,
e.g., [3].

The paper is organized as follows: The next section contains preliminaries, and
we provide the basic de�nition of cut-f -mode derivations. Then in Section 3 we
investigate the generative power of CD grammar systems working in these newly
de�ned derivations modes and �nally, we summarize our results and highlight the
remaining open questions in Section 4.

2 De�nitions
We assume the reader to be familiar with the basic notions of formal languages, as
contained in [6]. In general, we have the following conventions: � denotes inclusion,
while � denotes strict inclusion. The set of positive integers is denoted by IN and the
cardinality of a set M by jM j. Concerning our set notation, we abbreviately write
fX(k); Y (k) j P (k) g instead of fX(k) j P (k) g [ fY (k) j P (k) g, where X(k) and
Y (k) are objects with parameter k and P (k) is some predicate on k. This notation
is also extended to more than two kinds of objects having the same parameter. The
empty word is denoted by �. For x 2 V �, where V is some alphabet, and forW � V ,
let jxjW denote the number of occurrences of letters fromW in x. IfW is a singleton
set fag, we simply write jxja instead of jxjfag. We consider two languages L1 and L2
to be equal if and only if L1 n f�g = L2 n f�g, and we simply write L1 = L2 in this
case.

The families of languages generated by regular, context-free, context-sensitive,
general type-0 Chomsky grammars, and ET0L systems are denoted by L(REG),
L(CF), L(CS), L(RE), and L(ET0L), respectively. We attach �� in our notations
if erasing rules are not permitted. Details about these families can be found in [6].
The class of �nite languages is denoted by L(FIN).

A programmed grammar (see, for instance, [6, 13]) is a septuple
G = (N;T; P; S;�; �; �);

where N , T , and S 2 N are the set of nonterminals, the set of terminals, and the
start symbol, respectively. Here P is the �nite set of productions of the form �! �,
�; � 2 (N [ T )�, j�jN > 0, and � is a �nite set of labels (for the productions in P ),
such that � can be also interpreted as a function which outputs a production when
being given a label; � and � are functions from � into the set of subsets of �.
Usually, the productions are written in the form

(r : �! �; �(r); �(r)) ;
where r is the label of � ! �. For (x; r1) and (y; r2) in (N [ T )� � � and �(r1) =
(� ! �), we write (x; r1) ) (y; r2) if and only if either x = x1�x2, y = x1�x2 and
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r2 2 �(r1), or x = y and rule � ! � is not applicable to x, and r2 2 �(r1). In the
latter case, the derivation step is done in appearance checking mode. The set �(r1)
is called success �eld and the set �(r1) failure �eld of r1. As usual, the reexive
transitive closure of ) is denoted by �). The language generated by G is de�ned as

L(G) = fw 2 T � j (S; r1) �) (w; r2) for some r1; r2 2 � g:
The family of languages generated by programmed grammars containing only

context-free core rules is denoted by L(P;CF; ac). We replace CF by CF�� in that
notation if erasing rules are forbidden. When no appearance checking features are
involved, i.e., �(r) = ; for each label r 2 �, we are led to the families L(P;CF) and
L(P;CF��). A special variant of programmed grammars are recurrent programmed
grammars introduced in [15]. A programmed context-free grammar G is a recurrent
programmed context-free grammar if for every p 2 � of G, if �(p) = ;, then p 2 �(p),
and if �(p) 6= ;, then p 2 �(p) = �(p). The corresponding language families are
denoted by L(RP;CF; ac) and L(RP;CF � �; ac). When no appearance checking
features are involved, i.e., �(r) = ; for each label r 2 �, we omit ac in that notation,
again.

We use bracket notations like L(P;CF[��]) � L(P;CF[��]; ac) in order to say
that the statement holds both in case of forbidding erasing productions and in the
case of admitting erasing productions (neglecting the bracket contents).

Moreover, we need some more notation on grammar, namely we have to de�ne the
�nite index restriction. Loosely speaking, the index of a grammar is the maximal
number of nonterminals simultaneously appearing in a sentential form during a
terminating derivation, considering the most economical derivation for each string.
The �nite index property is de�ned as follows: Let G be an arbitrary grammar type
(e.g., context-free grammars, programmed grammars with or without appearance
checking, etc.), and let N , T , and S 2 N be its nonterminal alphabet, terminal
alphabet, and axiom, respectively. For a derivation

D : S = w1 ) w2 ) � � � ) wn = w
for w in G, with w 2 T �, we set

ind(D;G) = maxf jwijN j 1 � i � n g;
and, for w 2 T �, we de�ne

ind(w;G) = minf ind(D;G) j D is a derivation for w in G g:
The index of grammar G is de�ned as

ind(G) = supfind(w;G) j w 2 L(G) g:
For a language L in the family L(X) of languages generated by grammars of type X
we de�ne

indX(L) = inff ind(G) j L(G) = L and G is of type X g:
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For a family L(X), we set
Ln(X) = fL j L 2 L(X) and indX(L) � n g

for n 2 IN, and Lfin(X) = [n�1Ln(X).
A cooperating distributed (CD) grammar system of degree n, with n � 1, is an

(n + 3)-tuple G = (N;T; P1; P2; : : : ; Pn; S), where N , T are disjoint alphabets of
nonterminals and terminals, respectively, S 2 N , and P1; P2; : : : ; Pn are context-free
rule sets called components. For 1 � i � n, let

dom(Pi) = fA 2 N j there is a word v such that A! v 2 Pi g
denote the set of all nonterminals which can be rewritten by the component Pi. For
x; y 2 (N [ T )� and 1 � i � n, we write x )i y if and only if x = x1Ax2 and
y = x1zx2 for some A ! z 2 Pi. Hence, subscript i refers to the component to
be used. By )� ki , )= ki , )� ki , )�i , for k � 1, we denote a derivation consisting
of at most k steps, exactly k steps, at least k steps, an arbitrary number of steps,
respectively, executed by component Pi. Furthermore, we write x )ti y if and only
if x )�i y and there is no z such that y )i z. Moreover, x )sfi y if and only
if x )�i x0, x0 )i y, and Pi is sf -competent on x0 but is not sf -competent on y,
where a component Pi is said to be sf -competent on a word x if and only if (1)
x = u0A1u1A2u2 : : : um�1Amum with m � 0, uj 2 T �, for 0 � j � m, and Aj 2 N ,
for 1 � j � m, and (2) for each j, for 1 � j � m, there is a production Aj ! wj in
Pi. Note that the de�nition of the derivation relation implies that component Pi is
sf -competent on x and on all intermediate sentential forms in the derivation x)�i x0,too.

Combining the former three modes with the t-mode requirement we obtain the
modes (t ^ � k), (t ^ = k), and (t ^ � k) which are de�ned as follows|see, e.g.,
[8, 9]: There exists a derivation which satis�es both properties in common, e.g.,
x )(t^� k)i y if and only if there exists an m-step derivation from x to y using Pi
such that m � k and there is no z such that y )i z.

Applying our idea on distributed problem solving to one of the aforementioned
modes
f 2 f�; t; sf g [ f� k;= k;� k j k 2 IN g [ f (t ^ � k); (t ^= k); (t ^ � k) j k 2 IN g

leads us to the cut-f -mode, fc-mode for short, which is de�ned as follows: x)fc y
if and only if

1. x = x0x1 : : : xm with m � 0, xi 2 (N [ T )�, for 0 � i � m,
2. there is a partial injective mapping � : f0; 1; : : :mg ,! f1; 2; : : : ; ng such that

yi = xi, if i 62 dom(�), and yi = zi, if xi )f�(i) zi, and
3. y = y0y1 : : : ym.

Here dom(�) = f i j �(i) is de�ned g denotes the set of indices in the decomposition
x = x0x1 : : : xm to which some component is associated by �. Let
D = f�; t; sf g [ f� k;= k;� k j k 2 IN g [ f (t ^ � k); (t ^= k); (t ^ � k) j k 2 IN g
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and Dc = f fc j f 2 D g. The language generated by the CD grammar system
G = (N;T; P1; P2; : : : ; Pn; S)

in the non-cut f -mode with f 2 D is de�ned as
Lf (G) = fw 2 T � j S )fi1 w1 )fi2 � � � )fim�1 wm�1 )fim wm = w with

m � 1, 1 � ij � n, for 1 � j � m g
whereas the the language generated in the cut-f -mode with fc 2 Dc is de�ned as

Lfc(G) = fw 2 T � j S )fc w1 )fc � � � )fc wm�1 )fc wm = w with m � 1 g:
If f 2 D [ Dc, then the family of languages generated by [�-free] context-free CD
grammar systems working in f -mode, is denoted by L(CD;CF[��]; f).

In order to clarify our de�nitions, we give two examples.
Example 1. Let G be the CD grammar system G = (N;T; P1; P2; P3; S) with non-
terminals N = fS; S0; A;A0; B;B0g, terminals T = fa; b; cg, and the production sets

P1 = fS ! S0; S0 ! ABg
P2 = fA! aA0b; B ! B0cg
P3 = fA0 ! A;B0 ! Bg
P4 = fA! ab;B ! cg:

It is easy to see that running G in the =2-mode results in the non-context-free
language L1 = f anbncn j n � 1 g, since the only way to start the derivation is to use
production set P1 leading to the sentential form AB within two steps. Then, for all
natural numbers n � 0, we �nd

anAbnBcn )=22 an+1A0bn+1B0cn+1 )=23 an+1Abn+1Bcn+1
or the terminating derivation

anAbnBcn )=24 an+1bn+1cn+1:
This shows the stated claim. Observe, that except for the axiom and the terminal
word, all intermediate sentential forms contain exactly two nonterminals. When
considering the (= 2)c-mode a similar reasoning applies, since no production set is
successfully applicable to a sentential form containing one nonterminal only, except
from the application of P1 to the axiom S. Thus, a production set Pi with 2 � i � 4
will be successful only, if two appropriate nonterminals in the sentential form are
present. Therefore, the only possible derivations in (= 2)c-mode are the derivations
shown above.

When comparing the t-mode and its cut-version we �nd that in the �rst mode the
CD grammar system G generates the language f anbncn j n � 1 g while in tc-mode
only the context-free language f anbncm j n;m � 1 g will be obtained. The latter
fact is obvious, since due to the cutting of the sentential form when running G in
the tc-mode the derivation of the two nonterminals will be decoupled. Therefore, the
number of a's and b's are independently from the number of c's in the sentential
form. Thus, we obtain the context-free language mentioned above.
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Let us come to our second example.
Example 2. The language L1 = f anbncn j n � 1 g is also generated by the CD
grammar system G = (fS;A;A0; B;B0g; fa; b; cg; P1; P2; P3; P4; S) with the produc-
tion sets

P1 = fS ! ABg
P2 = fA! aA0b; A0 ! A0; B ! B0cg
P3 = fA0 ! A;B0 ! B;B ! Bg
P4 = fA! ab;B ! cg ;

if it is driven in either sf - or sf c-mode. For the sf -mode, this is seen as fol-
lows. Every derivation starts with P1 yielding AB. Starting with a sentential form
anAbnBcn, n � 0, the derivation can terminate to an+1bn+1cn+1 with the help of P4
or P2 can be applied. Then, we have to distinguish two cases: (1) anAbnBcn )sf2
an+1A0bn+1B0cn+1 by replacing A �rst and (2) anAbnBcn )sf2 anAbnB0cn+1 by ap-
plying B ! B0c, �rst and only. In the second case, the derivation is blocked, since
no of the components is competent on the obtained sentential form. In the �rst case,
P3 is the only applicable component. If A0 is replaced by A �rst, then the derivation
is blocking again, since no component is competent both on A and on B0. Hence,
�rst B0 and then A0 must be rewritten, yielding an+1Abn+1Bcn+1. In conclusion,
Lsf (G) = L1.

The fact Lsf c(G) = L1 can similarly be seen if one takes into consideration the
following observations:

1. P2 cannot work on a string containing an A but no B since it would not
terminate.

2. If P2 deals with a string containing a B and no A, then the B0 contained in
the resulting string cannot be replaced, since P3 can only terminate if it starts
o� with a string containing an A0, but this A0 cannot be produced by P2 after
B has been replaced before (see item 1.).

3. Analogously, P3 can successfully work neither on a string containing a B0 but
no A0 nor on a string containing an A0 but no B0.

3 The Power of Cut-Derivations in CD Grammar Sys-
tems

In this section we focus on the power of the newly de�ned CD grammar systems
variants with the well known \classical" language families as introduced in the pre-
ceding section. First, we recall some known facts about the generative capacity of
CD grammar systems working in the non-cut modes, see, for example, [7]. For f 2
f�g[f=1;� 1g[f� k j k � 2g, CD grammar systems with context-free components
characterize exactly the context-free languages, that is, L(CF) = L(CD;CF[��]; f),
while those CD grammar systems working in f -mode with f 2 f= k;� k j k � 2 g
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induce a proper superset of the family of context-free languages which is con-
tained in the family of all context-free programmed languages without appear-
ance checking. In other words, L(CF) � L(CD;CF[��]; f) � L(P;CF[��]), if
f 2 f= k;� k j k � 2 g. It is unknown whether the second inclusion is strict.
The next theorem shows that for the aforementioned derivation modes, there is no
di�erence to its cut version.
Theorem 3. Let f 2 f�g [ f� k;= k;� k j k 2 IN g. Then

L(CD;CF[��]; f) = L(CD;CF[��]; fc):
Proof. Let G = (N;T; P1; P2; : : : ; Pn; S) be a CD grammar system. We show that
Lf (G) = Lfc(G). For the inclusion from left to right it is su�cient to argue that
any f -mode derivation x)f y can be simulated by x)fc y choosing x = x0 and � :
f0g ,! f1; 2; : : : ; ng to be the constant function �(0) = i. Conversely we argue that a
fc-derivation step can be sequentialized. This is seen as follows: Let x)fc y with (1)
x = x0x1 : : : xm, (2) the injective partial mapping � : f0; 1; : : : ;mg ,! f1; 2; : : : ; ng,
and (3) y = y0y1 : : : ym ful�lling yi = xi, if i 62 dom(�), and yi = zi, if xi )f�(i) zi. Tosimplify presentation, let dom(�) = fi1; i2; : : : ; irg with 0 � i1 � i2 � : : : � ir � m.
Observe, that yi = xi if i 2 f0; 1; : : : ;mg n dom(�). Then we �nd an f -mode
derivation

x = y0y1 : : : yi1�1xi1yi1+1 : : : yi2�1xi2yi2+1 : : : ym
)f�(i1) y0y1 : : : yi1�1yi1yi1+1 : : : yi2�1xi2yi2+1 : : : ym
)f�(i2) y0y1 : : : yi2�1yi2yi2+1 : : : ym
)f�(i3) � � �
)f�(ir) y0y1 : : : ym = y;

which simulates the original fc-mode derivation. This proves Lf (G) = Lfc(G).
An immediate consequence of the above given theorem is the following corollary.
Corollary 4. 1. If f 2 f�g [ f=1;� 1g [ f� k j k � 2g, then

L(CF) = L(CD;CF[��]; fc):
2. If f 2 f= k;� k j k � 2 g, then

L(CF) � L(CD;CF[��]; fc) � L(P;CF[��]):
Next we turn our attention to the t-mode. For CD grammar systems working in the
t-mode it was shown (see [5]) that

L(CD;CF[��]; t) = L(ET0L)
and thus they build a strict superset of the family of context-free languages. In
contrast to this ET0L characterization, we show that CD grammar systems running
in the cut-t-mode, characterize only the family of context-free languages.
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Theorem 5. L(CF) = L(CD;CF[��]; tc).
Proof. The inclusion from left to right holds since any context-free grammar can
be interpreted as a CD grammar system with one component, generating the same
language in tc-mode. For the converse inclusion, let a CD grammar system G =
(N;T; P1; P2; : : : ; Pn; S) be given. For 1 � i � n, set N (i) = fA(i) j A 2 dom(Pi) g
and let gi : N [ T ! N [ T [ N (i) be the morphism de�ned by gi(X) = X(i) if
X 2 dom(Pi) and gi(X) = X otherwise. Consider the CD grammar system

G0 = (N 0; T; P 01; P 02; : : : P 0n; S) ;
where N 0 = N [Sni=1N (i) and, for 1 � i � n,

P 0i = fA! gi(v); A(i) ! gi(v) j A! v 2 Pi g :
Observe that the axiom of G0 is contained in N and that, for any string x 2 (N 0)�
and each 1 � i � n, if x )ti y according to G0, then y 2 (N [ T )�. Therefore, we
�nd Ltc(G0) = Ltc(G).Now, it is su�cient to prove that the context-free grammar

G00 = (N 0; T;
n[
i=1

P 0i ; S)

generates the language L(G0). This is seen as follows. The inclusion L(G0) � L(G00)
trivially holds, since one can mimic any derivation of G0 by the context-free grammar
G00. For L(G00) � L(G0) observe the following fact: consider an arbitrary derivation
step x ) y according G00, where x = z1Az2, y = z1vz2, for some z1; z2 2 (N [ T )�,
A 2 N , and A ! v is originally in P 0i . Note that x does not contain any symbol
of the form B(i), 1 � i � n. If y is a string over N [ T , as well, then x )tc y
according to G0 using the decomposition x = x0x1x2 with x0 = z1, x1 = A, x2 = z2,
and the association � of components �(1) = i, keeping �(0) and �(2) unde�ned. If
jyjN(i) > 0, then G00 has to continue the derivation earlier or later by replacing all
the symbols from N (i) by some productions which originally come from P 0i , too.Since G00 is a context-free grammar, we can assume without loss of generality that
(1) these replacements are performed immediately by G00, (2) those replacements
are continued until a string y0 is obtained with jy0jN(i) = 0, and (3) no symbols
B =2 N (i) are replaced during this derivation y �) y0. Then x )tci y0 holds by
the same arguments as given above. Now, one easily proofs by induction that any
derivation of G00 can be simulated by G0 in the tc-mode, and since G00 and G0 have
the same axiom, we have L(G00) � L(G0).
It is known that the other competence based derivation protocol, namely the sf -
mode, is more powerful than the t-mode. In [10] the equalities

L(P;CF[��]; ac) = L(CD;CF[��]; sf ):
have been shown. Moreover, it is known that L(P;CF; ac) = L(RE) and that
L(ET0L) � L(P;CF� �; ac) � L(CS), see, e.g., [6].

Concerning the cut-sf -mode, it is already seen from Example 2 that it is more
powerful than the cut-t-mode, as well, since also non-context-free languages can be
described. In fact, we even obtain the following result.
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Lemma 6. L(RP;CF[��]; ac) � L(CD;CF[��]; sf c).
Proof. First, let �-productions be permitted. Let G = (N;T; P; S;�; �; �) be some
recurrent programmed grammar with context-free core rules. From G we construct
an CD grammar system G0 = (N 0; T; P1; P2; : : : ; Pn; S0) such that Lsf c(G0) = L(G)
as follows. If p 2 � is a label to which A ! v is associated in G, then let
Np = fp; p0; p00; Ap; Rpg be a set of new symbols and set N 0 = fS0; Rg[N [Sp2�Np,
where R and S0 are new symbols, again. Any derivation of G0 is initiated by appli-
cation of the component

Pinit = fS0 ! pSR j p 2 � g :
With each production in P ,

(p : A! v; fs1; s2; : : : ; skg; fr1; r2; : : : ; rmg) ;
we associate the four new components
Pp;1 = fA! Ap; p! p0; p0 ! p0g [ fB ! B j B 2 N g
Pp;2 = fAp ! vg [ f p0 ! si j 1 � i � k g [ fB ! B j B 2 N g
Pp;3 = fR! Rp; Rp ! Rp; p! p00g [ fB ! B j B 2 N n fAg g
Pp;4 = fRp ! Rg [ f p00 ! ri; ri ! ri j 1 � i � m g [ fB ! B j B 2 N n fAg g
Finally, there is a terminating component

Pterm = fR! �g [ f p! � j p 2 � g
The only component applicable to the axiom S0 is Pinit. Now, in every non-

terminal sentential form, either R or Rp appears as right marker and one label
symbol p 2 � or its primed or double primed version appears as left marker. Given
a sentential form p�R, � 2 (N [ T )�, the components Pp;1 and Pp;2 can be used
in order to simulate the successful application of the production with label p of G,
yielding a string si�R, si 2 �(p) and � 2 (N [ T )�, and Pp;3 and Pp;4 can simulate
its application in appearance checking mode, yielding ri�R, ri 2 �(p). For this, the
complete sentential form is given to the components. When a string of the form
pwR with w 2 T � is obtained, the component Pterm can be applied yielding w. This
proves L(G) � Lsfc(G0).

For the converse inclusion observe the following. A terminal word can only be
obtained by applying Pterm to a sentential form in �T �fRg. Starting o� with a
sentential form � = p�R, p 2 � and � 2 (N [ T )�, neither the components Pq;2 nor
Pq;4, q 2 �, are applicable to any substring of �, since the presence of some symbol
q or Rq is needed, respectively, in order to stop deriving. Therefore, we have to
distinguish the following two cases:

1. Some Pq;3 becomes active �rst. If a component Pq;3 is applied to a substring �0
of �, this component can become inactive only after the production q ! q00 has
been used. Therefore, q = p has to hold. Since p00 can be rewritten only with
the help of Pp;4 and Pp;4 can stop deriving only by application of Rp ! R, the
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symbol Rp must have been introduced when Pp;3 was active. Thus, �0 = � has
to hold. In conclusion, j�jA = 0 since Pp;3 is not sf -competent on � otherwise.
Furthermore, p00 must be replaced together with Rp during one and the same
application of Pp;4. Therefore,

� = p�R)sfcp;3 p00�Rp )sfcp;4 ri�R ;
ri 2 �(p), is the only successful continuation of such derivation, simulating
the application of the production with label p in appearance checking mode.
Note that some Pq;1 may not be applied to some substring of p00�Rp since it
would introduce a symbol Aq such that Pp;4 cannot become active until Aq is
rewritten again, but rewriting Aq can only be done with the help of Pq;2 which
needs the presence of q0 in order to �nish its work in sf -mode of derivation.

2. Some Pq;1 becomes active �rst. Consider a derivation
�)sfcq1;1 �1 )sfcq2;1 �2 : : :)sfcq`;1 �`

for some ` � 1. Then we have j�`jAqi > 0 for all 1 � i � `. Let �` =
q`u0Aqi1u1Aqi2u2 : : : Aqi`u`, where uj 2 (N [ T )� for 1 � j � `. The only
possibility to get rid of a symbol Aqi is the application of Pqi;2 which can
stop deriving on a sentential form only if q0i is present. Therefore and since
the application of some Pq;3 or Pq;4 must kept excluded from such derivations
(see the arguments given for the �rst case), a string in �(N [ T )�fRg can be
obtained only if the following derivation is possible (due to the order of the
symbols in �`):

�` )sfcqi1 ;2 1 )sfcqi2 ;2 2 )sfcqi3 ;2 : : :)sfcqi` ;2 ` ;
where qi1 = q` and qij+1 2 �(qij ), for 1 � j < `, hold. This simulates the
successful applications of the corresponding productions of G.

Except from the fact that the two phases can be merged when components Pq;1 and
when components Pq;2 are applied, no further terminating derivations are possible.
Hence, Lsfc(G0) � L(G), and the proof is �nished for the case that �-productions
are allowed.

Let us remark that, even if the CD grammar system were forced, by some appro-
priate colouring of the symbols, to apply the component Pp;2 immediately after Pp;1
has been used, one would not be able to control how many symbols A are marked
as Ap and then replaced with v. Therefore, the feature p 2 �(p) for all p 2 � is an
evident constraint, here.

For the �-free case we argue as follows: By standard arguments the family
L(CD;CF � �; sf c) is closed under union and embraces the �nite languages. Let
L � T � be in L(RP;CF� �; ac), then

L = [
a;b2T

(a � �a;b(L) � b) [ (L \ T 2) [ (L \ T ) [ (L \ f�g);
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where �a;b(L) = fw 2 T+ j awb 2 L g. Since L is in L(RP;CF��; ac), the language
�a;b(L) is in L(RP;CF��; ac) due to closure properties of that family under left andright derivatives. The closure under derivatives is obvious, since L(RP;CF[��]; ac)
is a [full] AFL as shown in [8]. Thus, for the proof of the present assertion, it is
su�cient to show that �a;b;c(L) � abc is in L(CD;CF��; sf c), provided that �a;b;c(L)is in L(RP;CF� �; ac).

To this end, it is su�cient to exchange the terminating component Pterm in the
above construction with

Qterm = fR! bg [ f p! a j p 2 � g
and the rest of the proof is given by the same arguments as in the �rst case.
Any CD grammar system working in the sf c-mode can be simulated by some Turingmachine and, if �-rules are forbidden, by some linear bounded automaton. Thus,
together with the known facts about context-free CD grammar system working in
the sf -mode, the following corollary is obtained.
Corollary 7. 1. L(RP;CF; ac) � L(CD;CF; sf c) � L(P;CF; ac) = L(RE)

2. L(RP;CF� �; ac) � L(CD;CF� �; sf c) � L(CS)
It is left open which of the inclusions in this corollary are strict. Finally we turn
our attention to the combined modes. First let us summarize what is known for CD
grammar systems working in non-cut modes. In case of the (t ^ � k)-mode it was
shown in [8] that

L(CD;CF[��]; (t ^ � 1)) = L(ET0L)
and

L(CD;CF[��]; (t ^ � k)) = L(RP;CF[��]; ac) if k � 2,
and in [9] it was shown that

L(CD;CF[��]; f) = Lfin(P;CF[��]);
for each f 2 f (t ^ = k); (t ^ � k) j k � 1 g, where Lfin(P;CF[��]) denotes the
family of languages of �nite index generated by programmed context-free grammars
without appearance checking. Loosely speaking, a grammar has �nite index if the
number of nonterminals in a derivation is bounded by a constant. For the de�nition
of the �nite index property see, e.g., [6].
Theorem 8. If f 2 f (t ^ � k); (t ^= k); (t ^ � k) j k � 1 g, then

L(CF) � L(CD;CF[��]; fc):
Proof. Let G = (N;T; P; S) be a context-free grammar. In the remainder we restrict
ourselves to the case k = 1. The result generalizes to arbitrary k, by using the
prolongation technique, as elaborated in [8].

We construct a CD grammar system G0 with nonterminals
N 0 = N [ fA0 j A 2 N g;
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where the unions are disjoint, with terminals T and axiom S. De�ne the homomor-
phism h : (N [ T )� ! (N 0 [ T )� as follows: Let h(A) = A0 for A 2 N and h(a) = a
otherwise. Then we construct two production sets

P1 = fA! h(w) j (A! w) 2 P g and P2 = fA0 ! A j A 2 N g:
This completes the description of the CD grammar system G0. It is easy to see that
Lfc(G0) = L(G), for f 2 f(t ^ � 1); (t ^=1); (t ^ � 1)g. This proves the claim.
Corollary 9. If f 2 f (t ^= k); (t ^ � k) j k � 2 g, then

L(CF) � L(CD;CF[��]; fc):
Proof. The inclusion follows from Theorem 8. The strictness follows from the CD
grammar system speci�ed in Example 1 when running in cut-(t^=2) or cut-(t^� k),
for k � 2, since the non-context-free language f anbncn j n � 1 g is generated. In case
of the cut-(t^= k)-mode, for k > 2, the rules in the grammar of the above mentioned
example have to be adapted accordingly with the prolongation technique in order
to ensure that both nonterminals have to be presented during a (t^= k)-derivation
step.
Since the (t^� 1)-mode trivially coincides with the t-mode, we obtain the following
corollary because of Theorem 5.
Corollary 10. L(CF) = L(CD;CF[��]; (t ^ � 1)c):
For the cut-(t ^ � k)- and cut-(t ^ = k)-mode in general we �nd the following situ-
ation. The below given theorem shows that with some cut-modes one can do even
programmed context-free language of �nite index.
Theorem 11. If f 2 f (t ^= k); (t ^ � k) j k � 2 g, then

Lfin(P;CF[��]) � L(CD;CF[��]; fc):
Proof. We �rst show the inclusion. By a standard argument the involved CD gram-
mar systems language family is closed under union and embraces the �nite languages.
Let L � T � be a language in Lfin(P;CF[��]), then

L = [
a2T

(a � �a(L) \ L) [ (L \ T ) [ (L \ f�g):

Since L is in Lfin(P;CF[��]), language �a(L) = fw 2 T+ j aw 2 L g is in
Lfin(P;CF[��]) due to the closure properties of that family under derivatives. Thus,it is su�cient for the proof of the present assertion to show that fag � �a(L) is in
L(CD;CF[��]; fc), for f 2 f (t ^ = k); (t ^ � k) j k � 2 g, provided that �a(L) is
a programmed context-free language of �nite index. In the remainder we restrict
ourselves to the case k = 2. The result generalizes to arbitrary k, by using the
prolongation technique, as elaborated
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Let G = (N;T; P; S;�; �; �) be a programmed grammar of �nite index generating
�a(L). Without loss of generality we assume that N \ � = ;, that for every rule
�(p) = (A! w; �; ;) nonterminal A does not appear in w, and p 62 �(p). Moreover,
due to the �nite index restriction we may assume that every nonterminal appears
at most once in any derivable sentential form.

We construct a CD grammar system G0 with nonterminals
N 0 = N [ f p; p0 j p 2 � g [ fS0; S00g;

where the unions are disjoint, with terminals T and axiom S0. To start the derivation,
we use S0 as axiom and the component

Pinit = fS0 ! S00g [ fS00 ! pS j p 2 � g:
Then for each rule �(p) = (A! w; �; ;) we construct the component

Pp = f p! q j q 2 �(p) g [ fA! wg:
Note that the (t^=2)-mode enforces the application of at exactly two rules, which
must be the rule for the label p and the rule for the nonterminal A, because of the
requirement that every nonterminal appears at most once in any derivable sentential
form. Therefore the (t^=2)c-derivation cuts the sentential form in such a way that
only one production set will be applicable.

Finally, to terminate the derivation, process the component
Pterm = f p! p0; p0 ! a j p 2 � g

is used. Observe, that after an application of Pterm no other component, and in
particular no component Pp, is successfully applicable to the sentential form be-
cause of the requirement on the appearance of nonterminals in any derivation. This
completes the description of the CD grammar system G0.

Obviously, the constructed grammar system G0 simulates the programmed con-
text-free grammar G of �nite index correctly and generates the language fag ��a(L).
Moreover, note that the CD grammar system has �-productions only if the pro-
grammed grammar has �-productions.

The strictness immediately follows from Theorem 8 and the fact that the Dyck
language (even over one pair of parentheses) cannot be generated by programmed
context-free grammar of �nite index as shown in [14].
Finally, we consider the cut-(t ^ =1)- and cut-(t ^ � k)-mode, for k � 1. For all
these modes we obtain a characterization of the context-free languages.
Theorem 12. If f 2 f (t ^ � k) j k � 1 g [ f(t ^=1)g, then

L(CF) = L(CD;CF[��]; fc):
Proof. The inclusion from left to right was already shown in Theorem 8. Thus, it
remains to consider the converse inclusion. Thus, let G = (N;T; P1; P2; : : : ; Pn; S)
be a CD grammar system working in fc-mode, for the aforementioned f . First we
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concentrate on f equals the (t^=1)-mode. First, observe, that a cut-mode derivation
can be sequentialized, such that only one production set is applicable to a sub-
sentential form, i.e., the mapping � has domain size one. Now consider a derivation
step: Let x = x0x1x2 be a sentential form with xi 2 (N [ T )�, for 0 � i � 2, and
let �(1) = i, for some 1 � i � n. Since a successful (t ^ =1)-derivation on the
sentential form x1 has to apply exactly one rule of Pi and afterwards no rule of Pi is
applicable anymore, we can assume that x1 is an element of N , without changing the
original successful derivation. This allows us to simulate the cut-(t^=1)-derivation
by a context-free derivation, choosing the appropriate rule of Pi. Thus, de�ne the
following context-free grammar G = (N;T; P; S) with production set P containing
the rules

P = fA! � j A)(t^=1)i � for some 1 � i � n g:
By our previous investigation it is easy to see that the language generated by G
is equivalent to the language generated by the CD grammar system working in
cut-(t ^=1)-mode.

A similar reasoning applies for the cut-(t ^ � k)-mode, since a (t ^ � k)-mode
derivation on a sentential form can be split or cut into several (t^� `)-mode deriva-
tions, for 1 � ` � k, on nonterminals only. Thus, the production set of the context-
free grammar has to be modi�ed in the following way: De�ne

P = fA! � j A)(t^� `)i � for some 1 � ` � k and 1 � i � n g:
Then the constructed context-free grammar is equivalent to the original CD grammar
system working in cut-(t ^ � k)-mode. This proves the stated claim.

4 Conclusions
We examined the generative power of CD grammar systems when working in a new
form of the derivation mode, the so called cut-mode. We summarize our results, com-
paring the classes L(CD;CF[��]; fc) with L(CD;CF[��]; f), in Table 1. In most
cases, the cut-f -mode turned out to be as most as powerful than the corresponding
non-cut-mode, that is, the f -mode itself. For some modes, the generative capacity
is not a�ected at all, but there are also some cases, where the power is reduced to
that of context-free grammars, if parts of the sentential forms can be distributed to
several components in one and the same derivation step. In particular, this is true
for the t-mode of derivation, which describes the family of all ET0L languages in
the non-cut variant. But exactly for this t-mode, the results are rather contesting
the motivation of CD grammar systems from the AI point of view: Although CD
grammar systems are a very natural and handy tool for describing non-context-free
languages with context-free productions and they serve as sequential counterparts of
tabled Lindenmayer systems, the re-interpretation of their properties in the frame-
work of distributed problem solving is fairly problematic. In our approach, the
cut-t-mode turns out to be useless, since it does not add to the power of context-free
grammars. On the other hand, there seems to be something said for the � k- and
= k-modes, k � 2, the generative capacity of which remains the same when they are
driven in the cut variant. Also the sf - and some of the combined t-modes seem to
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Derivation Mode f L(CD;CF[��]; f) L(CD;CF[��]; fc)
�, = 1, � 1, � k,for k � 1 L(CF) L(CF)

= k, � k,for k � 2 L(CF) � � � L(P;CF[��])
t L(ET0L) L(CF)sf L(P;CF[��]; ac) L(RP;CF[��]; ac) � � � L(P;CF[��]; ac)(t ^ � 1) L(ET0L) L(CF)(t ^ � k), L(CF) � �for k � 2 L(RP;CF[��]; ac) Lfin(P;CF[��]) � �(t ^=1), (t ^ � k),for k � 2 Lfin(P;CF[��]) L(CF)

(t ^= k), L(CF) � �for k � 2 Lfin(P;CF[��]) Lfin(P;CF[��]) � �

Table 1: Generative capacity of CD grammars systems working in non-cut- and
cut-mode derivations compared.

be of interest in that respect. Besides the combined derivation modes considered in
this paper, there is another, external variant of hybrid CD grammar systems, e.g.,
see [12]. Those systems can also be considered in our setting. This is left for future
research work.
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Abstract
The paper extends the notion of context-free LL(k) grammars to CD gram-

mar systems working in the so-called (=m) mode of derivation. The de�nition
of the extended LL(k) condition is followed by a short examination of the
basic properties of LL(k) CD grammar systems, and then an algorithm is pre-
sented which parses languages generated by CD grammar systems of this type
in O(n � log2 n) time.

1 Introduction
The most investigated families of languages are the regular and the context-free ones.
But, for many applications of formal languages, non-context-free aspects are needed.
All programming languages, for example, in which variables must be declared before
they can be used in the main program, involve the structure of the language fww j
w 2 �� g, where � is some alphabet.

In [6], seven circumstances where context-free languages turn out to be insu�-
cient are discussed, emerging in the �eld of programming languages, the language of
logic, graph theory, development biology, economic modeling, folklore, and natural
languages. The fact that there are non-context-free aspects in the syntax of spoken
languages is exhaustively explored in the literature of linguistics, e.g., see [5, 9, 10].
This led to the concept of mildly context-sensitive grammars [9] providing some
lower and upper bound conditions for families of languages which may be useful in
linguistics. A grammar formalisms is said to be mildly context-sensitive if

�Research supported in part by the Intergovernmental S&T Cooperation Program of the O�ce
of Research and Development Division of the Hungarian Ministry of Education and its German
partner, the Federal Ministry of Education and Research (BMBF), under grant no. D-35/2000.
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1. it contains (besides the context-free languages1)

L1 = { anbncn | n ≥ 1 },
L2 = {wcw | w ∈ {a, b}∗ },
L3 = { ambncmdn | m,n ≥ 1 },

2. its generated languages can be parsed in polynomial time, and

3. it can generate only semilinear languages.

The next level in the Chomsky hierarchy, namely the context-sensitive grammars,
are also not used in most applications since they are too powerful. For example, the
fixed membership problem (i.e., the parsing problem) is PSPACE-complete and
many other relevant decision problems are proved to be undecidable for context-
sensitive grammars.

Therefore, a series of grammar formalisms has been introduced which are able
to cover all the desired non-context-free aspects but maintain the nice properties
of context-free grammars. Besides tree-adjoining grammars introduced in [9] and
equivalent mildly context-sensitive grammars [16], the three most important sources
of such language describing devices are grammars with parallel derivations (mainly
Lindenmayer systems), grammars with regulated rewriting, and grammar systems;
for a survey about these topics, see [14].

Unfortunately, most of those mechanisms lose too many positive properties of the
context-free grammars, in particular the fixed membership problem becomes NP-
complete in many cases. Even the known deterministic polynomial-time parsing
algorithms for tree-adjoining and the other mildly context-sensitive grammars are
of complexity O(n6), see, e.g., [10].

The aim of the present paper is to select one representative of those non-context-
free devices and restrict it in a such a way that (1) at least the lower bound of
mildly context-sensitive languages is met, that is, all the aforementioned languages
L1, L2 and L3 can be described, and (2) a parsing algorithm can be provided the
computational complexity of which is as close to linear time as possible.

To this end, cooperating distributed grammar systems (CD grammar systems,
for short) are considered here. The concept has its root in [11] aiming to generalize
the notion of two-level substitution grammars to a multi-level concept, but the
theory started with [3] introducing cooperating distributed grammar systems for
describing, in terms of formal grammars and languages, communities of cooperating
autonomous problem solving agents which use the blackboard model of problem
solving. Later on, they were also considered as sequential counterparts of tabled
Lindenmayer systems [1].

A cooperating distributed grammar system (CDGS, for short) consists of a finite
set of (context-free) grammars, called components, performing derivation steps on
a common sentential form in turns, according to some cooperation protocol. One
natural cooperation protocol is the so-called = m-mode, for some m ≥ 1, where a

1This requirement to cover all context-free languages has been weakened in more recent articles.
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component, once started, has to perform exactly m derivation steps. The next com-
ponent is nondeterministically chosen. In terms of distributed problem solving, the
components correspond to the independent problem solving agents, the sentential
form to the current state of the problem solving, and the generated language repre-
sents the set of problem solutions. For more on CD grammar systems see [4, 7]. It
is known that this type of CD grammar systems generates all context-free languages
and that it can describe matrix languages (without appearance checking).

One natural approach to fast parsers is to restrict the CD grammar systems to
unambiguity. The present paper aims to do so by means of an LL(k) condition for
CD grammar systems. This yields a class of grammars which describe all context-
free LL(k)-languages, the languages L1, L2, and L3 above, and their languages can
be parsed in time O(n · log2 n) time. Without further restriction, however, they do
not define a new class of mildly context-sensitive languages since also non-semilinear
languages can be generated.

It is worth mentioning here, that the logarithm in the time bound of the algo-
rithm is squared only because we carefully count bit operations in which reading
and writing a search index n takes O(log n) time. A uniform measurement of our
algorithm would yield a time complexity of O(n · log n).

2 Definitions

We assume the reader to be familiar with the basic notions of formal languages, as
contained in [15]. In general, we have the following conventions: ⊆ denotes inclusion,
while ⊂ denotes strict inclusion. The set of positive integers is denoted by N and
the cardinality of a set M is denoted by #M . By V + we denote the set of nonempty
words over alphabet V ; if the empty word ε is included, the we use the notation V ∗.
Set union and substraction is denoted by ∪ and −, respectively.

A context-free grammar is a four tuple G = (N,T, P, S), where N and T are
disjoint alphabets of nonterminals and terminals, respectively, S ∈ N is the axiom,
and P is a finite set of productions of the form A→ u, where A ∈ N and u ∈ (N∪T )∗.

Let V be some alphabet and w ∈ V ∗. By Firstk(w) we denote the prefix of
length k of w if |w| ≥ k or, otherwise, the string w itself.

Now we repeat the definition of a cooperating distributed grammar system, where
we restrict ourselves (without further mentioning) to the case of context-free com-
ponents.

A cooperating distributed grammar system (CDGS for short) of degree n is an
n + 3-tuple

G = (N,T, S, P1, P2, . . . , Pn) ,

where N and T are two disjoint alphabets, the alphabet of nonterminals and the
alphabet of terminals, respectively, S ∈ N is the axiom, and for 1 ≤ i ≤ n, Pi is a
finite set of context-free productions, i.e., productions of the form A → α, A ∈ N ,
α ∈ (N ∪ T )∗. The sets Pi are called components of the system G. For 1 ≤ i ≤ n,
we set Ni = {A ∈ N | A→ α ∈ Pi} and Ti = (N ∪ T ) \Ni.

In the following, let x and y be sentential forms over N ∪ T . A direct derivation
according to some component Pi, 1 ≤ i ≤ n, is defined as usual by x =⇒i y if and
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only if x = zAz′, y = zαz′, for some z, z′ ∈ (N ∪T )∗ and A→ α ∈ Pi. This relation
is extended to an m-step derivation according to Pi, in symbols x

m=⇒i y, in the
natural way: x

m=⇒i y if and only if there are strings x0, x1, . . . , xm over N ∪ T such
that

x = x0, y = xm, and xj−1 =⇒i xj for 1 ≤ j ≤ m .

Let prod(x m=⇒i y) denote the set of production sequences which can be used in the
m-step derivation x

m=⇒i y. More precisely,

(A0 → α0, A1 → α1, . . . , Am−1 → αm−1) ∈ prod(x m=⇒i y)

if and only if there are strings x0, x1, . . . , xm with xj−1 = zj−1Aj−1z
′
j−1 and xj =

zj−1αj−1z
′
j−1, and Aj−1 → αj−1 ∈ Pi, for 1 ≤ j ≤ m.

We write x
m=⇒∗

y if and only if x = y, or there are strings x0, x1, . . . , xr over
N ∪ T , r ≥ 1, such that

x = x0, y = xr, and xj−1
m=⇒ij xj ,

for 1 ≤ ij ≤ n for 1 ≤ j ≤ r.
The language generated by G in the (=m)-mode of derivation is defined to be

the set

L=m(G) = {w ∈ T ∗ | S m=⇒∗
w } .

An m-step derivation x
m=⇒i y is referred to as leftmost, in symbols x

m=⇒
l i y, if and

only if the following condition is satisfied: If x
m=⇒i y is the derivation

x = x0 =⇒i x1 =⇒i x2 =⇒i . . . =⇒i xm = y

for strings x0, x1, x2, . . . , xm ∈ (N ∪ T )∗, then we have

x0 = u0A0z0, x1 = u0α0z0,

u0 ∈ T ∗, z0 ∈ (N ∪ T )∗, A0 → α0 ∈ Pi,

and, for 2 ≤ j ≤ m,

xj−1 = uj−1Aj−1zj−1, xj = uj−1αj−1zj−1,

uj−1 ∈ T ∗
i , zj−1 ∈ (N ∪ T )∗, Aj−1 → αj−1 ∈ Pi.

That is, in the first step the leftmost occurrence of a symbol in N is replaced and
in each of the following steps the leftmost occurrence of a symbol in Ni is replaced,
each by some production in component Pi. This notion of leftmost derivation is the
same as in [12] or as the notion of a weakly leftmost derivation in [8].

The relation m=⇒
l i over (N ∪T )∗ is extended to m=⇒

l

∗
analogously to the extension

of m=⇒i to m=⇒∗
. The language generated by a CD grammar system G in the (=m)-

mode of derivation working in this leftmost manner is defined by

L=m(G-left) = {w ∈ T ∗ | S m=⇒
l

∗
w } .

Next, we present the definition of an LL(k) condition appropriate for CD grammar
systems (in m-mode of derivation). It is adopted from the context-free case, for a
definition see, e.g., [13, 15].
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Definition 1 Let G = (N,T, S, P1, P2, . . . Pn), n ≥ 1, be a CDGS and let k ≥ 1
and m ≥ 1. We say G satisfies the LL(k) condition in the (=m)-mode of derivation
if the following holds: Let

S
m=⇒
l

∗
uXy

m=⇒
l i uz

m=⇒
l

∗
uv and

S
m=⇒
l

∗
uXy′

m=⇒
l i′ uz′

m=⇒
l

∗
uv′

be two derivations in G, where u, v, v′ ∈ T ∗, X ∈ N , y, y′, z, z′ ∈ (N ∪ T )∗, and
Firstk(v) = Firstk(v′). Then i = i′ and prod(uXy

m=⇒
l i uz) = prod(uXy′

m=⇒
l i′ uz′)

is a singleton set.

The idea behind this concept is the following: Given a terminal word uv and a
sentential form uXy, X ∈ N and y ∈ (N ∪ T )∗, which has been obtained from S by
iterated leftmost m-step derivations, the first k letters of v allow to determine the
next component and the sequence of rules of that component which is to be applied
to uXy in order to derive uv by leftmost m-step derivations.

By CDn(=m) with m, n ≥ 1 the family of languages which can be generated by
a CD grammar system of degree n working in the m-mode of derivation is denoted.
If we restrict the CD grammar systems of degree n to satisfy the LL(k)-condition
in the (=m)-mode of derivation, then the families of languages obtained by left-
most derivations are denoted by CDnLL(k)(=m) with k,m ≥ 1. If the number of
components is not restricted, we write CD∗(=m) and CD∗LL(k)(=m), respectively.
Finally, let LL(k) denote the family of all context-free LL(k) languages [15].

Example 1 Consider the CD grammar system

Γ = ({S, S′, S′′, A, B,C,A′, B′, C ′}, {a, b, c}, S, P1, P2, P3, P4)

with

P1 = {S → S′, S′ → S′′, S′′ → ABC},
P2 = {A→ aA′, B → bB′, C → cC ′},
P3 = {A′ → A,B′ → B,C ′ → C},
P4 = {A→ a,B → b, C → c}.

This system generates (by leftmost derivations) in the (= 3) mode the language

L1 = { anbncn | n ≥ 1 },

and as seen below, satisfies the LL(2) condition, thus, { anbncn | n ≥ 1 } ∈ CD4LL(2)(=
3).

Considering a derivation

S
m=⇒
l

∗
uXy

m=⇒
l i uz

m=⇒
l

∗
uv,

the pair X ∈ N and First2(v) determines the component Pi and the unique pro-
duction sequence in prod(uXy

m=⇒
l i uz) which are used, as indicated in the following

table.
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aa ab

S
P1:
(S → S′, S′ → S′′, S′′ → ABC)

P1:
(S → S′, S′ → S′′, S′′ → ABC)

A
P2:
(A→ aA′, B → bB′, C → cC ′)

P4:
(A→ a,B → b, C → c)

A′ P3:
(A′ → A,B′ → B,C ′ → C)

P3:
(A′ → A,B′ → B,C ′ → C)

It is an easy exercise to prove that { anbncn | n ≥ 1 } ∈ CD4LL(2)(= 2) also holds.
(Let A produce an a and b simultaneously.)

Example 2 Analogously, one can see that the CD grammar systems

Γ = ({S, S′, A, B,A′, B′}, {a, b, c}, S, P1, P2, . . . , P7)

with

P1 = {S → S′, S′ → c},
P2 = {S → S′, S′ → AcB},
P3 = {A→ aA′, B → aB′},
P4 = {A→ bA′, B → bB′},
P5 = {A′ → A,B′ → B},
P6 = {A→ a,B → a},
P7 = {A→ b, B → b}.

and
Γ = ({S, S′, A, B,A′, B′}, {a, b, c, d}, S, P1, P2, . . . , P5)

with

P1 = {S → S′, S′ → AB},
P2 = {A→ aA′, B → cB′},
P3 = {A→ A′b, B → B′d},
P4 = {A′ → A,B′ → B},
P5 = {A→ ab,B → cd}.

obey the LL(2) condition in the =2-mode, generating (by leftmost derivations) the
languages

L2 = {wcw | w ∈ {a, b}∗ }

and
L3 = { ambncmdn | m,n ≥ 1 } ,

respectively.

Hence, L1, L2, and L3 from the definition of mild context-sensitivity are contained
in CD∗LL(2)(=2).
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3 Properties of CD∗LL(k)(=m)

First, we present the following trivial hierarchies.

Lemma 1 For any integers k ≥ 1, m ≥ 1, and n ≥ 1, we have

1. CDnLL(k)(= m) ⊆ CDnLL(k + 1)(= m),

2. CD∗LL(k)(= m) ⊆ CD∗LL(k + 1)(= m),

3. CDnLL(k)(= m) ⊆ CDn+1LL(k)(= m).

Concerning the parameter m, one only knows from the non-restricted case that
there exists a prime lattice structure-like hierarchy [4].

Next, we show that all context-free LL(k) languages are in CDnLL(k)(=m) for
some n, m ≥ 1.

Theorem 2 For all k ≥ 1 and m ≥ 1, LL(k) ⊆ CD∗LL(k)(=m).

Proof. Let L ∈ LL(k) for some k ≥ 1, and let G = (N,T, P, S) be a context-
free LL(k) grammar with L = L(G). Let the rules r ∈ P be labelled by 1 ≤
lab(r) ≤ |P |. For any integer m ≥ 1, we construct a CD grammar system Γ =
(N ′, T, S, P1, P2, . . . , Pn) satisfying the LL(k) condition and generating L in the =m
mode of derivation as follows. The number of components of Γ is going to be n = |P |.
Let

N ′ = N ∪ {Xi | 1 ≤ i ≤ m− 1, X ∈ N },

and for 1 ≤ i ≤ |P |, let

Pi = {X → X1, X1 → X2, . . . , Xm−1 → α | i = lab(X → α) }.

It is easy to see that a rewriting step x
m=⇒
l i y in Γ is possible if and only if x⇒l

i y is
possible in G, where ⇒l

i denotes a rewriting step on the leftmost nonterminal using
rule r with lab(r) = i. 2

Lemma 3 There are non-semilinear languages in CD∗LL(1)(= 2).

Proof. Consider the CD grammar system

G = (N, {a, b, c, d, e, f}, P1, P2, . . . , P13, S)

with N = {S, S′, A, A′, B, B′, C, C ′, D, E, F, T,X} and

P1 = {S → S′, S′ → AET},
P2 = {A→ dA′, E → DD}, P7 = {B → dB′, D → EE},
P3 = {A′ → X, X → A}, P8 = {B′ → X, X → B},
P4 = {A→ aX, X → B}, P9 = {B → aX, X → A},
P5 = {A→ X, X → C}, P10 = {B → X, X → C},
P6 = {C → eC ′, D → b}, P11 = {C → fC ′, E → b},

P12 = {C ′ → X, X → C},
P13 = {C ′ → c, D → F, E → F, T → c} .
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We are going to determine the language L=2(G-left). Any leftmost derivation of G
in the = 2-mode starting off with the axiom must initially use component P1 leading
to AET . Then, the components P2, P3, P4, P7, P8, and P9 can be used in turns.
In this phase, the number of occurrences of D’s and E’s can be increased. Note
that this number can at most be doubled until a new symbol a will be introduced
before a further increase is possible. Moreover, whenever one more D or E is in-
troduced, then simultaneously a terminal d must emerge. This phase is finished by
one application of either P5 or P10 turning the leftmost nonterminal (A or B) to C.
Now, all occurrences of nonterminals D and E can be terminated with the help of
P6, P11, and P12. Finally, the leftmost and the rightmost nonterminals, that is C ′

and T at this stage of the derivation, can be terminated by using P13. Since also
this terminating component must be applied in the leftmost way and F is a trap
symbol, it is guaranteed that all occurrences of D and E have vanished before P13

can successfully be applied in the = 2-mode. Therefore, in every non-terminal sen-
tential form, either A, B, C (or its primed versions or X) is the leftmost occurring
nonterminal, steering the selection of the components. Thus, the different phases of
the derivation cannot be mixed.

Consequently, the non-semilinear language L is generated, where

L ⊆ K = {fcbc} ∪ { di1adi2a . . . dinvcbmc | n ≥ 1, 0 ≤ ij ≤ 2j ,

for 1 ≤ j ≤ n, m = 1 +
∑n

j=1 ij , v ∈ {e, f}m } .

Here, L is not equal to K only because the portion v has to obey some additional
combinatorial properties which do not affect the non-semilinearity of the language.
Since writing down these properties would decrease readability, they are omitted.
On the other hand, the e’s and f ’s are needed in order to make sure that G is LL(k)
in the = 2-mode.

In fact, one can readily prove that G satisfies the LL(1) condition. 2

According to Lemma 1, we know that there exist non semilinear languages in
CDnLL(k)(= 2) for all k ≥ 1 and all n ≥ 13. By a simple prolongation tech-
nique, this is also true for any = m-mode of derivation, m ≥ 2. One has to split the
productions replacing the leftmost nonterminal to m−1 productions via new nonter-
minal symbols in each component. The restriction to leftmost derivations guarantees
that these productions are consequently used such that the other production can be
applied only once in any = m-step.

Corollary 4 For any integers k ≥ 1, m ≥ 2, and n ≥ 13, there are non-semilinear
languages in CDnLL(k)(= m).

4 Syntactic analysis of CD∗LL(k)(=m)

In this section we present a parser that is able to parse languages generated by CD
grammar systems satisfying the LL(k) condition in an efficient way. As we shall
later see, its running time is O(n · log2 n) where n is the length of the input word.

Let G be a CD grammar system given as G = (N,T, S, P1, . . . , Pn) satisfying
the LL(k) condition in the (=m)-mode of derivation for some m, k ≥ 1. First we
present the notions we will use.
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• A production is p = X → α ∈ N × (N ∪ T )∗ with left(p) = X, right(p) = α.

• A stack over N is st = xj ]xj−1] . . .]x1], xi ∈ N, 1 ≤ i ≤ j, with top(st) = xj ,
pop(st) = xj−1] . . .]x1], and for some y ∈ N, push(y, st) = y]xj ]xj−1] . . .]x1].
The empty stack, pop(x]) for some x ∈ N, is denoted by ε].

• A stack over N ∪ T is st = xj ]xj−1] . . .]x1], xi ∈ N ∪ T, 1 ≤ i ≤ j, with
top(st) = xj , pop(st) = xj−1] . . .]x1] and for some y = y1 . . . ym ∈ (N ∪ T )∗,
yi ∈ N ∪ T, 1 ≤ i ≤ m, push(y, st) = y1] . . .]ym]xj ]xj−1] . . .]x1]. The empty
stack, pop(x]) for some x ∈ N ∪ T , is denoted by ε].

• A production queue is pq = (p1, p2, . . . , pj), pi ∈ Pl, 1 ≤ l ≤ n, 1 ≤ i ≤ j,
with first(pq) = p1, butfirst(pq) = (p2, . . . , pj).

The lookup table for the LL(k) CD grammar system is given as lookupTable ⊆
N × T k × PQ where PQ denotes the set of all production queues consisting of m
productions; it is a function which for a nonterminal X ∈ N and a terminal word of
length k, y ∈ T k, returns a production queue pq = lookupTable(X, y).

The parsing algorithm is given in Figure 1. It uses the variables

• step, stepOfTopmost ∈ N, natural numbers,

• mainStack, a stack over N ∪ T , the “main” stack of the parser,

• stacksForN , an l-tuple of stacks for natural numbers where l = |N |; it pro-
vides a stack over N for each nonterminal of the grammar system,

• input ∈ T ∗, the string to be analyzed,

• topmost ∈ N , a nonterminal symbol,

• pQueue, a production queue as above,

• pQueuesLeft ⊆ N × PQ, where PQ denotes the set of all production queues
of length at most m, that is, pQueuesLeft is a set of pairs of the form (i; pq)
where i is an integer and pq is a production queue as above,

• pToUse ∈ N × (N ∪ T )∗, a production as above.

Example 3 In the following we demonstrate the work of the algorithm through an
example.

Consider the CD grammar system

Γ = ({S, A1, A2, A3, A4, A5}, {a, b}, S, P1, P2, P3)

with

P1 = {S → A1A2A1A3, S → bA1A2A1A3, A2 → b, A3 → A4},
P2 = {A1 → aA2, A4 → A5},
P3 = {A2 → a,A5 → b},
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1 step ← 0
2 mainStack ← push(mainSt, S)
3 stacksForN(S) ← push(stacksForN(S), 0)
4 while mainStack is not empty and there is no ERROR do
5 if top(mainStack) is a terminal symbol then
6 if top(mainStack) coincides with the first symbol of input then
7 mainStack ← pop(mainStack)
8 input ← input without its first symbol
9 else ERROR
10 else topmost ← top(mainStack)
11 stepOfTopmost← top(stacksForN(topmost))
12 stacksForN(topmost) ← pop(stacksForN(topmost))
13 if there exist (i; pQueue) ∈ pQueuesLeft such that

i ≥ stepOfTopmost, left(first(pQueue)) = topmost,
and furthermore, if (i′; pQueue′) ∈ pQueuesLeft
with left(first(pQueue′)) = topmost, then i < i′, then

14 pQueuesLeft ← pQueuesLeft− {(i; pQueue)}
15 pToUse ← first(pQueue)
16 pQueue ← butfirst(pQueue)
17 if pQueue is not empty then
18 pQueuesLeft ← pQueuesLeft ∪ {(i; pQueue)}
19 mainStack ← pop(mainStack)
20 mainStack ← push(mainStack, right(pToUse))
21 for each symbol X from right(pToUse) do
22 if X ∈ N then
23 stacksForN(X) ← push(stacksForN(X), step)
24 else step ← step + 1
25 lookahead ← the next k symbols of input
26 pQueue ← lookupTable(topmost, lookahead)
27 if pQueue is empty then
28 ERROR
29 else pToUSe ← first(pQueue)
30 pQueue ← butfirst(pQueue)
31 if pQueue is not empty then
32 pQueuesLeft ← pQueuesLeft ∪ {(step, pQueue)}
33 mainStack ← pop(mainStack)
34 mainStack ← push(mainStack, right(pToUse)
35 for each symbol X from right(pToUse) do
36 if X ∈ N then
37 stacksForN(X) ← push(stacksForN(X), step)
38 if there is no ERROR then successful termination

Figure 1: The parsing algorithm.
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a b

S
P1:
(S → A1A2A1A3, A2 → b,
A3 → A4)

P1:
(S → bA1A2A1A3, A2 → b,
A3 → A4)

A1

P2:
(A1 → aA2, A1 → aA2,
A4 → A5)

—

A2
P3:
(A2 → a,A2 → a,A5 → b)

—

Figure 2: The lookup table for the grammar system of Example 3.

This system generates, in the (= 3) mode, the finite language

L = {aabaab, baabaab},

and satisfies the LL(1) condition. The lookup table for the parser is seen on Figure
2.

Let us see how the parser analyzes the string aabaab ∈ L=3(G-left). This string
is generated in three steps in the (= 3)-mode as follows.

S
3=⇒
l 1 A1bA1A4

3=⇒
l 2 aA2baA2A5

3=⇒
l 3 aabaab.

Now we will follow the work of the parser step-by-step, and describe its configuration
by

(input, mainStack, step, stacksForN, pQueuesLeft)

where the variables are as described above. The value of stacksForN will be denoted
as (α0, α1, α2, α3, α4, α5) where α0 is the contents of stacksForN(S), and for i ∈
{1, 2, 3, 4, 5}, xi is the contents of stacksForN(Ai).

The initial configuration of the parser is

(aabaab, S], 0, (0], ε], . . . , ε]), ∅),

meaning that nothing is read from the input, the initial symbol, S, is placed in the
main stack, the step counter is set to zero, the integer zero is placed in the stack
stacksForN(S) associated to the nonterminal S which indicates that it appeared
in the main stack when the counter step had value zero, and the set of production
queues waiting to be applied, pQueuesLeft, is empty.

The main stack is not empty, so the parser starts the execution of the while loop
of the algorithm at line 4. The symbol on the top of the main stack is a nonterminal,
so it jumps to line 10. Since pQueuesLeft, the set of production queues waiting
for execution is empty, after popping the stack stacksForN(S) associated to the
symbol in the main stack, the parser proceeds with the instruction on line 24 by
increasing the counter step and identifying the production queue to be applied with
the help of the lookup table. At this point

lookahead = a,

CD grammar systems with LL(k) conditions

105



topmost = S,
pQueue = (S → A1A2A1A3, A2 → b, A3 → A4).

The production to be used is the first production of pQueue,

pToUse = S → A1A2A1A3.

Now the remaining part of pQueue is stored in pQueuesLeft indexed with one, the
current value of the step counter, as a pair (1; A2 → b, A3 → A4). This indicates
that the rules of this queue can be used on nonterminals that appeared in the main
stack when the step counter had value one or less. Now the top of the main stack
is replaced with the word on the right side of pToUse, the stack associated to S is
emptied, and the value of step is placed into the stacks associated to the nonterminals
appearing on the right side of the rule, stacksForN(X), X ∈ {A1, A2, A3}. The
configuration of the parser is

(aabaab,A1]A2]A1]A3], 1, (ε], 1]1], 1], 1], ε], ε]), {(1;A2 → b, A3 → A4)}).

Now the parser starts the execution of the while loop on line 4 again. Since the
top of the main stack is a nonterminal, A1, and since there is no production queue
in pQueuesLeft having A1 on the left-hand side of its first rule, after popping
stacksForN(A1), the stack associated with the topmost nonterminal, the parser
continues with line 24 of the algorithm by increasing the counter step, and deter-
mining the production queue and the production to be used with the help of the
lookup table, obtaining

pQueue = (A1 → aA2, A1 → aA2, A4 → A5),
pToUse = A1 → aA2.

After the application of the production A1 → aA2 to the topmost nonterminal of
the main stack, the parser is in the configuration

(aabaab, a]A2]A2]A1]A3], 2, (ε], 1], 2]1], 1], ε], ε]),
{(1;A2 → b, A3 → A4), (2;A1 → aA2, A4 → A5)}),

and then the execution of the algorithm continues at line 4 again.
Since the top of the main stack is the same terminal as the first symbol of the

input, the parser enters

(abaab, A2]A2]A1]A3], 2, (ε], 1], 2]1], 1], ε], ε]),
{(1;A2 → b, A3 → A4), (2;A1 → aA2, A4 → A5)})

by popping the main stack and reading one letter of the input, then continues with
line 4, and jumps to line 10 again.

Now the topmost nonterminal is A2, and by popping two from the stack stacksForN(A2),
it is clear that the production queue (A2 → b, A3 → A4) from pQueuesLeft can
not be used since it has index one. This means that the parser needs to turn to the
lookup table again, obtaining

pQueue = (A2 → a,A2 → a,A5 → b),
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pToUSe = A2 → a.

After the necessary replacements in the stacks and after updating the value of other
variables, the parser enters

(abaab, a]A2]A1]A3], 3, (ε], 1], 1], 1], ε], ε]),
{(1;A2 → b, A3 → A4), (2;A1 → aA2, A4 → A5), (3;A2 → a,A5 → b)}).

Now after popping the main stack and reading one more symbol of the input, the
parser continues at line 10 again. This time, the topmost nonterminal is A2, and the
integer popped from the corresponding stack, stacksForN(A2) is one, so the first
production of the production queue (A2 → b, A3 → A4) stored in pQueuesLeft with
the same index can be used. Thus, the parser continues at line 14 of the algorithm
setting

pToUse = A2 → b,
pQueuesLeft =

{(1;A3 → A4), (2;A1 → aA2, A4 → A5), (3;A2 → a,A5 → b)}.

After replacing the topmost nonterminal of the main stack with the right side of
pToUse, the parser enters

(baab, b]A1]A3], 3, (ε], 1], ε], 1], ε], ε]),
{(1;A3 → A4), (2;A1 → aA2, A4 → A5), (3;A2 → a,A5 → b)}).

After popping the main stack and reading one more symbol of the input, the condi-
tion on line 13 is satisfied again, so the parser sets

pToUse = A1 → aA2,
pQueuesLeft = {(1;A3 → A4), (2;A4 → A5), (3;A2 → a,A5 → b)},

and then uses them, entering

(aab, a]A2]A3], 3, (ε], ε], 3], 1], ε], ε]),
{(1;A3 → A4), (2;A4 → A5), (3;A2 → a,A5 → b)}).

Popping and reading again, then

pToUse = A2 → a,
pQueuesLeft = {(1;A3 → A4), (2;A4 → A5), (3;A5 → b)},

since the queue (A2 → a,A5 → b) stored in pQueuesLeft has index three, the same
as the value obtained from the stack stacksForN(A2), so it can be used, producing

(ab, a]A3], 3, (ε], ε], ε], 1], ε], ε]), {(1;A3 → A4), (2;A4 → A5), (3;A5 → b)}).

After the main stack is popped again and one more input symbol is read, the parser
sets

pToUse = A3 → A4,
pQueuesLeft = {(2;A4 → A5), (3;A5 → b)},
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and enters

(b, A4], 3, (ε], ε], ε], ε], 1], ε]), {(2;A4 → A5), (3;A5 → b)}).

The value one is placed in the stack stacksForN(A4) because the queue index of
the rule A3 → A4 was one which means that the application of the rule happens in
step one, that is, A4 appears in the first (= 3)-mode step of the generation of the
input string.

The next configuration is

(b, A5], 3, (ε], ε], ε], ε], ε], 2]), {(3;A5 → b)}),

and then
(b, b], 3, (ε], ε], ε], ε], ε], ε]), ∅),

after which the last input symbol is read and the main stack is once again popped,
so the parser enters

(ε, ε], 3, (ε], ε], ε], ε], ε], ε]), ∅),

and since the main stack is empty, finishes its work at line 38 of the algorithm.

Theorem 5 If a parser is constructed as above, based on a given CD grammar
system satisfying the LL(k) condition working in the (=m) derivation mode, then it
halts on every input word w over the terminal alphabet of the grammar system after
a running time of O(n · log2 n) where n is the length of w.

Proof. Let G = (N,T, S, P1, . . . , Ps) be a CD grammar system satisfying the LL(k)
condition in the (=m)-mode of derivation. First we show that the parser constructed
according to G halts on every input.

Assume that the parser does not halt on an input word w ∈ T ∗. This means
that it loops infinitely, and it can only do that if the instructions on the lines 10 –
37 are executed infinitely many times. To see this, notice that the body of the main
while loop contains one if-then-else statement. Instructions of the then part read
an input symbol, so they can not be repeated infinitely many times. This implies
that the else part on lines 10 – 37 is repeated infinitely many times.

This part of the algorithm contains an if-then-else statement starting with line
13, the execution of the instructions of this part mean either the execution of the
then part on lines 14 – 23, or the else part on lines 24 – 37. If lines 10 – 37 are
executed infinitely many times, then there must be infinitely many such executions
when no terminal symbol is written on the top of the main stack in line 20 or in
line 34, which means that there is an infinite sequence of consecutive executions of
lines 10 – 37 during which no terminal symbol is ever written on the top of the main
stack.

Since each execution of the instructions of lines 14 – 23 removes one production
from the production queues stored in pQueuesLeft, the instructions on lines 24 –
37 must be executed infinitely many times, or the parser cannot loop infinitely.

Because the lookahead never changes and because the number of nonterminal
symbols is finite, there must be a sequence of instructions starting with lines 24 –
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37, continuing with possibly several executions of lines 10 – 23 or lines 24 – 37, and
then ending with lines 24 – 37 again, in such a way that the value of topmost, that
is, the topmost nonterminal of the main stack, is the same at the first and at the
last execution of lines 24 – 37.

Since the choice of the productions to be applied is based on the lookup table
(line 26), the situation outlined above can only happen if the lookup table have
certain properties which we describe below.

Let X ∈ N and y ∈ T k be a row and a column index of the lookup table, and
let maxchain(X, y) denote the production queue with the following properties:

• maxchain(X, y) is a prefix (p1, . . . , pl) of the corresponding entry of the lookup
table, lookupTable(X, y) = (p1, . . . , pl, pl+1, . . . , pm).

• If maxchain(X, y) and lookupTable(X, y) are as above, then X ⇒p1 X1w1 and
Xiwi ⇒pi+1 Xi+1wi+1, Xi ∈ N , wi ∈ (N ∪T )∗, for each 1 ≤ i ≤ l−1, and each
pi rewrites the leftmost nonterminal, that is, it is of the form p1 = X → α1,
and pi = Xi−1 → αi, 2 ≤ i ≤ l, and furthermore,

• maxchain(X, y) contains the maximal number of productions with the prop-
erties above, that is, pl+1 = Z → w where Z 6= Xl.

The parser may enter an infinite loop, if there exist a column of the lookup table,
labelled with y ∈ V k, such that

X ⇒maxchain(X,y) X1w1 ⇒maxchain(X1,y) X2w2 ⇒maxchain(X2,y) . . .

. . . ⇒maxchain(Xl,y) Xl+1wl+1 = Xwl+1

where X, Xi ∈ N, wi ∈ (N∪T )∗, 1 ≤ i ≤ l+1, and⇒maxchain(X,y) denotes a leftmost
derivation sequence using the rules of the production queue maxchain(X, y).

Now we show that such a column cannot exist in the lookup table. If during
a leftmost (=m)-mode derivation we encounter the nonterminal X as the leftmost
nonterminal, and the production queue identified by X and the lookahead would
be the queue in lookupTable(X, y), then a successful application of the rules would
lead to the choice of the queue lookupTable(X1, y), lookupTable(X2, y), and so on,
until we would obtain X again as the leftmost nonterminal with the same lookahead,
thus, the production queues identified by the leftmost nonterminal and the lookahead
would never lead to a successful derivation which is a contradiction.

Now we show that given the input word w ∈ T ∗, the parser halts after O(n·log2 n)
number of steps where n = |w|. With similar arguments as above, we can show that
the number of instructions executed without reading any input symbol is O(1) which
means that the running time of the parser is the length of the input multiplied by the
time necessary to execute an instruction. All the instructions used in the algorithm
can be executed in constant time, except the evaluation of the condition on line 13
and the assignments on line 14, 18, and 32 because they require the manipulation of
the data stored in the set structure pQueuesLeft. The evaluation of line 13 requires
a search, the assignments require the addition and the deletion of an element using
a set where the number of stored elements can be as many as O(n).
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All of these operations, however, can be executed in O(log2 n) time if we use
balanced search trees, such as red-black trees for example, to store the elements of
the set pQueuesLeft. (For more on balanced search trees and red-black trees in
particular, see [2].) The implementation of the set pQueuesLeft must consist of
a red-black tree for each nonterminal X ∈ N which stores the indexed production
queues (i; pq) ∈ pQueuesLeft with X = left(first(pq)) ordered by the index i ∈ N.
Having such a structure, the evaluation of the condition on line 13 can be realized
by turning to the search tree associated to the nonterminal topmost to obtain the
pair (i; pQueue) where either i = stepOfTopmost, or if such index is not present,
then i is the smallest available index with i ≥ stepOfTopmost. To perform this
search takes O(log n) comparisons since even in the worst case when the index is
not present, it is enough to explore one path of the red-black tree leading from the
root to one of the leaves, and the length of these paths, that is, the height of the
tree is O(log n). To execute lines 14, 18, and 32, that is, to add or remove elements
from the structure first requires a search to determine the appropriate tree and the
location of the element in the tree, and then a constant number of elements need to
be manipulated to insert or to remove the data. Since the number of trees used are
finite, the number of necessary comparisons and data manipulations are O(log n).
One comparison or one data manipulating step, however, also requires O(log n) time,
since the integers used to index the production queues, that is, the keys used to index
the nodes of the search tree, might be as large as n, so their representation can be as
long as log n which means that comparing, reading or writing them requires O(log n)
elementary computation steps. This gives a total running time of O(n · log2 n) where
n = |w|, the length of the input word. 2

5 Conclusion

Cooperating distributed grammar systems working in = m-mode of derivation have
been restricted in a way such that, on the one hand, they maintain enough power
in order to generate all context-free LL(k) languages, the languages L1, L2 and L3

of the concept of mildly context-sensitive grammars and even some non-semilinear
language, but, on the other hand, there is an efficient parsing algorithm of O(n ·
log2 n) time complexity. The focus in this paper was on the development of the
concept of an LL(k) condition which is appropriate for those systems, and of the
parsing algorithm. The corresponding families of languages (CDnLL(k)(= m)) need
further investigations. The future research should investigate, among others, the
following problems:

• Which of the inclusions given in Lemma 1 are strict?

• Is it decidable whether a given CD grammar system is LL(k), for a given k or
for any k?

Moreover, one could extend the research to other derivation modes. Finally, other
restrictions like an appropriate LR(k) condition can be taken into consideration.
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Abstract
In this paper we deal with trade-o�s between time, space, and communica-tion complexity of languages generated by Cooperating Distributed GrammarSystems (henceforth CDGS) with regular, linear and context-free components.We propose two types of communication structures. The �rst structure is de-termined by the communication graph of the CDGS, i.e, a directed graph inwhich the vertices are labeled by the CDGS components and the directed edgescorrespond to pairs of grammars (Ga, Gb), a 6= b, that communicate with eachother. The communication is done through those nonterminals that appear onthe right side of a production of Ga and on the left side of a production of Gb,according to the protocol of cooperation used by the system. We will refer tothese nonterminals as communicational nonterminals. The second structure isgiven by the communicational protocol tree attached to the generated language,i.e. the derivation tree of a special kind of Szilard language introduced in thispaper, called communicational Szilard language. A communication complexitymeasure, i.e. how many times the system components communicate with eachother using a minimal number of communicational nonterminals, is de�ned andstudied depending on modes of derivation, weak and strong fairness conditions.We found that the communication complexity of weakly and strongly q-fairlanguages in the case of grammar systems with regular or linear componentsis linear. These languages can be accepted by a nondeterministic multitapeTuring machine in linear space and linear time. In the case of languages gener-ated by CDGS with context-free components we show that the communicationcomplexity varies from linear to logarithmic. The space required by a nonde-terministic multitape Turing machine to accept these languages equals to thecommunication complexity, while the time is linear in all the cases.

1 Introduction
Communication complexity is one of the youngest branches of complexity theory.
It has been inspired from the inter-processor communication, in which the input,
viewed as sequences of messages distributed among di�erent parts of a system, has
to be split in di�erent partitions in order to allow an optimal communication. It has
been introduced in 1979 by Yao [17], and it studies the communication exchanged
during a computational process by minimizing the amount of information exchanged
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between the system components. The ow of information (the number of exchanged
bits) is measured by ignoring the other cost, such as time and space.

This paper is devoted to the communication complexity of Cooperating Dis-
tributed Grammar Systems, with regular, linear and context-free components, but
concerns also other computational resources used by the system, such as time and
space. We deal with trade-o�s between this three measures in order to control the
generative process underlined by CDGS.

Investigations related to the communication complexity of distributed grammar
systems have been done so far in several papers, e.g. [9], [10], [11], [12], [13]. In these
papers the authors focus on the communication complexity of Parallel Communi-
cating Grammar Systems (henceforth PCGS). They have considered two kinds of
communication complexity measures. The �rst one is the communication structure
of PCGS, i.e. the shape of the communication graph, consisting of directed com-
munication links between the grammars, while the second one is a communication
complexity measure, i.e. the number of exchanged messages during the computa-
tional process.

For the case of CDGS we propose two types of communication structures. The
�rst structure is determined by the communication graph of CDGS, which is a di-
rected graph where the vertices are labeled by the CDGS components and the di-
rected edges correspond to pairs (Ga, Gb), a 6= b, of grammars that communicate
with each other. The communication is done through those nonterminals that ap-
pear on the right side of a production of Ga and on the left side of a production of
Gb, according to the protocol of cooperation used by the system. We refer to these
nonterminals as communicational nonterminals. The second structure is a protocol
tree determined by the interconnection between the system components, i.e. the
way in which they bring consecutive contributions on the sentential form during the
language generation process. We de�ne a new kind of language, called communica-
tional Szilard language. The derivation tree of a certain word cw from this language
is the communicational protocol tree attached to the corresponding word w from the
language generated by the system, for which cw is the communicational control word
of w. A communication complexity measure, i.e., how many times the system com-
ponents communicate with each other using a minimal number of communicational
nonterminals, is de�ned and studied depending on modes of derivation, weak and
strong fairness conditions.

2 Prerequisites
Grammar systems are sets of grammars that function together according to a spec-
i�ed protocol of cooperation. In CDGS all the components have a common axiom,
all grammars have the same working tape, each of them making their own con-
tribution on the common sentential form. At each moment only one grammar is
active. Which component of the system is active at a given moment, and when a
grammar stops to be active, is decided by the protocol of cooperation. This pro-
tocol consists in stop conditions such as modes of derivation (how many times a
rewriting rule of the same component can be applied), in weak fairness conditions
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(each component has to be activated almost the same number of times) or in strong
fairness conditions (each component has to be activated almost the same number of
times, by taking into account the number of internal productions that are applied
for each grammar). CDGS simulates the blackboard model of problem solving, in
which the blackboard is the common working tape, and the components G1; :::; Gr
are the knowledge sources (agents, processors, etc.). They have been introduced and
studied in [2], [3], [4] and [8], with forerunner related papers [14] and [15]. Formally
a CDGS is de�ned as follows:
De�nition 1 ACooperating Distributed Grammar System of degree r, r � 1
is a construct of the form: � = (N;T; S; P1; : : : ; Pr), (1)
where the setN and T are disjoint �nite alphabets, the nonterminal and the terminal
alphabet, respectively. S 2 N is the system axiom, and P1; P2; : : : ; Pr are �nite sets
of rewriting rules over N [ T .
(1) can be rewritten equivalently: � = (N;T; S;G1; : : : ; Gr), (1')
in which Gi = (N;T; S; Pi) , for all i, 1 � i � r, are Chomsky grammars, called
the components of �. For X 2 fREG;LIN;CFg we denote by CDGSrX, r � 1,
CD grammar systems with r components, that have regular, linear and context-free
components, respectively. The language generated by these systems depends on the
way in which the internal rules of each component bring their own contribution on
the sentential form. This can be done with respect to several modes of derivation,
de�ned below:
De�nition 2 Let � = (N;T; S; P1; : : : ; Pr) be a CDGS, x; y 2 (N [ T )�, and
i 2 f1; :::; rg. The terminating derivation (denoted by )tPi), the k-steps
derivation (denoted by )=kPi ), at most k-steps derivation (denoted by )�kPi ),
at least k-steps derivation (denoted by )�kPi ), and the *-mode of derivation
(denoted by )�Pi), represent modes of derivations that allow for each component Pi
to consecutively activate: as many rules as possible, exactly k rules, at most k rules
but at least one rule, at least k rules, and arbitrarily many rules, respectively.
Let � = (N;T; S; P1; : : : ; Pr) be a CDGS and M = ft; �g [ f� k;= k;� kjk � 1g.
De�nition 3 The language generated by � in f-mode, f 2M is de�ned as:
Lf (�) = fw 2 T �jS = w0 )fPi1 :::)

fPim wq = w;m � 1; 1 � ij � r; 1 � j � mg.
For X 2 fREG;LIN;CFg, f 2 M we denote by CDrX(f), r � 1, the family of
languages generated by CDGS with r components, that have only regular, linear,
and context-free rules activated in the f -mode of derivation.
De�nition 4 Let � = (N;T; S; P1; : : : ; Pr), be a CDGS. The control word of w,
with respect to the system components that have been applied in f -mode, f 2 M ,
for a terminal derivation: S = w0 )fPi1 w1 )fPi2 w2::: )fPim wq = w is de�ned
as w = Pi1Pi2 :::Pim . The Szilard language associated to the derivation in the
f -mode, in � is: Sz(�; f) = fwjw 2 Lf (�); f 2Mg.
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We denote by SZ(f) the family of Szilard languages Sz(�; f) for any grammar
system �, in the f -mode of derivation. For more properties of these languages the
reader is referred to [7].
De�nition 5 Let � = (N;T; S; P1; : : : ; Pr), be a CDGS. The communicational
control word of w, that is a control word built with respect to the communicational
nonterminals used during a terminal derivation of the form S = w0 )fPi1 w1 )fPi2
w2:::)fPim wq = w, in f -mode, f 2M , is de�ned as cw = Pn1i1 Pn2i2 :::Pnqim , where nj ,is the number of communicational nonterminals rewritten during the application of
rules of the component Pij , 1 � j � m. The communicational Szilard language
associated to a terminal derivation in the f -mode, in � is de�ned as:

Szc(�; f) = fcwjw 2 Lf (�); f 2Mg.
We denote by SZC(f) the family of communicational Szilard languages Szc(�; f) for
any grammar system �, in f -mode of derivation. Note that in the case of grammar
systems with regular and linear components the languages Sz(�; f) and Szc(�; f)
are equal. They can be di�erent only in the case of grammar systems that contains
at least one non-linear rule.

Besides modes of derivation other restrictions that control the generative process
are given by fairness conditions. Informally, these conditions require that all com-
ponents of the system have approximately the same contribution on the common
sentential form. They have been introduced in [6], in order to control and to increase
the generative capacity of grammar systems. Formally they are de�ned as follows:
De�nition 6 Let � = (N;T; S; P1; : : : ; Pr), be a CDGS, and

D: S = w0 )=n1Pi1 w1 )=n2Pi2 w2:::)=nqPim wq = w
be a derivation in f -mode, where Pij performs nj steps, 1 � j � m. For any
1 � p � r, we set

 D(p) =
X
ij=p

1 and 'D(p) =
X
ij=p

nj (2)
- the weak maximal di�erence between the contribution of two components involved
in the derivation D is de�ned as:

dw(D) = maxfj D(i)�  D(j)j j1 � i; j � rg,
- the strong maximal di�erence between the contribution of two components is:

ds(D) = maxfj'D(i)� 'D(j)j j1 � i; j � rg.
Let u 2 fw; sg, x 2 (N [ T )�, f 2M and

du(x; f) = minfdu(D)j where D is a derivation of x in f -modeg,
for a �xed natural number q � 0,
- the weakly q-fair language generated by � in the f -mode is de�ned as:

Lf (�; w � q) = fxjx 2 Lf (�) and dw(x; f) � qg
- the strongly q-fair language generated by � in the f -mode as:

Lf (�; s� q) = fxjx 2 Lf (�) and ds(x; f) � qg.
For X 2 fREG;LIN;CFg and f 2 M , M = ft; �g [ f� k;= k;� kjk � 1g we
denote by CDrX(f; w � q) and CDrX(f; s � q), r � 1, the family of weakly and
strongly q-fair languages, respectively, generated by CDGS with r components, that
have regular, linear, and context-free components in the f -mode of derivation.
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3 The Amount of Communication
In this section, two communication structures are proposed in order to investigate
the communicational process of distributed generation of languages for the case of
CDGS. The �rst structure is given by the communication graph of the CDGS, while
the second structure is given by the protocol of collaboration between the system
components, and it is strictly related to the structure of the communicational Szilard
language associated to a language generated by CDGS. We call this structure the
communicational protocol tree underlied by the grammar system. Another measure
deals with the number of communicational steps spent during the computational
process. We call it communication complexity. In what follows we describe how
these complexity measures work together, and how they can be used to characterize
the communicational process of CDGS.

3.1 Measures of Communication

Let � = (N;T; S;G1; : : : ; Gr) be a CDGS and M = ft; �g [ f� k;= k;� kjk � 1g.
De�nition 7 The communication graph of a CDGS crossed in the f -mode of
derivation, f 2 M , is a directed graph in which the vertices are labeled by the
CDGS components that communicate with each other. Each directed edge, from
a node labeled by Ga to another node labeled by Gb, a 6= b, corresponds to a
communication step from the component Ga to the component Gb, done during the
derivational process, i.e., there exists at least one nonterminal that appears on the
right side of a production from Ga and of the left side of a production from Gb,
rewritten at least one time during the derivational process in the f -mode.
De�nition 8 The communicational protocol tree attached to a word w 2
Lf (�), f 2 M is the derivation tree attached to the communicational control word
of w, i.e. cw, in the f -mode.
Note that the number of sons of a given node in the communicational protocol tree
depends on the type of the rule through which the communication is performed.
In the case of regular or linear rules, a grammar Ga communicates with another
grammar Gb through only one nonterminal, so that the corresponding protocol tree
will be a simple tree (each node has only one son). In the case of non-linear rules
the number of sons equals the number of communicational nonterminals from the
right side of the rule. Consequently, the shape of the communicational protocol tree
depends not only on modes of derivation, but also on the number of communicational
nonterminals that exist on the right side of the same production. Therefore, it might
exist grammar systems with non-linear rules for which only one nonterminal from
the right side of each production is a communicational one. In this case the protocol
tree will be a simple tree, too. The communicational protocol tree is not a simple
tree, only in the case of CDGS for which there exists at least one non-linear rule
that has at least two communicational nonterminals at the right side of it.

The communication complexity measure represents the number of communica-
tions between di�erent components, during the generative process, by using a mini-
mal number of communicational nonterminals in a speci�ed mode of derivation. This
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communication measure represents in fact how many times, in a terminal derivation,
di�erent components can be applied (this fact can be restricted only by the f -mode
of derivation or fairness conditions). Due to the above observation the communi-
cation complexity is a function of the length of the generated word depending on
 D(p), 1 � p � r, introduced in (2). Let � = (N;T; S; P1; : : : ; Pr), be a CDGS, and
D a derivation in �, such that D : S )fPi1 w1 )fPi2 w2:::)fPim wq = w.
De�nition 9 We denote by Com(D) = Prp=1  D(p), where  D(p) = P ij=p1, thenumber of communication steps used during the derivation D.
The communication complexity of a word w, w 2 Lf (�) is de�ned as:

Com(w;�) = minfCom(D)jD : S )� wg.
The communication complexity of � over all words of length n is:

Com�(n) = supfCom(w;�)j; w 2 Lf (�); jwj = ng.
The class of languages that can be generated within communication f by
a CDGS, is de�ned as: COM(g) = S�fLf (�)jCom� = O(g)g.
To be observed that in the case of CDGS with regular or linear components the
control language and the communicational control language are equal. Furthermore,
due to the fact that the height of the communicational protocol tree of a certain
word w is equal with the length of the derivation of the control word associated to
w, De�nition 9 of the communication complexity can be equivalently rede�ned as
follows.
De�nition 10 The number of communication steps, i.e Com(D), used during a
derivation D of a particular word w is the height of the communicational protocol
tree attached to the communicational control word.

The communication complexity of a word w, w 2 Lf (�), i.e Com(w;�),
is the minimum of the heights over all communicational protocol trees attached to
each communicational control words of w.

The communication complexity of � over all words of length n, i.e Com�(n),
is the supremum of the heights over all minimal communicational protocol trees.
Let � be a CDGS, and D be a (minimal) terminal derivation of w, where w 2 Lf (�),
f 2 M , M = ft; �g [ f� k;= k;� kjk � 1g. We denote by jw(D)j and jcw(D)jthe length of the derivation of the control word, jwj, and of the communicational
control word, jcwj, associated to w, respectively. Then, the next theorem holds.
Theorem 1 For each grammar system �, that has only useful components1 and
w 2 Lf (�), we have:
1. jw(D)j = Com(jwj).
2. There exist two positive constants a and b, such that ajcw(D)j � jwj � bjcw(D)j.
Proof. The �rst claim is a direct consequence of De�nitions 9 and 10. To prove the
second claim we consider �rstly the case of regular and linear components. In this

1That is each component brings contributions on the sentential form, directly through terminal
symbols (in the case of regular or linear rules), or indirectly through non-terminal symbols (in the
case of context-free components).
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case at each step between two consecutive communications at least one terminal
symbol is brought into the sentential form. Therefore, the generated word will
contain at least the number of communication steps performed during the generative
process. In this case we have a = 1, and b equals the maximum number of the
terminal symbols brought into the sentential form by each rule of the system.

In the case of grammar systems with (non-linear) context-free components, let
us consider cw of the form cw = Pn1i1 Pn2i2 :::Pnkik . The leaves in the associated protocol
tree correspond to those components that contain rules that have on their right side
only terminals. They contribute in the sentential form with substrings of w. The
worst case happens when no terminal symbol is brought into the sentential form
between any two consecutive communication steps. Therefore, the number of the
leaves, i.e. nk, is less than or equal to the length of w, and the length of w cannot
be more then nk multiplied by a constant c. So that we have

nk � jwj � cnk � cmaxjcw(D)j. (3)
On the other hand there are situations when between each two consecutive commu-
nication steps each component contributes in the sentential form with a constant
number of terminals. Each communicational nonterminal might bring its own con-
tribution on the sentential form, too. That is why we also have

cminjcw(D)j = cmin(n1 + n2 + :::+ nk) � c1n1 + c2n2 + :::+ cknk � jwj (4)
From (3) and (4) we have a = cmin and b = cmax. 2

Due to the above result the communication complexity of CDGS is strictly related
not only to modes of derivation or fairness conditions but also on the types of
the rules of the system components, and on the number of non-terminals of a non-
linear rule that are communicational non-terminals. In the next subsection, we state
several results that concern the time, space and the communication complexity of
CDGS with regular, linear and context-free components.

3.2 CDGS with Regular and Linear Components

Theorem 2 For each grammar system CDGSrX, with X 2 fREG;LINg and
r � 2, there exists a CDGS with only one component that will generate the same
language, and vice-versa, independently of modes of derivation.
Corollary 1 CD�X = X, forX 2 fREG;LINg, independently of modes of deriva-
tion.
Corollary 2

SZC(CDGR�X; f) = SZ(CDGR�X; f) = REG, for X 2 fREG;LINg, and
f 2 f�; tg [ f� k;= k;� kjk � 1g.
Corollary 3 The communication complexity of CD�X(f), X 2 fREG;LINg, f 2
ft; �g [ f� k;= k;� kjk � 1g is 0.
Corollary 4 LIN � COM(0):
It is well known that the communication complexity divides languages in small
complexity classes. The above results show that the communicational process of
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CDGS is a lazy one. So that the process of communication in these system is not so
powerful as it has been proved to be for the case of PCGS, where several hierarchies
of very (small) complexity classes have been found. Due to the fact that fairness
conditions increase the generative power of a grammar system, the above theorem
and corollaries do not hold for the case of q-fair languages. A CDGS with arbitrary
number of components cannot be "compressed" into a single grammar that generates
the same q-fair language, by preserving the mode of derivation, too. Even for these
types of languages in the case of a constant communication, the class of weakly q-fair
languages generated by CDGS with regular or linear components coincide with the
languages generated by the same grammar without any weak fairness condition, so
that due to Corollary1 we have:
Corollary 5 CDr;cX(f; w�q) � COM(0) and CDr;cX(f; s�q) � COM(c) where
X 2 fREG;LINg and c is the constant number of communicational steps performed
during the derivation.
Corollary 6 The communication complexity of weakly/strongly q-fair languages,
Lf (�; w� q)/Lf (�; s� q), f 2 ftg [ f� k;= k;� kjk � 1g, generated by CDGS�X,
X 2 fREG;LINg, for which the communication graph is a tree or a dag is 0/con-
stant.
Nevertheless the above results do not hold for the case of strongly q-fair languages
generated by CDGS with non-constant communication. That is why the commu-
nication complexity of q-fair languages deserves to be studied separately. In what
follows we focus on the time, space and communication complexity of these very
particular class of languages. Below we give one of the most classical example, see
[6], related to these types of languages.
Example 1 Let us consider the CDGS

�1 = (fS;A;A0; B;B0g; fa; bg; S; P1; P2; P3; P4)
with the components:

P1 = fS ! aA0; A! aA0g; P2 = fA0 ! aAg;
P3 = fA! bB0; B ! bB0g; P4 = fB0 ! bB;B0 ! bg:

The communication graph is displayed in Figure 1.
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Figure 1: The communication graph associated to the CDGS, �1.
The language generated by �1, in the f mode of derivation, where f 2 ft;= 1;�

1g[f� kjk � 1g is: Lf (�1) = fa2nb2mjn � 1;m � 1g 2 REG. The Szilard language
is Sz(�1) = f(P1P2)n(P3P4)mjn � 1;m � 1g. If we impose the fairness conditions
then we have:
Lf (�1; w � q) = Lf (�1; s � q) = fa2nb2mjn � 1;m � 1; jn � mj � qg =2 REG.
Not being regular this language cannot be inferred from the communication graph
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displayed in Figure 1. That is why we need another kind of machine to check the
fairness conditions. Next we show that if the communication is not constant then
the communication complexity of q-fair languages cannot be more than linear. Fur-
thermore, fairness conditions can be checked in linear time and space by a multitape
Turing machine, and in linear space and quadratic time by a one tape Turing ma-
chine. For the de�nitions of one tape or multitape Turing machine, the reader is
referred to [16].
Theorem 3 CDrX(f; w � q) [ CDrX(f; s� q) 2 COM(n).
Proof. In the case of grammar systems with regular and linear rules the Szilard and
the communicational Szilard languages are equal. With respect to Theorem 1, for
any word w that belongs to the weakly or strongly q-fair language, we have:
jw(D)j = Com(w;�) = jcw(D)j , where D is a minimal derivation of w. Hence,
supfjw(D)jj w 2 Lf (�; u� q); jwj = ng = supfCom(w;�)j w 2 Lf (�; u� q); jwj =
ng = Com�(n) = supfjcw(D)jjw 2 Lf (�; u�q); jwj = ng = O(n), where u 2 fw; sg.

2

Theorem 4 Let � be a CDGSrX, for X 2 fREG;LINg. The weakly q-fair lan-
guage generated by �, i.e., Lf (�; w � q), can be accepted by a nondeterministic
Turing machine with r + 1 tapes in linear time and space. Moreover the next rela-
tion hold:

SpaceT (n) 2 O(Com�); T imeT 2 O(Com�):
Proof. Let � = (N;T; S; P1; : : : ; Pr) be a CDGSrX, for X 2 fREG;LINg. Let
Lf (�; w�q) be the weakly q-fair language generated by �. Next we describe a nonde-
terministic (r+1)-tape Turing machine, with left, right, and stationary movements,
that accepts Lf (�; w � q). For the beginning the machine has on the �rst tape an
input string w of length n, generated by the above CDGSrX, for X 2 fREG;LINg,
in f -mode of derivation, f 2 ftg [ f� k;= k;� kjk � 1g, followed by q symbols $.
Symbols from the right side of a production of the form A ! xA0y, or of the form
A ! A0y, are marked in the input string by an index r, while the others are left
unchanged. Each tape of the machine corresponds to one of the system components.
At the start of the computation all heads are placed at the beginning of each tape.
The machine starts nondeterministically with the component that contains the ax-
iom. Let us assume that this is the component i� 1. Therefore, the ith head of the
machine writes the nonterminal symbol that appears on the right side of the starting
production on the ith tape, letting the �rst head to read the symbol x from the input
string, corresponding to a starting rule of the form S ! xS0, S ! xS0xr, or to read
no symbol in the case of starting rules of the form S ! S0, S ! S0xr. From now on
the machine simulates on the ith tape the derivation process done by the component
i� 1, in the f -mode, as follows. The �rst head reads the symbols x (or xr) from the
input tape, with respect to rules of the form A ! xA0, A ! xA0xr (or A ! A0xr),
and does not read any symbol with respect to rules of the form A! A0, A! A0xr
of the component i� 1. In the meantime, the ith head rewrites on the same cell the
nonterminal reached by the rule, i.e. A0. All the other (r� 1) heads make no moves
and write no symbols. When a communicational nonterminal has been reached, and
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when the f -mode of derivation of the component i� 1 ends, the machine nondeter-
ministically jumps to the tape corresponding to the component to which the current
component is communicating. Let us consider that this is the component j � 1. In
this moment the machine replaces the communicational nonterminal from the ith
tape with the $ symbol, in order to mark that the ith component has been applied
once in the generative process. From now on the machine simulates the work of the
component j�1 on the jth tape, in the same way as before. The process is repeated
until the whole input string is read2, i.e., the generative process performed by the
CDGSrX, for X 2 fREG;LINg in the f -mode of derivation has been accomplished.
In this moment the �rst head of the machine will be located on the symbol $. On
each ith tape there will be  D(i � 1) symbols $, that correspond to the number of
contributions brought on the sentential form by the component (i�1), 2 � i � r+1.
From now on the checking of the weak fairness condition, is performed as follows. All
the heads, excepting the �rst one, simultaneously delete one by one the $ symbols
that have been written on each tape. When one of the heads gets at the beginning
of the tape, i.e. the minimum number of the contributions of a component had been
deleted, the �rst head starts to read the q symbols $ from the �rst input tape. If
these symbols have been read before the deletion of all $ symbols from the other
tapes it means that the weak q-fair restriction is not accomplished, therefore w will
not be accepted by the machine. If the deletion of the $ symbols from all tapes
ends before or at the same time with the reading of the q symbols $ from the �rst
tape, w satis�es the weak q-fair restriction. Therefore the word will be accepted by
the machine, as belonging to Lf (�; w � q). The space needed by this machine to
perform the computation cannot be more than the number of the communication
steps performed by the grammar system, that is SpaceT (n) 2 O(Com�(n)). The
time required by the machine to accept and to check the weak q-fair condition is
O(Com�(n)), too. Due to Theorem 3, Com� 2 O(n), so that SpaceT 2 O(n) and
TimeT 2 O(n). 2

Theorem 5 Let � be a CDGSrX, for X 2 fREG;LINg. The weakly q-fair lan-
guage generated by �, i.e. Lf (�; w � q), can be accepted by a nondeterministic
Turing machine with one tape in linear space and quadratic time, i.e.

SpaceT 2 O(n); T imeT 2 O(n2):
The above theorem is a direct consequence of Theorem 4 and of Savitch's theorem.

3.3 CDGS with Context-free Components

Theorem 6 CD�CF (f) = CF , for f 2 f�;= 1;� 1g [ f� kjk � 1g.
Corollary 7 SZ(CDGR�CF; f) = REG, for f 2 f�;= 1;� 1g [ f� kjk � 1g .
Corollary 8 CF � COM(0):
Corollary 9 CDr;cCF (f; w�q) 2 COM(0), where f 2 f�;= 1;� 1g[f� kjk � 1g,
and c is the constant number of communication steps spent during the computation.

2Note that when all the communicational nonterminals have been spent, the symbols xr left on
the input tape, will be read by forbidding the other heads, excepting the �rst one, to move.
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Corollary 10 The communication complexity of Lf (�; w � q), f 2 f�;= 1;� 1g [
f� kjk � 1g generated by CDGS�CF , for which the communication graph is a tree
or a dag is 0.
Corollary 11 CD�LIN(f)[CD�CF (f1)[CD�;cLIN=CF (f=f1; w�q) � COM(0),
CD�;cCF (f2; w � q) [ CD�;cX(f; s � q) � COM(c), X 2 fREG;LIN;CFg, for
f 2 ft; �g [ f� k;= k;� kjk � 1g, f1 2 f�;= 1;� 1g [ f� kjk � 1g and
f2 2 ftg [ f= k;� kjk � 1g.
In the case of non-constant communication we have.
Theorem 7 For each grammar system � with context-free components, and w 2
Lf (�), there exists a bijection h : N ! N such that jcw(D)j = h(jw(D)j), where D
is the the minimal derivation of w, w(D) and cw(D) are the length of the derivationof the control word, w, and of the communicational control word, cw, associated to
w, respectively.
Proof. Let cw = Pn1i1 Pn2i2 :::Pnkik , be the communicational control word attached to
w. In the case of CDGS with context-free components, cw is developed as a protocol
tree attached to w. The number of sons at each level of this tree depends recur-
sively on the number of sons of the previous levels, because communicational rules
from di�erent components are applied recursively, by using each time the same type
of rules, that increases (linearly or exponentially) the number of communicational
nonterminals used during the derivation. Consequently, at the end of the generative
process the sum n1+n2+:::+nk, will be a linear, polynomial or exponential function
that depends on the length of the generated string. 2

Next, we call the function h the characterization function of the communicational
Szilard language Szc(�; f).
Theorem 8 The class of languages generated by CDGSrCF in f -mode of deriva-
tion, f 2 ftg [ f= k;� kjk � 1g, for which the characterization function of the
Szc(�; f) language is linear, polynomial of rank p or exponential with the base p,
has the communication complexity in O(n), O( ppn), or O(logpn), respectively.
Proof. With respect to Theorem 1, for any word w 2 Lf (�) of length n, we have

jw(D)j = Com�(jwj) = Com�(n) and jcw(D)j = O(jwj) = O(n).
With respect to Theorem 7, there exists a generative bijection h : N ! N , such
that jcw(D)j = h(jw(D)j). Consequently, we have O(n) = h(Com�(n)), so that
Com�(n) = h�1(O(n)). Therefore, if h is a linear function then Com�(n) 2 O(n),
in the case that h is a polynomial function of rank p, then Com�(n) 2 O( ppn), while
in the case that h is an exponential function of base p, then Com�(n) 2 O(logpn).

2

Theorem 9 The class of languages generated by a CDGSrCF in f -mode of deriva-
tion, f 2 ftg [ f= k;� kjk � 1g, are generated by a nondeterministic Turing
machine, with r + 1 tapes, within SpaceT 2 O(Com�) and TimeT 2 �(n):
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Corollary 12 The class of languages generated by a CDGSrCF in f -mode of deriva-
tion, f 2 ftg [ f= k;� kjk � 1g for which the characterization function of the
Szc(�; f) is linear, polynomial of rank p, or exponential with the base k, are rec-
ognizable by a nondeterministic Turing machine, with r + 1 tapes, within SpaceT
O(n), O( ppn), or O(logpn), respectively, and in TimeT 2 �(n).
Furthermore, for the case of q-fair languages, the next theorem holds, [1].
Theorem 10 The class of q-fair languages generated by a CDGSrCF in f -mode
of derivation, f 2 ftg [ f= k;� kjk � 1g for which the characterization function
of Szc(�; f) is linear, polynomial of rank p, or exponential with the base p, are
recognizable by a (k + 1)-tape nondeterministic Turing machine in SpaceT 2 O(n),
O( ppn), or O(logpn), respectively, and TimeT 2 �(n).

4 Conclusion
The process of communication in the case of CDGS with regular and linear com-
ponents is a lazy one. Furthermore, the communication can be lost, i.e., it has no
e�ciency in building communication complexity classes, in the case of CDGS with
regular or linear components, without any fairness conditions. In the case of non-
constant communication, for the case of weakly and strongly q-fair languages, the
communication complexity cannot be more than linear. The communication can be
lost too, for the case of languages generated by CDGS with context-free components,
in the f mode of derivation, f 2 f�;= 1;� 1g[f� kjk � 1g, or in the case of weakly
q-fair languages generated by CDGS with constant communication. The communi-
cation is preserved in the case of CDGS with context-free rules, non-constant com-
munication, weakly and strongly q-fair condition and in f 2 ftg [ f= k;� kjk � 1g
mode of derivation. Moreover, in this last situation we reached several complexity
classes depending on the characterization function of the communicational Szilard
language associated to a CDGS.
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Abstract
In this paper a new variant of translating devices is presented. We propose

a new model based on the interconnection of several pushdown transducers
working in parallel, in a synchronized manner and communicating with each
other by request. We focus on the strategy of communication by stacks, i.e.,
the content of the pushdown memory of each component of the system is shared
with each other component, and transferred into the pushdown memory of the
component that asked for it. They communicate also by the output tapes, i.e.,
whenever a query symbol appears on the top of a stack, the string yielded so
far, on the output tape of the component to which the query symbol belongs, is
transfered into the output tape of the component that inquired for it. We call
these devices Parallel Communicating Pushdown Transducer Systems (hence-
forth PCPTS). Depending on the protocol of communication we de�ne several
variants of PCPTS, e.g. returning or not returning, centralized or not. The
strategy of exchanging data through the pushdown memory increases the com-
plexity of the outputted languages. We investigate the computational power of
these systems by taking into consideration the computational power of parallel
communicating pushdown automata systems. Descriptional complexity reasons
suggest us to use PCPTS in DNA computing. Several examples illustrate the
manner in which this application is performed.

1 Introduction

From the very beginning, due to their practical applicability, translating systems
turned out to be a rich and interesting subject area in the �eld of computational
linguistics. The main goal of this paper is to describe a new variant of translating
devices obtained by improving parallel communicating pushdown automata systems
with output capabilities. The mechanism could have interesting applications in com-
putational morphology and phonology, in speech recognition, arti�cial intelligence
or communication among agents, in splicing systems and in DNA computing.

Finite-state transducers have been introduced for the �rst time in [11]. Since then
they have increasingly developed and diversi�ed due to their exibility in represent-
ing and generating a large size of structural data, by using time and space optimal
memory, e.g. the transducer minimization algorithm [21]. They have been applied
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especially in natural language processing, in �elds such as computational morphol-
ogy and phonology [14], lexical analyzers [15] or speech recognition [20]. They have
been extended to algebraic transducers [16] and weighted �nite-state transducers
[22]. Watson-Crick transducers have been developed in order to manipulate DNA
molecules. They are described in [23]. If a pushdown automaton is provided with
output capability, the resulting machine is a pushdown transducer. It comes in
the literature from [9], [10] and [12], with many other succeeding papers. Paral-
lel communicating pushdown automata are systems composed of several pushdown
automata working independently but communicating with each other by stacks, un-
der a speci�ed protocol of cooperation. The protocol of cooperation consists in
exchanging strings that have been generated up to the request moment through the
pushdown memory. They have been de�ned and investigated in [4], [5], [17], [18],
[19] and [27] with forerunner related papers [1], [13]. If a parallel communicating
pushdown automata system is improved with output capability the resulting device
is called in this paper Parallel Communicating Pushdown Transducer Systems. The
new model is based on the interconnection of several pushdown transducers working
in parallel, in a synchronized manner and communicating with each other by re-
quest. The communication is done through stacks, i.e., the content of the pushdown
memory of each component of the system is shared with each other component, and
transferred into the pushdown memory of the component that asked for it. They
communicate also by the output tapes, i.e., whenever a query symbol appears on
the top of a stack the string yielded so far, on the output tape of the component to
which the query symbol belongs, is transfered into the output tape of the component
that asked for it. Depending on the protocol of communication, we propose several
variants of PCPTS, e.g. returning or not-returning, centralized or not. The study
of the computational power and possible applications of such systems in DNA com-
puting is another goal of this paper. The theoretical approaches are accomplished
by several examples that illustrate the manner in which PCPTSs work.

2 Preliminaries

Our aim in this section is to introduce the main concepts related to pushdown trans-
ducers and parallel communicating transducer systems. A setting of the notations
of concepts from the topic covered in the paper will be given, too. We assume the
reader to be familiar with the basic notions of formal language theory. Let �� be
the set of words over an alphabet �, composed of a �nite set of letters, let � be the
empty word, and let wR and jwj, w 2 ��, be the reverse and the length of the word
w, respectively. We denote by �+ = ���f�g and by j�j, the cardinality of the set �.
�� is the twin alphabet of �, i.e. �� = f�xjx 2 �g. A mapping h : �� �! T � , de�ned
by h(�) = f�g and h(x1x2) = h(x1)h(x2), for x1, x2 2 ��, is called a morphism. If
T � �, then a projection associated with T , is a morphism hT : �� �! T � , de�ned
by hT (x) = x , for all x 2 T , and hT (y) = � , for all y 2 �� T .
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2.1 Pushdown Transducers
A pushdown transducer is obtained by permitting a pushdown automaton (hence-
forth PDA) to emit a string of output symbols on each transition.
De�nition 1 A pushdown transducer (PDT) is an 8-tuple:

P = (Q, �, �, �, �, q0, Z0, F )
where:
- Q is a set of states, � is the input alphabet, � is the alphabet of pushdown

memory and � is the output alphabet (all these sets are �nite),
- � is a mapping from Q� (� [ f�g)� � into the �nite subsets of Q� �� ���,
- q0 the initial state, Z0 2 � is the start symbol from the pushdown memory and

F � Q, the set of �nal states .
A con�guration of P is a 4-tuple (q; x; �; y), where q represents the current state
of the �nite control, x is the unread portion of the input, � is the content of the
pushdown memory and y is the output string emitted up to this point. The leftmost
symbol of � is the topmost pushdown symbol .

If �(q; a; Z) contains (p; �; z), then we write:
(1) (q; ax; Z; y) ` (p; x; �; yz), for all x 2 ��, y 2 ��, and  2 ��.

If P = (Q, �, �, �, �, q0, Z0, F ) is a PDT , then the underlying pushdown
automaton of P , is the pushdown automaton de�ned as:

A = (Q, �, �, �0, q0, Z0, F ),
where (p; �) 2 �0(q; a; Z) if and only if (p; �; z) 2 �(q; a; Z) for some z 2 ��.

Using the relation (1), v is an output for u 2 L, by �nal states, if:
(2) (q0; u; Z0; �) `� (q; �; �; v), where q 2 F .
v is an output for u 2 L, by empty pushdown memory, if:
(3) (q0; u; Z0; �) `� (q; �; �; v), where q 2 Q.
Let P be a PDT and L � �� a language over �, recognized by the underlying push-
down automaton A. The transduction realized by P is a function

TP : �� �! �� de�ned as:
TP =f(u; v)j such that u 2�� and v 2�� satisfy one of the relations (2),(3)g.

Thus the transduction function associated to the transducer P returns, for each in-
put word u, the set of all words generated in the output tape of P at the end of a
successful computation on u.

A PDT is deterministic (DPDT for short), if the following conditions hold, for
all q 2 Q:
- j�(q; a; Z)j � 1 for each a 2 � [ f�g ;
- if j�(q; �; Z)j 6= 0 then for all a 2 �, j�(q; a; Z)j = 0.

2.2 Parallel Communicating Pushdown Transducer Systems
De�nition 2 A parallel communicating pushdown transducer system of
degree n (pcpt(n) for short) is a system:

T = (�;�;�; T1; T2; : : : ; Tn;K);
where:
1. � is the input alphabet,
2. � is the output alphabet,
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3. � is the alphabet of pushdown symbols.
4. For each 1 � i � n, Ti = (Qi;�;�;�; �i; qi; Zi; Fi) is a pushdown transducer

where Qi is the set of states, qi 2 Qi is the initial state of the transducer Ti, � is the
input alphabet, � is the pushdown alphabet, � is the �nite output alphabet, Zi 2 �
is the initial contents of the pushdown memory, Fi � Qi is the set of �nal states of
the transducer Ti, and �i is the transition mapping de�ned from Qi� (�[ f�g)��
to �nite subsets of Qi � �� ���.
5. K � fK1;K2; : : : ;Kng � � is the set of query symbols.

The pushdown transducers T1; T2; :::; Tn are called the components of the system T .
If there exists only one 1 � i � n, such that only the transducer Ti is allowed to
query, then the system is called centralized (henceforth cpcpt(n)). The master of
this system is the component Ti.
De�nition 3 A PCPTS is said to be deterministic (DPCPTS for short), if the next
conditions hold, for all q 2 Qi, 1 � i � n:
- j�i(q; a; Z)j � 1 for each a 2 � [ f�g, Z 2 �;
- if j�i(q; �; Z)j 6= 0 then for all a 2 �, Z 2 �, then j�(q; a; Z)j = 0.

A con�guration of a PCPTS of degree n is a 4n-tuple:
(s1; x1; �1; 1; s2; x2; �2; 2; : : : ; sn; xn; �n; n)

where for all 1 � i � n:
- si 2 Qi is the current state of the component Ti,
- xi 2 �� is the remaining part of the input word that has not been read yet by Ti,
- �i 2 �� is the contents of the i-th stack,
- i 2 �� is the output string emitted up to that point by Ti.
The transition relations are de�ned on the set of all con�gurations of T as follows:

(4) (s1; x1; B1�1; 1; : : : ; sn; xn; Bn�n; n)`(p1; y1; �1�1; 0
1; : : : ; pn; yn; �n�n; 0

n)
where Bi 2 �; �i; �i 2 �� and i; 0

i 2 �� for all 1 � i � n; i� one of the following
two conditions holds, for all 1 � i � n:
(4.i) K \ fB1; B2; : : : ; Bng = ; and xi = aiyi; ai 2 � [ f�g; 0

i = izi; (pi; �i; zi) 2
�i(si; ai; Bi);
(4.ii) for all i; 1 � i � n such that Bi = Kji and Bji =2 K;�i = Bji�ji ; and 0

i =
iji . For all other r; 1 � r � n; �r = Br; and yt = xt; pt = st; for all t; 1 � t � n:
(5) (s1; x1; B1�1; 1; : : : ; sn; xn; Bn�n; n)`r (p1; y1; �1�1; 01; : : : ; pn; yn; �n�n; 0n)
where Bi 2 �; �i; �i 2 ��; i; 0i 2 ��, 1 � i � n; if one of the following two
conditions holds, for all 1 � i � n:
(5.i) K \ fB1; B2; : : : ; Bng = ; and xi = aiyi; ai 2 � [ f�g; 0

i = izi; (pi; �i; zi) 2
�i(si; ai; Bi);
(5.ii) for all 1 � i � n such that Bi = Kji and Bji =2 K;�i = Bji�ji ; �ji�ji =
Zji ; 

0
i = iji , and ji = �. For all the other r; 1 � r � n; �r = Br; and yt =

xt; pt = st; for all t; 1 � t � n:
A pcpt(n) system whose moves are all based on the relation `r is said to be a

returning (henceforth rpcpt(n)), and non-returning otherwise.
Note that, according to the de�nition of transitions sketched in (4) and (5), a

PCPTS functions as follows: whenever a component has a query symbol on top of
the pushdown memory, it gets into communication with the component to which the
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query symbol belongs. The communication consists of replacing the query symbol
with the entire content of the pushdown memory of the interrogated component,
that is the sender. Simultaneously, the string yielded so far on the output tape of
the component to which the query symbol belongs, is transfered into the output tape
of the component that queried for it. In the case of returning systems the pushdown
memory of the component that sent the information returns to its initial symbol,
while the output tape of the same component returns to the empty tape.
The reexive and transitive closure of relation ` (`r) is denoted by `� (`�r).
If the underlying pushdown automaton Ai, of the pushdown transducer Ti, is an
extended one, for each 1 � i � n, then the system T , is said to be an extended
PCPTS (henceforth EPCPTS). It means that the transition mappings �i are de�ned
from �nite subsets of Qi � (� [ f�g)� �� to �nite subsets of Qi � �� ���, for all
1 � i � n: Transitions for an EPCPT are de�ned in the same way as for PCPTS,
with di�erence that extended systems may read words Bi 2 �� instead of symbols.
Note that PCPTS and EPCPTS are equivalent from a computational point of view.

Using the relation de�ned in (4), the set of words vi 2 ��, 1 � i � n is an output
for u 2 ��, of a PCPTS with n components, if and only if:
(6) (q1; u; Z1; �; : : : ; qn; u; Zn; �) `� (s1; �; �1; v1; : : : ; sn; �; �n; vn); si 2 Fi; 1� i�n
for a PCPTS accepting by �nal states, and :
(6') (q1; u; Z1; �; : : : ; qn; u; Zn; �) `�(s1; �; �; v1; : : : ; sn; �; �; vn); si 2 Qi; 1�i�n for
a PCPTS accepting by empty pushdown memory .
Replacing the relation `� with the relation `�r in (6) and in (6'), the de�nition of
the output words, for a RPCPTS accepting by �nal states or by empty pushdown
memory is obtained, respectively.

If T = (�;�;�; T1; T2; : : : ; Tn;K) is pcpt(n), then the underlying pcpa(n) of T is
de�ned as A = (�;�; A1; A2; : : : ; An;K), where Ai is the underlying PDA associated
to Ti, for all 1 � i � n. Let T be a PDT and L � �� a language over �, recognized
by the underlying pushdown automaton A.

De�nition 4 Let T = (�;�;�; T1; T2; : : : ; Tn;K); be a (nonreturning)
PCPTS with n components. The transduction function of the ith component of
the system T is de�ned as :
Ti(u) = fvi 2 ��j(q1; u; Z1; �; � � � ; qi; u; Zi; �; � � � ; qn; u; Zn; �) `�

(s1; �; �1; v1; � � � ; si; �; �i; vi; � � � ; sn; �; �n; vn); sj 2 Fj ; 1 � j � ng;
for any 1 � i � n, if the word u is accepted by �nal states, and
Ti(u) = fvi 2 ��j(q1; u; Z1; �; � � � ; qi; u; Zi; �; � � � ; qn; u; Zn; �) `�

(s1; �; �; v1; � � � ; si; �; �; vi; � � � ; sn; �; �; vn); sj 2 Qj ; 1 � j � ng;
for any 1 � i � n, if the word u is accepted by empty pushdown memory.

If in the above de�nition the relation `r is used instead of ` then the transduction
function of the ith component, for the returning case, denoted by TRi is obtained.
Thus each component Ti, 1 � i � n, has associated a transduction mapping that
returns for each input word u the set of all words yielded by that component.

The language yielded by the component Ti, 1 � i � n is de�ned as:
Ti(L) = fvi 2 ��j(q1; u; Z1; �; � � � ; qi; u; Zi; �; � � � ; qn; u; Zn; �) `�
(s1; �; �1; v1; � � � ; si; �; �i; vi; � � � ; sn; �; �n; vn); sj 2 Fj ; u 2 L; 1 � j � ng, or by
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Ti(L) = fvi 2 ��j(q1; u; Z1; �; � � � ; qi; u; Zi; �; � � � ; qn; u; Zn; �) `�
(s1; �; �; v1; � � � ; si; �; �; vi; � � � ; sn; �; �; vn); sj 2 Qj ; u 2 L; 1 � j � ng.
If in the above de�nition the relation `r is used instead of ` then the de�nition

of the language yielded by the ith component, for the returning case, denoted by
TRi(L) is obtained. Due to the de�nition of PCPTS di�erent components can
output di�erent languages. The transduction system mapping of a PCPTS, with
n components, is de�ned as: T = (T1, T2, � � �, Tn), for non-returning case, and as
TR = (TR1, TR2, � � �, TRn), for the returning case.

3 On the Computational Power of PCPTS

The problem that arises now, is to study the type of the possible languages yielded by
a PCPTS having as input an arbitrary language L � ��. Let RE, CS, CF , LIN ,
and REG be the families of languages generated by arbitrary, context-sensitive,
context-free, linear and regular grammars, respectively. The next inclusions hold:
(7) REG � LIN � CF � CS � RE
For each parallel communicating pushdown automata system we can build a PCPTS,
having the same structure as the underlying system. That is why pushdown trans-
ducer systems will be able to accept and to generate at least the same type of lan-
guages. In [4] has been proved that the family of languages accepted by a PCPAS
with two components equals the RE languages. Therefore, the family of languages
yielded by PCPTS with only two components covers the the family of RE languages.
Next we center upon the answers of the following questions:

"Given an input language from a class X of the hierarchy (7), could it be possible
to generate a language from a class Y such that X � Y ?" Furthermore,

"Which is the smallest class of languages from the hierarchy (7) that could be
used, as input language, by a PCPTS to cover the RE family ?", and even more:

"Which is the minimal number of components that a PCPTS should have in
order to satisfy the above aims?"

Answers to these questions will be given in the sequel. The following example is
relevant for the computational power of PCPTS.
Example Let us consider a deterministic pcpt(2), de�ned below:

T = (fa; cg; fZ0; Z1; ag; T1; T2; fK1;K2g),
in which Ti = (Qi;�;�;�; �i; qi; Zi; Fi), i 2 f1; 2g, are two pushdown automata, de-
�ned as: T1 = (fq1; s1; r1; p1g; fa; cg; fZ0; Z1; ag; fag; �1; q1; Z1; fp1g),

T2 = (fq2; s2; p2g; fa; cg; fZ0; Z1; ag; fag; �2; q2; Z1; fp2g),
having the transition mappings :

1. �1(q1; a; Z1) = (s1; Z1; �) 1. �2(q2; �; Z1) = (q2;K1; �)
2. �1(s1; a; Z1) = (s1; aaZ1; �) 2. �2(q2; �; a) = (q2;K1a; �)
3. �1(s1; a; a) = (s1; aaa; �) 3. �2(q2; �; Z0) = (s2; �; �)
4. �1(s1; c; a) = (r1; Z0aaa; �) 4. �2(s2; a; a) = (s2; �; �)
5. �1(r1; �; a) = (r1; �; �) 5. �2(s2; c; a) = (p2; �; �)
6. �1(r1; �; Z0) = (r1; �; �) 6. �2(p2; �; a) = (p2; �; �)
7. �1(r1; �; Z1) = (p1;K2; �) 7. �2(p2; �; Z1) = (r2; �; �)
8. �1(p1; �; a) = (p1; �; a) 8. �2(r2; �; a) = (r2; �; a)
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9. �1(p1; �; Z1) = (p1; �; a) 9. �2(r2; �; Z1) = (r2; �; a):
Taking as input the regular language: L = fanc j n � 1g the above PCPTS

will yield on both of the output tapes the following non-context-free language L =
fan2�1 j n � 1g, by following the next transitions:

(q1; anc; Z1; �; q2; anc; Z1; �) `1;1 (s1; an�1c; Z1; �; q2; anc;K1; �)
`2;1 (s1; an�2c; aaZ1; �; q2; anc;K1; �)
`�(n�2)3;2 (s1; c; a2(n�1)Z1; �; q2; anc; a2(n�1)Z1:::a2Z1; �)
`4;2 (r1; �; Z0a2nZ1; �; q2; anc;K1a2(n�1)Z1::a2Z1; �)
`6;3 (r1; �; a2nZ1; �; s2; anc; a2nZ1a2(n�1)Z1::a2Z1; �)
`�n5;4 (r1; �; anZ1; �; s2; c; anZ1a2(n�1)Z1::a2Z1; �)
`5;5 (r1; �; a(n�1)Z1; �; p2; �; a(n�1)Z1a2(n�1)Z1::a2Z1; �)
`�(n�1)5;6 (r1; �; Z1; �; p2; �; Z1a2(n�1)::a2Z1; �)
`7;7 (p1; �;K2; �; r2; �; a2(n�1)Z1:::a2Z1; �) `
` (p1; �; a2(n�1)Z1:::a2Z1; �; r2; �; a2(n�1)Z1:::a2Z1; �)
`�2(n�1)8;8 (p1; �; Z1:::a2Z1; a2(n�1); r2; �; Z1a:::a2Z1; a2(n�1))
`9;9 (p1; �; a2(n�2)Z1::a2Z1; a2(n�1)a; r2; �; a2(n�2)Z1::a2Z1; a2(n�1)a)

`�2(n�2)8;8 (p1; �; Z1a2(n�3)::: a2Z1; a2(n�1)aa2(n�2); r2; �; Z1a2(n�3)::: a2Z1; a2(n�1)aa2(n�2))
`9;9 : : :`�2(n�3)8;8 : : :`9;9 : : :`�2(n�4)8;8 : : :`9;9 : : :`�48;8 : : :`9;9 : : :`�28;8`9;9
(p1; �; �; a(n�1)a2(n�1)a2(n�2): : : a4a2; r2; �; �; a(n�1)a2(n�1)a2(n�2): : : a4a2)
The output is: a(n�1)a2(n�1)a2(n�2) : : : a4a2=a2(n�1)+:::+4+2+n�1 = an2�1.

In order to express the computational power of PCPTS we will introduce several
notations and basic results related to the twin shu�e operation on strings.
De�nition 5 1) For two strings x; y 2 �� and two symbols a; b 2 �, the shu�e
operation is de�ned as: (i) xtt� = �ttx = fxg,

(ii) axttby = a(xttby) [ b(axtty).
2) The shu�e of two languages L1; L2 2 �� is:

L1 tt L2 =
S

x2L1;y2L2x tt y:
3) The twin shu�e language over �, is de�ned as:

TS� = Sx2�� xtt�x.
The following representation of the family RE is well known from [23]:
Theorem 1:
Each recursively enumerable language L � T � can be written as L = hT (TS� \R),
where � is an alphabet, R is a regular language, and hT is a projection associated
with T � �.
Related to the computational power of PCPTS, the next result from [4] is useful in
our considerations:

Theorem 2:
1. A language L � T � is recursively enumerable if and only if L = hT (Recr(A)),
where A is a parallel communicating pushdown automata system1 of type x(2) with

1For the de�nition and more information related to these systems the reader is referred to [4].
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x 2 frcpcpa; rpcpag.
2. A language L � T � is recursively enumerable i� L = hT (Rec(A)), where A is a
cpcpa(2).

Due to the above theorems we have:

Theorem 3:
For each recursively enumerable language L there exists language R 2 REG and an
automata system T of type x(2), with x 2 frcpcpt; rpcpt; cpcptg such that TT (R) =
(L; �).

Proof. In the proof of Theorem 2 it has been shown that there exists a PCPAS
of type x(2), with x 2 frcpcpa; rpcpa; cpcpag, that accepts the language TS� \ R,
where R 2 REG. With respects to Theorem 1, for each language L 2 RE, there
exists a projection hT , T � �, and a language R 2 REG, such that the image of
TS� \ R through hT is the language L 2 RE. With respect to Theorem 1 and
Theorem 2 for each language L 2 RE there exists a language R 2 REG, such that
we can build a PCPTS, T of type x(2), with x 2 frcpcpt; rpcpt; cpcptg, that for
each word w 2 R, if w 2 TS�, T yields on its �rst output tape the word hT (w)
(by simulating the projection hT ), and issues the empty word otherwise. The other
component will output only the empty word. 2

4 How to Apply PCPTS - A Descriptional Complexity
Reasoning

As we have seen in the last section PCPTS are able to output RE languages having
as input very simple REG languages. This result allows PCPTS to be used to
simulate natural phenomena in which very simple data, seen as strings of REG
languages, is processed into more complicated CS languages. Gene assembly in
ciliates can be considered such a string processing phenomenon.

4.1 The Gene Assembly Process in Ciliates
Ciliates are single cell organisms that have two types of nuclei: micronuclei and
macronuclei. The intramolecular process of transformation of a micronucleus into
a macronucleus is known in literature as gene assembly process in ciliates. Mi-
cronuclear genes are composed of combinations of residual segments, called Inter-
nal Eliminated Segments (henceforth IES) and active segments, called Macronuclear
Destinated Segments (henceforth MDS). The prominent feature of the gene assembly
process consists in the very spectacular manner in which, during the transformation
of micronuclear genes into macronuclear genes, the MDS regions are spliced and the
IES portions are excised. The splicing process is done in some weaker points of the
micronuclear genes, named pointers. These pointers are sequences of nucleotides,
that bound the MDS components. The MDS breaking and reassembling is done
such that at the end of the gene assembly process the yielded macronuclear genes
will contain no residual segment. This procedure is performed with respect to three
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molecular patterns that appear in the structure of a micronuclear gene. Each time a
direct repeat pattern of pointers (p; p), i.e., no other pointer parts the two p pointers,
appears in the structure of a micronuclear gene then the ld-(loop, direct repeat)-
excision operation is performed. If an inverted repeat pattern of the form (p; �p) is
found then the hi-(hairpin, inverted repeat)-excision/reinsertion operation is per-
formed. In the case that the micronuclear gene contains an alternating direct repeat
pattern of pointers (p; r), i.e., an overlapping structures of the form (p; p) and (r; r),
then the dlad-(double loop, alternating direct repeat)-excision/reinsertion operation
is carried on. From a computational point of view the three molecular operations
ld, hi, and dlad have been studied in several papers, e.g. [8], [7], [24], [26], [6]. Our
model has been inspired from the theoretical interpretation of the gene assembly
process given in [7], and is briey described below.

Let �k be the pointers alphabet, formed by the micronuclear gene pointers, usu-
ally denoted by �k = f2; 3; :::; k; �2; �3; :::; �kg. A string � 2 ��k is called legal if each
symbol p from �, is duplicated either by p, or by �p, and at most two occurrences of
p (or �p) are allowed in �. Three operations can be de�ned on the sets of all legal
strings over the alphabet �k:
1. If � = �1pp�2 then ldp (the string negative rule for p) is de�ned as: ldp(�) =
�1�2.
2. If � = �1p�2�p�3 then hip (the string positive rule for p) is de�ned as: hip(�) =
�1rs(�2)�3, where rs(�2) is the reversed switch2 of �2.
3. If � = �1p�2r�3p�4r�5 then dladp;r (the string double rule for p and r) is de�ned
as: dladp;r(�) = �1�4�3�2�5.
A string pointer reduction system over �k, denoted by SPRS�k , is a set SPRS�k
= fldp;hip;dladp;rjp; r 2 �kg. We denote by D = (�; �1; �2; :::; �l), l � 1, �i 2
SPRS�k , � 2 ��k, � a legal string, the reduction of � by applying the rules �i,
0 � i � l, in the order of their appearance in the scheme. We say that D is a suc-
cessful reduction scheme for a legal string �, if the resulting string after the scheme
application on � is the empty string. For more information related to properties of
reduction schemes, the reader is referred to [7]. The string pointer reduction system
described above is a formalization of the splicing phenomena that take place during
the gene assembly in ciliates. In [7] it has been shown that the ldp operation simu-
lates the ld operation, hip simulates the hi operation, and �nally dladp;r simulates
the dlad operation. The successful scheme reduction of a legal string is convertible
into a successful strategy for a realistic MDS descriptor (that is the theoretical repre-
sentation of the IES/MDS structure of a micronuclear gene). A successful strategy
for a realistic MDS descriptor represents a gene assembly procedure that has as
result a successful transformation of a micronuclear gene into a macronuclear one,
i.e., no pointer will appear, in the structure of the resulted macronuclear gene at
the end of the molecular computation. In [2] we described a computational model
based on Parallel Communicating Finite Transducer Systems (henceforth PCFTS3)
that performs the above molecular operations. In the next section, descriptional
reasonings suggest us that PCPTS can be used better than PCFTS to simulate the
gene assembly process in ciliates.

2For instance rs(�34�2234) = �4�3�22�43.3For the de�nition of PCFTS the reader is referred to [3].
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4.2 PCPTS - A Descriptional Complexity Analysis
In the following we propose two pcpt(2) that simulate hi and dlad operations. Be-
cause �nite transducers/pushdown transducers can check the "legality" of a given
string, next we will consider these operations de�ned only on legal strings.

Simulation 1 The hip operation
Let T = (�k;�k; fZ0g; T1; T2;K) be a cpcpt, with the components
T1 = (fq0; qp; q�p; q[p]; q[�p]; qfg;�k;�k;�k [ fZ0; Z1g; �1; q0; Z0; fq0; qfg)
T2 = (fq0; sp; s�pg;�k;�k; fZ1g; �2; q0; Z0; fq0; sp; s�pg)
and � mappings are de�ned, for all x 2 �k, as follows:
1. �1(q0; x; Z0) = f(q0; Z0; x)g, x 2 �k � fp; �pg;
1'. �2(q0; x; Z1) = f(q0; Z1; �)g, x 2 �k � fp; �pg;
2. �1(q0; p; Z0) = f(qp; Z0Z1; �)g,
2'. �2(q0; p; Z1) = f(sp; Z1; p)g,
3. �1(q0; �p; Z0) = f(q�p; Z0Z1; �)g,
3'. �2(q0; �p; Z1) = f(s�p; Z1; �p)g,
4. �1(qp; x; Z0) = f(qp; Z0x; �)g, x 2 �k � f�pg;
4'. �2(sp; x; Z1) = f(sp; Z1; x)g, x 2 �k;
5. �1(qp; �; Z0) = f(qf ;K2; �)g;
5'. �2(s�p; x; Z1) = f(s�p; Z1; x)g, x 2 �k;
6. �1(q�p; x; Z0) = f(q�p; Z0x; �)g, x 2 �k � fpg;
6'. �2(sp; �; Z1) = f(sp; Z1; �)g;
7. �1(q�p; �; Z0) = f(qf ;K2; �)g;
7'. �2(s�p; �; Z1) = f(s�p; Z1; �)g.
8. �1(qp; �p; Z0) = f(q[�p]; �; �)g;
9. �1(q[�p]; �; x) = f(q[�p]; �; �x)g, x 2 �k � fp; �pg;
10. �1(q[�p]; �; Z1) = f(qf ; Z1; �)g;
11. �1(q�p; p; Z0) = f(q[p]; �; �)g;
12. �1(q[p]; �; x) = f(q[p]; �; �x)g, x 2 �k � fp; �pg;
13. �1(q[p]; �; Z1) = f(qf ; Z1; �)g;
14. �1(qf ; x; Z1) = f(qf ; Z1; x)g, x 2 �k � fp; �pg;

The above system works as follows: for the beginning both components read sym-
bols from the input tape until they reach p or �p. Only the �rst component outputs
the symbols that have been read. If the pointers p and �p do not exist in the input
string, then the �rst component yields on its output tape the (whole) input string,
while the second component yields the empty string. In this case, the system ends
the computation in the pair of states: (q0; q0). When both components read the
�rst occurrence of the pointer p/�p, the �rst component reaches the state qp/q�p, and
the second one reaches the state sp/s�p. From now on, each symbol that will be
read by the �rst component in the state qp/q�p, will be memorized in the pushdown
memory, without any output. Each symbol that will be read by the second compo-
nent (including p/�p) will be yielded on the second output tape. If the twin symbol
of p (i.e. �p) or the twin symbol of �p (i.e. p) is not found in the input string then
the components communicate with each other in order to let the �rst component to
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output the (whole) input on the �rst tape. Note that, in this case the �rst compo-
nent cannot query during the computational process, otherwise the query symbol
will be replaced by the initial symbol of the stack of the second component, fact
that will block the computation, (the �rst mapping �1 not being de�ned in the state
qp/q�p for this symbol). In this situation the computation ends in the pair of states
(qf ; sp), if p is found, and in the pair of states (qf ; s�p), if �p is found. When the pair
(p; �p)/(�p; p) is found the system changes the pair of states (qp; sp)/(q�p; s�p) into the
pair (q[�p]; sp)/(q[p]; s�p). From now on the �rst component yields on its output tape
the reversed switch of �2 (that has been stored in its pushdown memory) reading
no input symbol. When the �rst component reaches the bottom of the stack, it
begins to read and to output the rest of the symbols from the input tape. During
all this time the second component reads all the input symbols, having no output.
The system ends the computation in the pair of states (qf ; sp), if p is found before
�p, and in the pair (qf ; s�p), if �p is found before p. Furthermore, the above system
makes a simultaneous searching for both of the pairs (p; �p), and (�p; p), while the
rpcft(2) presented in [2] performs this operation only for the pair (p; �p). We have
to eliminate the rules 3, 6, 7, 11, 12, 13, 3', 5', 7', and the states q�p, q[p], s�p, in order
to obtain a cpcpt(2) that performs the same task as the rpcft(2) presented in [2].
Therefore, in what follows we compare the descriptional complexity of the rpcft(2)
with the reduced model of the cpcpt(2) presented above.

In the hi simulation displayed in [2], the rpcft(2) that performs this operation
needs 8 states for each component, 5j�kj + 3 rules for the �rst component, and
4(j�kj+1) rules for the second one. The reduced model of the cpcpt(2) presented here
needs only 4 states for the �rst component, 2 states for the second one, 4j�kj�3 rules
for the �rst component, and 2j�kj rules for the second one. The rpcft(2) needs j�2j+
2 communication steps, while the above cpcpt(2) needs only one communication,
used only in the situation when the twin symbol of p (or �p) is not found in the input
string.

Simulation 2 The dladp;r operation
The next rpcpt system performs the dlad operation:
T = (�k;�k; fZ0g; T1; T2;K) be a cpcpt, with the components
T1 = (fqr; qf ; q0; q1; q2; q3; q4; q5g;�k;�k[fZ;Z0; Z1; Z2; �Z; ��Z; Ẑg; �1; q0; Z1; fq0; qfg)
T2 = (fs0; sp; sf ; sr; s[r]; s[p]; s[�r]g;�k;�k; fZ;Z2; ��Zg; �2; s0; Z2; fs0; sf ; s�rg)
and � mappings de�ned, for all x 2 �k, as follows:
1. �1(q0; �; Z1) = f(q1; Z0Z1; �)g, 1'. �2(s0; x; Z2) = f(s0; Z2; �)g, x 6= p;
2. �1(q1; �; Z0) = f(q1; Z0; �)g, 2'. �2(s0; �; Z2) = f(sf ;K1; �)g,
3. �1(q1; �; Z1) = f(qf ; Z1; �)g, 3'. �2(s0; p; Z2) = f(sp; Z2; �)g,
4. �1(qf ; x; Z1) = f(qf ; Z1; x)g, 4'. �2(sp; x; Z2) = f(sp; Z2; �)g,x 62 fp; �pg
5. �1(q1; �; Z0Z1) = f(qr;K2; �)g, 5'. �2(sp; fp; �pg; Z2) = f(sf ;K1; �)g,
6. �1(qr; �; Z) = f(qr; Z; �)g, 6'. �2(sf ; x; Z0) = f(sf ; Z2; �)g, x 6= p;
7. �1(qr; �; Z1) = f(qr;K2; �)g, 7'. �2(sf ; x; Z2) = f(sf ; Z2; �)g, x 6= p;
8. �1(qr; �; �Z) = f(qf ; Z1; �)g, 8'. �2(sf ; x; ��Z) = f(sf ; ��Z; �)g;
9. �1(qr; �; ��Z) = f(q1; ��Z; �)g, 9'. �2(sf ; �; Z2) = f(sf ; Z2; �)g,
10. �1(q1; �; ��Z) = f(q1; ��Z; �)g, 10'. �2(sp; r; Z2) = f(sr; Z2; �)g,
11. �1(q1; x; ��Z) = f(q1; Ẑ; x)g, 11'. �2(sr; x; Z2) = f(s[r]; Zx; �)g,

L. Cojocaru, C. Mart́ın-Vide

136



12. �1(q1; x; Ẑ) = f(q1; Ẑ; x)g, 12'. �2(s[r]; x; Z2) = f(s[r];K1x; �)g,
13. �1(q1; p; Ẑ) = f(q2;K2; �)g, 13'. �2(s[r]; �; Z) = f(s[r]; Z; �)g,
14. �1(q2; �; Z2) = f(q3; �; �)g, 14'. �2(s[r]; f�p; rg; Z) = f(sf ; �Z; �)g,
15. �1(q3; �; x) = f(q3; �; x)g, 15'. �2(s[r]; p; Z) = f(s[p]; ��Z; �)g,
16. �1(q3; x; Z1) = f(q3; Z1; x)g, x 6= r, 16'. �2(s[p]; x; Z2) = f(s[p]; Z2; x)g,
17. �1(q3; r; Z1) = f(q4; �; �)g, 17'. �2(s[p]; �r; Z2) = f(sf ;K1; �)g,
18. �1(q4; x; Z1) = f(q4; Z1; �)g, x 6= r, 18'. �2(s[p]; r; Z2) = f(s[�r]; Z2; �)g,
19. �1(q4; r; Z1) = f(q5; Z1; �)g, 19'. �2(s[�r]; x; Z2) = f(s[�r]; Z2; �)g,
20. �1(q5; x; Z1) = f(qf ; Z1; x)g, 20'. �2(s[�r]; �; Z2) = f(s[�r]; Z2; �)g,
21. �1(qf ; x; Z1) = f(qf ; Z1; x)g, 21'. �2(s[�r]; �; Z2) = f(s[�r];K1Z2; �)g.

Briey, the above system works in two stages. In the �rst stage the second transducer
makes a search, over the whole input string, for the alternating direct repeat pattern
of pointers (p; r). During all this time the �rst transducer reads no symbol, and has
no output. If this pattern is not found the �rst transducer outputs the whole input
string on the �rst output tape. When this pattern is found the second transducer
yields the result of the dladp;r operation. This will be done in the second stage of
the simulation.

In more details, the system works as follows: for the beginning only the second
component reads symbols from the input tape until the pointer p is found, without
any output. If this pointer is not found, then the (whole) input string will be yielded
on the output tape of the �rst component (due to rules 2', 3, and 4). When the
symbol p is reached the current state of the second component is changed into the
state sp (rule 3'). From now on the second component continues the searching of
r. If the pointers p or �p are found before r, then the dladp;r operation cannot be
performed. Thus the (whole) input string will be outputted by the �rst pushdown
transducer (due to rules 5', 3, and 4). If r is found (before of p or �p), then the state sp
is changed into sr. Afterward, the string placed between the pointers r and p, i.e., �3
(see Section 4.1), is memorized in the pushdown memory of the second transducer.
This process is performed as follows: in the state sr the second transducer memories
the �rst symbol from �3, and changes the state sr into the state s[r] (due to rule
11'). In this moment the �rst pushdown transducer is obliged to query (rule 5),
the second pushdown transducer not being de�ned in the state s[r] with the top of
pushdown memory set on the pushdown symbol Z. Due to the query process, the
content of the pushdown memory of the second transducer will be discharged into
the pushdown memory of the �rst transducer, and the pushdown memory of the
second transducer is reduced to Z2, due to the returning character of the system.
In the state s[r], having on the top of pushdown memory the symbol Z2, the second
transducer is able now to memorize the next symbol from �3 and to ask for the
content of the �rst pushdown memory (rule 12'), in order to build in its memory
the image of the string �3, and not the mirror image of it, as it usually happens
due to the structure of the pushdown memory. After the query step is performed,
the pushdown memory of the �rst transducer returns to Z1, due to the returning
character of the system. In the next step the �rst transducer asks for the content of
the pushdown memory of the second transducer (rule 7), in order to give freedom to
the second one to memories the next symbol from �3 and to make the concatenation
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between the symbol that has been currently read and the substring of �3 that had
been already read and memorized into the pushdown memory of the �rst transducer
(rule 12'). This process continues until the whole substring �3 has been read and
memorized into the pushdown memory of the second transducer. Afterwards, if in
the search procedure of the second transducer the pointer �p/r is found before the
second occurrence of p the dladp;r operation cannot be performed. So that the
(whole) input string will be outputted by the �rst pushdown transducer (due to
rules 14', 8, 7, and 4). When the second occurrence of p is found, the state s[r] is
changed into s[p] and the second transducer starts to yield the image of a possible �4
(see Section 4.1). If the pointer �r is found instead of r, then the second transducer
queries the �rst one in order to let it output the whole input string. If the second
occurrence of r is found, then an alternating direct repeat pattern of pointers (p; r)
exists in the string, so that the result of the dladp;r operation will be yielded on the
�rst output tape, according to the rules from 11 to 21.

If we compare the above rpcpt(2) system with the rpcft(2) presented in [2], from
a descriptional complexity point of view, we will observe that the former one is more
e�cient than the latter one. Thus rpcft(2), presented in [2], needs j�kj+ 7 states,
and 8j�kj + A2k + 5 rules for the �rst component, 9 states and 6j�kj + 9 rules for
the second component. The number of communications is �xed to 3. The above
rpcpt(2) needs 8 states and 8j�kj + 11 rules for the �rst component, 7 states and
9(j�kj+1) rules for the second one, and j�3j+2 communication steps. Furthermore,
the system makes a complete searching for the pointers p and r, and it yields the
output for the all situations.

All the observations done along the systems described in this section, argue that
PCPTS turns out to be very e�cient in implementing complex molecular operations,
from a descriptional point of view.

5 Conclusions

In this paper we have introduced a new translating device called Parallel Com-
municating Pushdown Transducer Systems. They are systems composed of several
pushdown transducers working in parallel, in a synchronized manner and communi-
cating with each other by request. We focus on the strategy of communication by
stacks, and by the output tapes. The protocol of collaboration is controlled by query
symbols. They specify which component has to send the content of the pushdown
memory and the content of the output tape, and which component has to receive
them. The strategy of data exchanging through the pushdown memory and through
the output tape allows each component to output complex information. Therefore
the complexity of the yielded languages is substantially increased. The computa-
tional power of the new device has been investigated by taking into consideration
the computational power of parallel communicating pushdown automata systems. A
comparison between them and parallel communicating �nite transducer systems has
been done, too. Even if they are able to yield at least the same classes of languages
as parallel communicating �nite transducer systems do, they are more e�cient from
a descriptional complexity point of view.
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1 Introduction

\Grammar Systems is a recent �eld of formal language theory providing syntactic
models and frameworks for describing and studying (the behavior of) multi-agent
systems at symbolic level." A few years ago, readers interested in the area often
found this or similar sentences in papers published about grammar systems. One
decade after the publication of the monograph \Grammar systems: A grammatical
approach for distribution and cooperation" [24] and after more than �fteen years re-
search in the �eld, we can state that Grammar Systems has become a well-recognized
�eld of formal language theory.

Several scienti�c areas have inspired and inuenced the developments: dis-
tributed and decentralized arti�cial intelligence, distributed and parallel computing,
arti�cial life, molecular computing, robotics, ecology, sociology, etc. Computer net-
works, parallel and distributed computer architectures, distributed and cooperative
text processing, natural language processing are candidates for possible applications.
However, the relation is two-way: ideas or concepts of grammar systems theory have
also inspired and inuenced the development of some unconventional computational
models in contemporary computer science or research areas being on the boundary
of computer science.

But what is a grammar, and what does it mean \system" in this term? The
notion grammar refers to any kind of language determining devices, it can be a
usual Chomsky grammar, it can be an automaton, but it can also be a splicing
system, that is, a rewriting system from molecular computing.

A grammar system consists of several (a �nite number) of language determining
devices (language processors) which jointly change a common symbolic environment
(usually, a string or a �nite set of strings) by applying language theoretic operations
to it. The symbolic environment can be shared by the components of the system
or it can be given in the form of a collection of separated sub-environments, each
belonging to a language processor. At any moment of time, the state of the sys-
tem is represented by the current string describing the environment (the collection
of strings of the sub-environments). The functioning of the system is realized by
changes of its states. Depending on the variant of multi-agent systems which is rep-
resented by the actual grammar system, in addition to performing derivation steps,
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the language processors communicate with each other. Usually, this is done by ex-
change of strings which can be data (for example, sentential forms in derivation) or
programs (productions or coded form of some operation).

The behavior of the grammar system can be characterized in di�erent manners.
It can be represented by the set of sequences of environmental states following each
other starting from an initial state or by the set of all states of the environment or
that of a sub-environment which originate from the initial state and satisfy certain
criteria. The second case de�nes the language of the system.

According to the traditional approach in formal language theory, one language
is generated by one grammar (produced by one language determining mechanism),
while according to the non-standard approach provided by Grammar Systems, gen-
eration or accepting is performed by several grammars, in cooperation, by a dis-
tributed system of language processors. Thus, grammar systems are both syntactic
models of multi-agent systems and distributed models of language.

Major problems in the theory can be formulated as follows: to learn whether
or not distribution and cooperation enhance the computational power of language
processors, to know whether or not grammar systems decrease the complexity of
language speci�cation comparing to the language speci�cation given by single gram-
mars, and furthermore, to learn whether or not phenomena characteristic for multi-
agent systems (cooperation, distribution, communication, parallelism, emergent be-
havior, etc.) can be expressed and formalized by tools of grammar systems theory,
and if the answer to the last question is positive, which are the proper formalizations.

Although this list of problems is a short one, these items cover a long-long list
of subproblems, among them we �nd questions closely related to basic problems of
formal language theory.

To give a picture about the research directions in the area, without the aim
of completeness, we list some important frameworks and models and we call the
attention to some new problems or research areas which are - according to our
opinion - worth studying. The interested reader can �nd detailed information on
grammar systems theory in the monograph [24] and in the book chapter [54], or in
the articles listed in the on-line bibliography [43].

For more details concerning the motivations, the background, and connections to
the theory of multi-agent systems, arti�cial intelligence, and arti�cial life the reader
is advised to consult [74, 75, 76, 77, 78, 79].

For possible applications of the theory in linguistics, for connections to natural
language generation and modeling the reader is referred to [18, 84, 69, 70, 71].

2 Models, Results, and Problems

2.1 Cooperating Distributed Grammar Systems

Grammar systems theory started in 1988 by introducing cooperating distributed
grammar systems (CD grammar systems) for modeling syntactic aspects of the
blackboard model of problem solving [22]. The concept and the formal analogy
between CD grammar systems and blackboard architectures were discussed and de-
veloped further in [27]. Other main inspirations to formalize the concept was the
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demand to develop a mathematically well-founded, but su�ciently simple tool for
language support of distributed text processing, distributed document creation, and
tele-conferencing. We should note, however, that the term \cooperating grammars"
was �rst introduced in [88] as a notion for extending the two-level substitution
mechanisms of grammars to a multi-level concept and modeling concurrent operat-
ing systems. A notion, related to cooperating grammar systems, called the modular
grammar, based on the concept of modularity and motivated by regulated rewriting,
was introduced in [4].

A cooperating distributed grammar system is a �nite set of (usually generative)
grammars which cooperate in deriving words of a common language. At any mo-
ment of time, there is exactly one sentential form in generation. The component
grammars generate the string by turns, under a cooperation protocol, called the
derivation mode. In this model, the cooperating grammars represent independent
cooperating problem solving agents which jointly solve a problem by modifying the
contents of a global database, called the blackboard which is used for storing in-
formation on the problem solving process. In blackboard architectures the agents
communicate with each other only through the blackboard, that is, there is no direct
communication among them. According to the grammatical framework, the actual
contents of blackboard is represented by the sentential form and the generated words
correspond to the solutions of the problem.

Most of the investigations in the theory of CD grammar systems have focused
on studying the question whether or not cooperation enhances the computational
power of the generative capacity of the individual grammars, and, if the answer is
positive, how much simple grammars are able to obtain this capacity. Cooperation
protocols are decisive factors from this point of view. By the original motivation, the
distributed problem solving, most of the studied protocol variants are based on the
so-called competence of the grammars, that is, on the capability of the component
grammar to perform a derivation step on the actual sentential form. This is usually
formalized as the number of di�erent nonterminals (letters) the grammar is able
to rewrite in the given string (mainly context-free CD grammar systems have been
examined). Most of these protocols are de�ned via start/stop conditions for the
components: these conditions prescribe the competence level of the grammar at
starting the derivation and either determine its competence level at the end of its
the work or prescribe a number of derivation steps the grammar has to perform in
succession (with or without having a certain competence level).

Another important goal of the theory has been to develop protocols where the
grammars demonstrate fair behavior, in the sense that their contribution to the
generation is almost the same (the number of the performed derivation steps or the
number of activation is almost the same for any grammar).

The achieved results demonstrate that CD grammar systems even with simple
components and simple protocols form powerful computational devices. Large lan-
guage classes (the ET0L language class, the class of programmed languages with
appearance checking) can be described in terms of systems of a small number of
very simple cooperating language determining devices which use relatively very sim-
ple, competence-based cooperation protocols, most of them even a protocol requiring
fair behavior.
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For results about the generative capacity of CD grammar systems using the so-
called basic derivation modes, the reader is advised to consult [22, 24, 54, 105, 103].
Other characteristics of the basic, generative model and its di�erent variants have
been discussed in various articles. Without the aim of completeness, we mention
some of these topics: determinism in CD grammar systems [49, 92], comparisons of
systems with components using homogeneous (the same) and hybrid (di�erent for
each grammar) cooperation strategies [93, 103, 60, 61], variants of competence-based
cooperation protocols [22, 51, 24, 9, 88, 11], similarity of the components [106, 94],
hierarchies, priorities, strati�cation among them [95, 6, 25], fairness in cooperation
[46]. CD grammar systems with components working with dynamical start/stop
(context) conditions were examined in [23], while CD grammar systems controlled
by graphs were considered in [44, 24].

Classical language theoretic questions as descriptional complexity [53, 105] and
decidability properties [91] have also been studied.

The original model was introduced for generative grammars, but the idea of
the concept has been extended and applied to other computational mechanisms:
accepting grammars [58, 59], array grammars [45], limited 0L (Lindenmayer) systems
[125], automata [48, 82, 32], tree processing devices [63], etc.

Further, powerful extensions of the original notion, as CD grammar systems with
registers were studied in [52, 123], and CD grammar systems with communication
aided by a generalized sequential machine (a \translator") was the topic of article
[124]. Several papers investigated properties of stream X-machines by Eilenberg
based on cooperating distributed grammar systems (see [5] for the basic notions and
results), and probabilistic CD grammar systems were examined in [3].

The reader can observe that the dominating research areas in the theory of
CD grammar systems are the generative capacity and the size complexity of these
constructs.

As topics for future research, it would be worth studying the applicability of these
systems in solving well-known algorithmic problems, and to investigate cooperation
complexity and communication complexity of CD grammar systems. Although steps
have already been made to formulate proper notions for cooperation complexity or
collective complexity, the problem and the area still needs further elaboration. Sim-
ilarly the notions of competence and fairness need further elaboration: how these
concepts relate to other notions used in the theory of agents or in concurrency
theory? Handling incomplete information can also be of particular interest in the
theory. Suppose that the problem solving agent has incomplete information on the
contents of the blackboard. Has this fact some inuence on the problem solving
capacity of the problem solving community? This problem can be interpreted in
a very nice manner in CD grammar systems theory: some parts of the sentential
form are not accessible for the active grammar. How much is the minimal amount of
information the agent must have to e�ectively take part in the problem solving? An-
other interesting and promising �elds of research would be examining CD grammar
systems working on multisets of strings and studying how concepts of evolutionary
computing can be interpreted in terms of CD grammar systems. Finally, a natu-
ral, but yet not explored area is the investigation of the connections between CD
grammar systems and games.
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While CD grammar systems are sequential computing devices, team grammar
systems with simultaneous actions of certain grammars (teams) on the sentential
form, introduce parallelism in the model [73]. These systems, among other things,
demonstrate the equivalent computational power of programmed grammars with
appearance checking and freely chosen grammar teams with a very limited num-
ber of components (pairs of grammars) which work with an important variant of
competence-based derivations [108]. For further important results and di�erent vari-
ants the reader is advised to consult [7, 8, 86].

Team grammar systems provide a wide area of open problems as well. What
about the sequence of teams following each other in the course of the generation? Are
there problems which can be solved with teams working periodically, that is, with
periodical sequences of teams that follow each other in the course of the derivation?
What about problems where these team sequences are aperiodical? What about the
dynamism of the size, the simplicity of the components, and behavior of teams that
are formed according to the actual competence of the grammars? How concepts of
evolutionary computing can be implemented in this area? And, last but not least a
general question: are team grammar systems more e�ective in problem solving than
CD grammar systems (for example, according to their derivation complexity) and,
if this is the case, when?

2.2 Colonies and Eco-Grammar Systems

Colonies are important concepts in grammar systems theory that describe language
classes in terms of collections of very simple, purely reactive, situated agents with
emergent behavior [80, 81]. In this model the agents are represented by very sim-
ple regular grammars (each grammar generates a �nite language) which generate a
common sentential form. The basic variant of colonies determines the context-free
language class, while the more sophisticated models (competition among the agents,
agents with point mutation operations) represent computational tools with consider-
ably enhanced computational power [47, 87]. The interested reader can �nd several
other interesting models and results in the articles referred in the bibliography [43].

For future research, further elaboration of notion of emergence in terms of formal
language theory would be fundamental in the area. In addition, this �eld appears
to be particularly suitable for �nding applications, especially in robotics.

Eco-grammar systems form a language theoretic framework for modeling ecosys-
tems: developing agents, represented by L systems, in a dynamically changing popu-
lation, interact with each other and with their shared evolving symbolic environment
(See [28] and [29] for basic information). These constructions were motivated by ar-
ti�cial life and provide tools for describing life-like phenomena (birth, death, hiber-
nation, overpopulation, pollution, etc.) in terms of formal grammars and languages.
For detailed information on the results obtained in this area and in the theory of
colonies the reader to the articles listed in the on-line annotated bibliography [43].
While according to the original concept of eco-grammar systems the agents perform
local actions on the environment, so-called conditional tabled eco-grammar systems
are models with indirect interaction between the agents and the environment. This
sub�eld has been extensively explored, see [33, 34, 114, 115, 116, 117] for further
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information.

Eco-grammar systems are very promising from the point of view of future in-
vestigations. Firstly, the relation of the di�erent variants of eco-grammar systems
and that of evolutionary computing are of worth analyzing, but the general concept
of eco-grammar systems can be related to several other scienti�c areas: modeling
economy, modeling society, modeling the World Wide Web. Valuable research has
started in modeling culture and pragmatics in [70] and investigations of the relations
between dynamical systems and eco-grammar systems have been started in [14].

2.3 Network of language processors

Networks of language processors are one of the basic areas in the theory of gram-
mar systems. In these constructs, language processors, that is, grammars or other
language determining devices are located in nodes of a network (a virtual graph).
Each processor works on its own sentential form (on its own collection of sentential
forms) and informs the others about its activity by communicating strings which
can be data and/or programs. Rewriting and communication take place alternately.
The system functions (usually) in a synchronized manner.

It is easy to observe the di�erence between CD grammar systems and these
architectures: while in the �rst case the grammars generate one common string,
in the second case each of the components operates on its own string. There are
several important di�erent models in the area, \networks of language processors"
as a collective term was introduced in [36, 19, 37], where basic characteristics and
basic variants of the framework were discussed and several research directions were
proposed.

Parallel communicating grammar systems (or PC grammar systems, for short),
the �rst models in the area of networks of language processors, form a very im-
portant, highly elaborated �eld, according to the original de�nition with Chomsky
grammars at the nodes. These are networks of grammars with components commu-
nicating strings by emerging requests.

The concept was introduced in [110] (and continued in [111, 99]), as a grammat-
ical representation of the so-called \ classroom model" of problem solving, which is
a modi�cation of the blackboard architecture. It consists of several agents which
jointly solve a problem. Each agent has its own \notebook" containing the descrip-
tion of a particular subproblem of the given problem and each agent operates only
on its own \notebook" and one distinguished agent, the master, operates on the
\blackboard". This agent has the description of the whole problem and it decides
when the problem is solved. Moreover, the agents communicate with each other by
requests concerning the contents of their \notebooks." According to this model, the
agents can be considered as pupils in a classroom and the master is their classroom
leader or teacher.

According to the grammatical model, each agent is represented by a grammar
which generates its own sentential form. In each time unit, every grammar performs
a rewriting step on its own sentential form (modi�es its own notebook) and commu-
nication is done by requests through so-called query symbols, one di�erent symbol
referring to each grammar in the system. When a query symbol appears in the sen-
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tential form of a grammar, then the rewriting process stops and one or more commu-
nication steps are performed by replacing all occurrences of the query symbols with
the current sentential forms of the queried component grammars, supposing that
these strings are query-free. When no more query symbol is present in any of the
sentential forms, then the rewriting process starts again. In so-called returning sys-
tems after communicating its current sentential form the queried component returns
to its start symbol and begins to generate a new string. In non-returning systems
the components continue the rewriting of their sentential form. The language (the
set of problem solutions) of the system is the set of terminal words which appear as
sentential forms at the master.

Parallel communicating grammar systems, as cooperating distributed grammar
systems, have been the subject of detailed study during the years. The investi-
gations concentrated on the generative power of these systems and on examining
how this power is inuenced by changes in the basic characteristics of the system:
the way of communication and synchronization among the components and their
way of functioning. The results, as in the case of CD grammar systems, demon-
strate that PC grammar systems with very simple component grammars and with
bounded size are convenient tools for describing large language classes. For exam-
ple, non-context-free context-sensitive languages can be generated by PC grammar
systems with two regular components, and returning PC grammar systems with
a few number of context-free component grammars are su�cient to generate any
recursively enumerable language. For information concerning the generative power
of PC grammar systems the reader is referred to [24, 54] and the articles listed in
[43]. For details about the generative capacity and size of systems with regular or
right-linear components consult [110, 122, 72], results on systems with context-free
components are presented in [39, 83], and systems with context-sensitive components
are discussed in [113, 62].

Normal forms for context-free PC grammar systems are presented in [40, 42],
and normal forms for systems with right-linear components are given in [56].

The very important feature of context-free (linear, regular) PC grammar systems
that the returning systems simulate the non-returning systems was pointed out in
[55, 120]. Synchronization problems, that is, PC grammar systems with additional
synchronization mechanisms or unsynchronized systems, were studied in [98, 102,
40]. Di�erent ways of communication and their impact on the generative power
were examined in [40], and di�erent ways of de�ning the language of the system
(so-called popular and competitive systems) were proposed and discussed in [119].
An important aspect, namely the case of incomplete information communication,
where the grammars communicate subwords of their sentential form by request, was
studied in [41].

Communication complexity problems of PC grammar systems were investigated
in [96, 97, 64, 65, 66, 68], their computational complexity aspects were discussed in
[1, 16, 15], while results concerning the descriptional complexity of these constructs
were presented in [100, 24]. Some decision problems concerning PC grammar systems
were examined in [118].

Several other interesting variants were proposed and investigated: PC grammar
systems with query words [89], with separated alphabets [90], with signals [112],
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with negotiations [107], probabilistic PC grammar systems [2], etc.

An area, with distinguished importance is the theory of parallel communicating
L systems, started in [101]. Several interesting results were obtained in this �eld,
among other things it was shown that centralized PC Lindenmayer systems with
D0L components can be simulated with EDT0L systems [101], and that systems
with E0L and ET0L components are equally powerful both in the returning and in
the non-returning case, [121]. For detailed information, the reader should consult
[24] and the articles in the on-line annotated bibliography [43].

As in the case of CD grammar systems, the concept of PC grammar systems
has been extended to parallel communicating automata systems. For the �nite au-
tomata models we refer to [85], for basic results on parallel communicating pushdown
automata systems consult [31].

For future research, interesting an important topics in the theory of PC gram-
mar systems can be studying PC grammar systems with asynchronously working
components, and further variants with incomplete information communication. For
example, models where the grammars are allowed to communicate only subwords
with a certain �xed length or with a bounded length, or where the grammars split
the sentential form into as many pieces as were requested by the other grammars.
Another promising directions can be the implementations of well-known distributed
algorithms in this framework and the comparison of the e�ciency of the di�erent
methods.

While parallel communicating grammar systems form a network of Chomsky
grammars communicating by the dynamically emerging requests, CCPC grammar
systems, that is, parallel communicating grammar systems with communication by
command, represent another communication philosophy. In this case, after each
rewriting step (after performing a prescribed sequence of rewriting steps) the Chom-
sky grammars communicate with each other by exchanging information which is
represented by their current sentential form or a subword of it. The communicated
strings are �ltered: each component is associated with a so-called selector (�lter)
language. A communicated string is accepted by the component if it is an element
of its selector language. After communication, a new string is composed from the
accepted ones and the grammar begins to generate this word. For more details about
the motivations beyond the idea and for the possible di�erent variants the reader is
referred to [30]. A basic and surprising result concerning these constructions is, that
CCPC grammar systems with three regular grammars and regular �lter languages
are able to generate any recursively enumerable language [67].

Similar architectures, that is, networks of language processors communicating by
command with the aid of �lter languages were studied having 0L systems as compo-
nents in [36], called networks of parallel language processors. Test tube distributed
systems based on splicing [26] and networks of Watson-Crick D0L systems [21, 38]
are also examples for networks of language processors communicating by command,
with components inspired by the behavior and properties of DNA, namely DNA
recombination and the phenomenon of Watson-Crick complementarity. Investiga-
tions in a framework, called networks of evolutionary processors, where the language
determining devices are simple rewriting systems with point mutation operations,
have recently started with interesting results. (See for the basic notions [17]).

E. Csuhaj-Varjú
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According to these latter, bio-inspired constructs, promising and challenging
research areas can be studying the population dynamics of the objects (strings,
symbols, etc.) in the network, supposing that the language processors operate with
multisets of strings. Phenomena characteristic for real networks, namely overloaded
situations at the nodes, black-holes, chaotic-like events, and wave-like phenomena
would also worth formalizing and studying.

Since networks of language processors are closely related to membrane systems,
bridges between membrane systems theory, that is, P systems theory should also be
built.

3 Conclusions

Grammar Systems is a wide and rich area for further investigations, both concerning
classical problems of formal language theory and non-standard problems as descrip-
tions of multi-agent systems in terms of distributed systems of grammars. One of the
most interesting and promising problem area would be the study of the properties
of grammar systems with dynamically changing (evolving, adapting) components.
Similarly, open networks of language processors, that is, networks with dynamically
changing number of components would be worth studying. A promising research
area is the study of grammar systems operating over multisets of strings, especially
in the direction of connections to molecular computing, in particular membrane
computing [104]. Another challenging �eld for research is to �nd connections be-
tween game theory and grammar systems theory, especially in the case of CD gram-
mar systems. Obviously, classical language theoretic problems, that is, decidability
questions, communication complexity and computational complexity issues are of
interest. Grammar Systems theory opens a new research area in descriptional com-
plexity as well, namely it gives the possibility to develop the concept of \collective
complexity" and to compare the behavior of the corresponding measures to the be-
havior of the well-known complexity measures based on single grammars in the case
of di�erent language classes.
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On Cooperating Distributed Grammar Systems
with Competence Based Start and Stop Conditions

J�urgen DassowOtto-von-Guericke-Universit�at MagdeburgFakult�at f�ur InformatikPSF 4120, D{39016 Magdeburgdassow@iws.cs.uni-magdeburg.de
AbstractWe de�ne cooperating distributed grammar systems with start and stopconditions which are based on the competence of a component on the currentsentential form. We distinguish six di�erent types of competence conditionswhich result in 18 types of grammar systems. We summarize the results onthe generative power known from the literature (where they are sometimesnot related to competence) and determine the power of some further grammarsystems.

1 Introduction
Cooperating distributed grammar systems were �rstly investigated by R. Meersmanand G. Rozenberg in [14]. A systematic study of these systems was started in [6].Summaries of results are given in [9] and [11].Intuitively, a cooperating distributed grammar system (CD grammar system forshort) consists of some grammars or sets of productions which work on a commonsentential form. A certain grammar, for which the start condition holds, starts thederivation, and it has to stop the derivation, if a certain stop condition is satis�ed.Then another component satisfying the start condition continues the derivation untilthe stop condition holds etc.Mostly one has considered the case where the start condition is true for anygrammar and any sentential form and the stop condition is satis�ed i� the derivedsentential form y is obtained by k (or � k or � k) direct derivation steps with respectto the chosen grammar or the grammar contains no rule which can be applied to y.The idea behind these conditions was as follows. CD grammar systems have amotivation in the blackboard architecture of Arti�cial Intelligence. Here the gram-mars correspond to agents/experts, the nonterminals represent open problems andthe application of a rule is a step to the solution. Thus the above conditions canbe interpreted such that k (or � k or � k) steps can be contributed to the solu-tion. Therefore the stop condition is only satis�ed if the component has a certaincompetence. However, this does not really reect competence, because in the k-step derivation we can replace the same nonterminal in any step, i.e., we contribute

Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varjú and Gy. Vaszil,
MTA SZTAKI, Budapest, pages 158 - 169, 2004.
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only to a special subproblem and not to all subproblems. Therefore the conditionconsidered in [14] is more appropriate, where the start condition requires that anynonterminal occurring in the sentential form can be replaced, i.e., the agent can con-tribute to any subproblem; we call this restriction full competence of the grammaron the sentential form.In this paper we de�ne the competence as the number of subproblems whichcan be (partially) solved by the grammar. Formally, the competence of a set P ofproductions on a sentential form x is the cardinality of the intersection of the setof nonterminals occurring in x and the set of nonterminals which can be rewrittenby P . Now one can de�ne competence k (or � k or � k or 6= k) and maximal andfull competence. This leads to 18 types of CD grammar systems where the startcondition as well as the stop condition is one of the competence types mentionedabove or a negation of such a competence type.We summarize the results on the generative power of such CD grammar systemsobtained by M. ter Beek, E. Csuhaj-Varj�u, M. Holzer, Gy. Vaszil and the authorand add the results on two further systems.The paper is organized as follows. In Section 2 we recall the de�nitions of somelanguage families to which the families studied in the paper will be related. InSection 3 we introduce the concept of a cooperating distributed grammar systemand the competence conditions. Section 4 contains the results. We �nish with someremarks on topics of research to be done in this area.
2 Some Language Families
For an alphabet V , we denote the set of all (non-empty) words over V by V � (andV +, respectively). The length of a word w 2 V � is denoted by jwj. For a lettera 2 V and a word w 2 V �, #a(w) denotes the number of occurrences of a in w.
A context-free grammar is speci�ed as a quadruple G = (N;T; P; S) where{ N and T are disjoint alphabets of nonterminals and terminals, respectively,{ P is a �nite subset of N � (N [ T )�, and{ S is an element of N .Instead of (A;w) for an element of P , we shall write A! w. Elements of P are calledcontext-free rules. We set VG = N [ T . The derivation process in a context-freegrammar and the generated language are de�ned as usually (see e.g. [17]).
A Russian parallel grammar is a quintuple G = (N;T; P1; P2; S), where{ N , T , and S are speci�ed as in a context-free grammar, and{ P1 and P2 are �nite sets of N � (N [ T )�.x 2 V +G directly derives y 2 V �G (written as x =) y), i� one of the followingconditions hold:{ x = x0Ax00, y = x0wx00 for some x0; x00 2 V �G and A! w 2 P1 or{ x = x0Ax1Ax2 : : : xn�1Axn, n � 0, xi 2 (VGnfAg)� for 1 � i � n, A! w 2 P2and y = x0wx1wx2 : : : xn�1wxn.The language L(G) generated by the Russian parallel grammar G is de�ned as

L(G) = fz j z 2 T �; S =)� zg ;
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where =)� is the reexive and transitive closure of =).
A random context grammar is a quadruple G = (N;T; P; S) where{ N , T and S are speci�ed as in a context-free grammar, and{ P is a �nite set of triples r = (p;R;Q) where p is a context-free productionand R and Q are subsets of N .G is called a forbidden random context grammar if all rules of P are of the form(p; ;; Q). For x; y 2 V �G, we say that x directly derives y, written as x =) y, i� thereis a triple r = (A! w;R;Q) 2 P such that{ x = x0Ax00 and y = x0wx00 for some x0; x00 2 V �G,{ any letter of R is contained in x, and no letter of Q occurs in x.The language L(G) generated by G is de�ned as

L(G) = fw j w 2 T �; S =)� wg ;
where =)� is the reexive and transitive closure of =).
A extended tabled interactionless L system (ET0L system) is an (r + 3)-tuple G =(V; T; P1; P2; : : : Pr; w) where{ V is an alphabet, T is a subset of V ,{ w is a non-empty word over V and,{ for 1 � i � r, Pi is a �nite subset of V � V � such that, for any a 2 V , there isat least one element (a; v) in Pi.Again, we shall write a ! v instead of (a; v). x 2 V + directly derives y 2 V �(written as x =) y), if{ x = x1x2 : : : xn for some n � 0, xi 2 V , 1 � i � n,{ y = y1y2 : : : yn and{ there is an j, 1 � j � r such that xi ! yi 2 Pj for 1 � i � n.The language L(G) generated by the ET0L system G is de�ned as

L(G) = fz j z 2 T �; w =)� zg ;
where =)� is the reexive and transitive closure of =).
A random context ET0L system (RCET0L system in short) is an (r + 3)-tupleG = (V; T; P1; P2; : : : Pr; w) where{ for 1 � i � r, Pi = (P 0i ; Ri; Qi) where Ri and Qi are subsets of V ,{ G0 = (V; T; P 01; P 02; : : : P 0r; w) is an ET0L system.x 2 V + directly derives y 2 V � (written as x =) y), if{ any letter of Ri occurs in x and no letter of Qi occurs in x, and{ x =) y holds with respect P 0i in G0.The language L(G) generated by the RCET0L system G is de�ned as

L(G) = fz j z 2 T �; w =)� zg ;
where =)� is the reexive and transitive closure of =).
By L(CF ), L(RC), L(fRC), L(rp),  L(ET0L) and L(RCET0L) we denote thefamilies of all context-free languages, random context languages, forbidden randomcontext languages, Russian parallel languages, ET0L languages and random context
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Figure 1:
ET0L languages. For a detailed information on these languages we refer to [10], [12],[17] and [16].In Figure 1 we recall the hierarchy of the languages de�ned above.
3 Cooperating Distributed Grammar Systems
We now present the notion of cooperating distributed grammar systems.
A cooperating distributed grammar system (for short, CD grammar system is an(n + 5)-tuple G = (N;T; P1; P2; : : : ; Pn; S; c; c0) ;where{ N is a set of nonterminals and T is a set of terminals,{ for 1 � i � n, the component Pi is a set of context-free productions,{ S 2 N is the start element,{ c is the start condition and c0 is the stop condition, i.e., c and c0 are predicates on

f(P;w) j P � N � (N [ T )� and w 2 (N [ T )�g
(the conditions are de�ned on pairs consisting of a set of context-free productionsand a word).We say that x = x0 =) x1 =) x2 =) : : : =) xm = y
is a derivation with respect to Pi and the conditions c and c0 (written as x =)�Pi y)if{ c(Pi; x) is true,{ for 1 � j � m+ 1, xj =) xj+1 is a direct derivation step using a production of Pi{ for 1 � j � m� 1, c0(Pi; xj) is not true, and{ c0(Pi; y) is true or y contains no letter of dom(Pi).
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The language generated by G consists of all words z over T such that there isderivation S = z0 =)�Pi1 z1 =)�i2 z2 =)�Pi3 : : : =)�Pim zm = z :
In this paper we discuss CD grammar systems where the start and stop conditionsdepend on the competence of the components to work on the sentential form. Thecompetence is formalized in the following way.Let N and T be two disjoint sets (of nonterminals and terminals, respectively).Further, let V = N [ T and let P � N � V � be a (�nite) set of context-freeproductions and w be a word over V . We set

nt(w) = fA j A 2 N and #A(w) � 1g
(i.e., nt(w) is the set of nonterminals which occur in w),

dom(P ) = fA j A! w 2 P for some w 2 V �g
and comp(Pi; w)) = #(nt(w) \ dom(Pi)) :We say that P hascompetence k on w i� comp(Pi; w) = k,competence � k on w i� comp(Pi; w) � k,competence � k on w i� comp(Pi; w) � k,maximal competence on w i� comp(Pi; w) � comp(Pj ; w) for 1 � j � n,full competence on w i� nt(w) � dom(Pi).The most obvious idea is to require that a component can start a derivation if ithas a certain competence A and has to stop if it does not have the competence A.Therefore besides the competence conditions introduced above we have to considerthe negations of the above conditions. Clearly, the negations can also be used asstart conditions. Obviously, P has not competence � k (� k) i� it has competence� k � 1 (� k + 1, respectively). Therefore we get the following additional notions.
Pi has competence 6= k on w i� comp(Pi; w) 6= k,Pi is not maximal competent on w i� there is a Pj , 1 � j � n, i 6= j,with comp(Pj ; w) > comp(Pi; w),Pi is not fully competent on w i� there is an A 2 nt(w) with A =2 dom(Pi).

By these de�nitions, competence of Pi on w is given, if dom(Pi) contains at leastone element of nt(w). Thus we also formulate:
Pi is competent on w i� comp(Pi; w) � 1,Pi is not competent on w i� comp(Pi; w) = 0.

We use the following abbreviations for the competence conditions (in the order oftheir de�nition):
= k; � k; � k; max; full; 6= k; :max; :full; comp; :comp :
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Because comp and � 1, 6= 1 and � 2 as well as � 1 and = 1 coincide, we can restrictto k � 2 and have to add the condition = 1.As an example we consider the CD grammar system
G = (fS;A;B;A0; B0; Fg; fa; b; cg; P1; P2; P3; P4; P5; P6; S;max;:max);P1 = fS ! ABg;P2 = fA! ab;B ! cg;P3 = fA! aA0b; B ! Fg;P4 = fA0 ! F;B ! B0cg;P5 = fA0 ! A;B0 ! Fg;P6 = fA! F;B0 ! Bg:

Obviously, after the application of P1, P2 and P3 have maximal competence. If weapply P2, then we have to terminate the derivation and get abc. If we apply P3, weonly can apply A! aA0b and loose the maximal competence. We have to apply insuccession B ! B0c of P4, A0 ! A of P5 and B0 ! B of P6 and obtain aAbBc (if weapply the other rule of the components we get a sentential form containing F andwe cannot terminate the derivation). We can iterate this process. Therefore
L(G) = fanbncn j n � 1g :

Note that we cannot combine an arbitrary competence condition as start conditionwith another arbitrary competence condition as a stop condition. Obviously, wecannot take the same condition as start condition as well as stop condition, becauseby de�nition the component can start the derivation but it also has to stop thederivation, which is impossible. However, there are also other situations of thistype. For instance, full and max cannot be taken as start and stop condition,respectively, since any full competent component is maximal, too.Moreover, we have to exclude those combination which do not allow terminatingderivations. For instance, this situation occurs in the case of start condition � 4and stop condition � 2. If a derivation starts then the sentential word has atleast four nonterminals. However, if the derived sentential form contains at most 2nonterminals, we have to stop the derivation (and no component can continue thederivation by the start condition). Therefore we cannot derive terminal words. Thissituation also occurs if we have stop conditions of the types � k with k � 2, = 1and comp.Furthermore, we shall exclude such situations where the start condition as wellas the stop condition can be satis�ed, but it is not necessarily true that both haveto be valid. For instance, if N = fA;B;Cg and the start condition requires thecompetence � 2 and the stop condition requires competence � 3, then the derivationcan start start on AB, but it cannot start on ABC since the start condition as wellas the stop condition are satis�ed. The pairs (max; full) and (full;= k) with k � 2of start and stop conditions can also lead to conicts.Taking all these restrictions into consideration we have to investigate the follow-ing pairs of of start conditions and stop conditions, where k � 2 and l � 2:
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(a) (full;:full); (full;:comp); (max;:max); (max;:comp); (comp;:comp);(= l;:comp); (� l;:comp); (� l;:comp); (= 1;:comp); (= 1;� k);(= 1;= k);(b) (full;:max); (:full; full); (:full;:comp); (:max;max);(� l;= k) and (� l;� k) with l < k; (= l;= k) with l 6= k;(= l;� k) with l < k; ( 6= k;= k)
By L(c; c0) we denote the family of all languages which can be generated by CDgrammar systems with the start condition c and the stop condition c0. If we restrictthe CD grammar systems which have at most n components, then we denote thecorresponding family of languages by Ln(c; c0).By de�nition, we have the following statement.
Lemma 1 For any n � 1 and any pair (c; c0) of start and stop conditions,

Ln(c; c0) � Ln+1(c; c0) � L(c; c0) :
4 Results
In this section we present the results which { at least partially { give the place ofsome families L(c; c0) within the hierarchy given in Figure 1.
Theorem 2 ([6]) For any n � 3,

L(CF ) = L1(comp;:comp) = L2(comp;:comp)� Ln(comp;:comp) = L(comp;:comp) = L(ET0L) :
Theorem 3 ([14], [5], [4]) For any n � 3,

L(CF ) = L1(full;:full) � L2(full;:full)� Ln(full;:full) = L(full;:full) = L(RC) :
Theorem 4 For any n � 3,

L(CF ) = L1(full;:comp) � L2(full;:comp)� Ln(full;:comp) = L(full;:comp) = L(ET0L) :
Proof. L(full;:comp) � L(ET0L). Let L 2 L(full;:comp). Then L = L(G) forsome CD grammar system G = (N;T; P1; P2; : : : ; Pr; w; full;:comp). We set

N 0 = N [ fA0 j A 2 Ng [ fFg;
hi(a) = ( a if a 2 dom(Pi) [ Ta0 if a =2 dom(Pi) for 1 � i � n;
Qi = fA! hi(w) j A! w 2 Pig [ fB ! F j B =2 dom(Pi)g; for 1 � i � n;Q = fA0 ! A j A 2 Ng;G0 = (N 0; T;Q1; Q2; : : : Qr; Q;w; comp;:comp)
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Let 1 � i � n. If a word x contains a symbol B =2 dom(Pi), then Qi derives in G0 fromx a word containing the letter F . Since there is no rule with left-hand side F in anycomponent of G0, we cannot terminate the derivation. Therefore in a terminatingderivation we can only apply a component Qi to x if nt(x) \ (N n dom(Pi) = ;,or equivalently, nt(x) � dom(Pi), i.e., Pi is fully competent on x. Therefore Qi isapplicable in a terminating derivation in G0 to x if and only if Pi is fully competenton x if and only if Pi is applicable to x in G.Moreover, in both cases we only stop if the component is not competent onthe derived sentential form. Since we introduce primed versions of the letters ofN n dom(Pi) applying Qi we obtain
x =)�Pi y i� x =)�Qi hi(y) :

Furthermore, no component Qi with 1 � i � n is competent on hi(y) since it onlycontains primed letters and terminals. Thus we have to continue with Q whichreplaces all primed letters A0 by their original A. Thus
x =)�Pi y i� x =)�Qi hi(y) =)�Q y :

This implies L(G) = L(G0). By Lemma 2, L = L(G) = L(G0) 2 L(ET0L).L(ET0L) � L3(full;:comp). In [6], Theorem 3, iii), it has been shown that,for any ET0L language L, there is a cooperating distributed grammar system G =(N;T; P1; P2; P3; S; comp;:comp) such that L = L(G). Moreover, it is easy to see,that any component of G is competent on a sentential form x if and only if it isfully competent on x. Hence G0 = (N;T; P1; P2; P3; S; full;:comp) generates L, too.Thus L(ET0L) � L3(full;:comp).By Lemma 1, we obtain
L(ET0L) � L3(full;:comp) � Ln(full;:comp) � L(full;:comp) � L(ET0L)

for any n � 4, which implies
Lm(full;:comp) = L(full;:comp) = L(ET0L)

for any m � 3. Obviously, L(CF ) = L1(full;:comp). Now the assertion follows byLemma 1. 2

Theorem 5 ([7]) L(rp) � L(max;:max) � L(RC).
Theorem 6 L(max;:comp) = L(RCET0L).
Proof. L(RCET0L) � L(max;:comp). Let L 2 L(RCET0L). Then there is arandom context ET0L system

G = (V; T; (P1; R1; Q1); (P2; R2; Q2); : : : ; (Pr; Rr; Qr); w)
such that L = L(G). Let

V = fa1; a2; : : : ; ang ;Ri = fai;1; ai;2; : : : ; ai;sig for 1 � i � r :
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We set
N = fa0 j a 2 V g [ fa00 j a 2 V g [ fA;S; Fg [ fBi j 1 � i � n + 1g[fAi;j;k j 1 � i � r; 1 � j � si + 2; 1 � k � n + 1g ;Zinit = fS ! AAi;1;1Ai;1;2 : : : Ai;1;n+1w0 j 1 � i � rg[fS ! B1B2 : : : Bn+1w0g ;Zfin = fBi ! � j 1 � i � n + 1g [ fa0 ! F j a0 2 N n T 0g [ fa0 ! a j a 2 Tg ;Zi;j = fAi;j;k ! Ai;j+1;k j 1 � k � n + 1g [ fa0i;j ! a00i;jgfor 1 � i � r; 1 � j � si ;Z 0i;j = fAi;j;k ! Ai;j+1;k j 1 � k � n + 1g [ fA! Fgfor 1 � i � r; 1 � j � si ;Zi;si+1 = fAi;si+1;k ! Ai;si+2;k j 1 � k � n + 1g [ fa0 ! a00 j a 2 V nQig[fb0 ! F j b 2 Qig for 1 � i � r ;Zi;si+2 = fAi;si+2;k ! � j 1 � k � n + 1g [ fa00 ! u0 j a! u 2 Pig[fA! AAi0;1;1Ai0;1;2 : : : Ai0;1;n+1 j 1 � i0 � rg[fA! B1B2 : : : Bn+1g for 1 � i � r ;G0 = (N;T; Zinit; Zfin; Z1;1; Z1;2 : : : ; Z1;s1+2; Z2;1; : : : ; Zr;sr+2;Z 01;1; Z 01;2 : : : ; Z 01;s1 ; Z 02;1; : : : ; Z 0r;sr ; S;max;:comp) :

If we start a derivation in G0 (from S) we get AAi;1;1Ai;1;2 : : : Ai;1;n+1w0 for some i,1 � i � r, or B1B2 : : : Bn+1w0.We now discuss the continuation of the derivation of a sentential form of typeB1B2 : : : Bn+1v0 where v is a sentential form of G. Since v0 contains at most ndi�erent letters, Zfin is the only component with maximal competence and we derivethe terminal word v or a word containing an occurrence of F , i.e., the derivationcannot be terminated. If v is a terminal word, then v 2 L(G) as well as v 2 L(G0).Now let us consider the derivation starting from AAi;1;1Ai;1;2 : : : Ai;1;n+1v0 forsome i, 1 � i � r and some sentential form of G. Now Z 0i;1 has maximal competence,and its applications yields a word containing F such that we cannot terminatethe derivation. If a0i;1 is present, then Zi;1 has also maximal competence, and itsapplication yields AAi;2;1Ai;2;2 : : : Ai;2;n+1v1 where v1 is obtained from v0 by replacingany occurrence of a0i;1 by a00i;1. Therefore we cannot terminate the derivation or allletters of Ri are present in v and we have a derivation
AAi;1;1Ai;1;2 : : : Ai;1;n+1v0 =)�Zi;1 : : : =)�Zi;ri AAi;ri+1;1Ai;ri;2 : : : Ai;ri;n+1v2

where all occurrences of primed versions of letters of Ri in v0 are replaced by theirdoubly primed versions to obtain v2. Now Zi;ri+1 is the only component with max-imal competence, and its application yields a word containing F , if v0 contains aprimed version of a letter in Qi, or we get AAi;ri+2;1Ai;ri+2;2 : : : Ai;ri+2;n+1v00. Nowwe have to apply the only component Zi;ri+2 with maximal competence which resultsin AAi0;1;1Ai0;1;2 : : : Ai0;1;n+1z0 or B1B2 : : : Bn+1z0 where v =)Pi z is a derivation stepin the RCET0L system G.
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Hence we can simulate in G0 all derivations in G, and any terminating derivationIn G0 corresponds to a derivation in G. Therefore L(G0) = L(G) = L which provesL 2 L(max;:comp).L(max;:comp) � L(RCET0L). Let L 2 L(max;:comp). Then L = L(H) forsome CD grammar system H = (N;T; P1; P2; : : : ; Pn; S;max;:comp). Obviously,for any word w 2 (N [T )�, the set nt(w) uniquely determines the set of componentswhich are of maximal competence on w. Let f : 2N ! 2fP1;P2;:::;Png be the functionwhere f(M) is the set of components which have maximal competence on words wwith M = nt(w).We now construct the random context ET0L system H 0 with the the underlyingalphabet V = N [ T [ fAg [ f[i] j 1 � i � ng [ fAM j M � Ng, the terminalalphabet T , the start word AS and the following tables:
(fA! AMg [ fx! x j x 2 V n fAgg; fAg [M;N nM) for M � N

(this table is only applicable to a word Av with M = nt(v), i.e., by this table wedetermine nt(v), and we obtain Ant(v)v),
(AM ! [i] j Pi 2 f(M)g [ fx! x j x 2 V n fAMgg; fAMg; ;) for M � N

(by this table we derive [i]v from Ant(v)v, where Pi has maximal competence on v),
([i] ! [i]g [ Pi [ fx! x j x 2 V n (dom(Pi) [ f[i]gg; f[i]g; ;) ;([i] ! Ag [ fx! x j x 2 V n f[i]gg; f[i]g; dom(Pi))

(by these tables, in H 0 we obtain a derivation
[i]v =) [i]v1 =) [i]v2 =) : : : =) [i]vm =) Az

where v =)�Pi z holds in G, Pi has maximal competence on v and Pi is not competenton z), (fA! �g [ fx! x j x 2 N n fAg; fAg; N)
(we cancel A and produce a word over T ). By the explanations added to the tables,it is easy to see that L(H 0) = L(H) = L which proves L 2 L(RCET0L). 2

Theorem 7 ([1]) L(fRC) � L(= 1;� 2) � L(RC).
Theorem 8 ([8]) L(= 1;:comp) = L(� 1;:comp) = L(ET0L).
Theorem 9 ([8]) For all k � 2, L(= k;:comp) = L(� k;:comp) = L(RCET0L).
Theorem 10 ([8]) For all k � 1, L(� k;:comp) = L(ET0L).
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5 Concluding Remarks
In the preceding section we have characterized { in some cases only partially { thefamilies given in item (a) in the list at the end of Section 3. We do not know anyresult on the families mentioned in item (b) such that the generative power of thesefamilies has to be studied.Above we have mentioned that some combinations of start and stop conditionsdo not allow the derivation of terminal words. Especially, this holds for the combi-nations (= k; 6= k) and (� k;� k � 1) for any k � 2. In order to get terminatingderivations in these cases one has some possibilities.In [1] and [2] the authors allow that there is a special terminating phase. If thisphase is started, then the component has to stop with a terminal word and for allintermediate sentential forms of this step the competence of component is at mostk. Another approach is presented in [3] where in each derivation of a componentone has to perform a parallel derivation as in L systems.For the classical types of stop conditions hybrid systems have been introduced,i.e., the start and stop condition is not associated with the system, it is only associ-ated with a component, and the start conditions and/or the stop conditions can bedi�erent for di�erent components (see e.g. [15] and [13]). Such hybrid systems canalso be de�ned if one uses competence based start and stop conditions.
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Abstract
Dassow and Mitrana [2] introduced a new type of grammar system calledsplicing grammar system in which communication is done by splicing of strings.Thus segments of sentential forms determined by given splicing rules are ex-changed. In this paper, we consider simple splicing rules in these grammar sys-tems and thus obtain four types of simple splicing grammar systems (SSGS),namely, < 1; 3 >, < 2; 4 >, < 1; 4 >, < 2; 3 > SSGS. As < 1; 3 > and < 2; 4 >types of SSGS are equivalent and < 2; 3 > and < 1; 4 > types of SSGS becomeequivalent, there are essentially two types. Various properties of simple splicinggrammar systems are obtained by considering di�erent component grammars.We prove that context free simple splicing grammar systems with two com-ponents can generate context sensitive languages. Moreover systems with tworegular components can generate nonlinear and context-free languages.

1 Introduction
The theory of Grammar Systems [1] is an intensively investigated area of Formal
Language Theory providing an e�ective grammatical framework for capturing several
phenomena characteristic of multi-agent systems such as cooperation, distribution,
communication, parallelism etc. The basic idea in a grammar system is to consider
several usual grammars and to make them cooperate in order to generate a common
language. In parallel communicating grammar systems, the components are genera-
tive grammars working on their own sentential forms in parallel and communicating
by request.

Motivated by the behaviour of DNA sequences under the inuence of restriction
enzymes and ligases, Head [3, 4] de�ned splicing systems that make use of a new
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operation, called splicing on strings of symbols. The idea here is that given two
strings, each of these is \cut" at suitable \sites" and \pasted crosswise" yielding
new strings. Dassow and Mitrana [2] introduced a new type of parallel commu-
nicating grammar systems by replacing communication by splicing of strings, thus
exchanging segments of sentential forms determined by given splicing rules. Paun
[6] has investigated splicing grammar systems improving the results of [2].

Mateescu et al [5] have considered simple splicing systems that make use of
splicing rules that are as simple as possible. In this paper we examine splicing
grammar systems by requiring the splicing rules to be simple in the sense of [5].
Various properties of the resulting simple splicing grammar systems are obtained by
considering di�erent component grammars.

2 Preliminaries
For basic results of formal language theory one can refer to [7]. For notions and
results pertaining to grammar system we refer to [1]. We denote the family of
regular and context-free languages by REG and CF respectively.

For an alphabet V , the set of all words over V is denoted by V �and the empty
word by �; moreover V + = V � � f�g. We recall the de�nition of a simple splicing
system [5].
De�nition 1 A simple splicing system is a triple

� = (V;A;M)
where V is an alphabet, A � V � is a �nite set of axioms and M � V .
The elements of M are called markers. One can consider four types of languages
over V �, corresponding to the splicing rules of the forms

a#$a#;#a$#a; a#$#a;#a$a#
where a is an arbitrary element ofM . These four rules are respectively called splicing
rules of type < 1; 3 >, < 2; 4 >, < 1; 4 >, < 2; 3 >.

Clearly splicing rules of types < 1; 3 > and < 2; 4 > yield the same result and
for x; y; z 2 V � and a 2M we obtain
(x; y) `a<(1;3> z i� x = x1ax2; y = y1ay2; z = x1ay2, for some x1; x2; y1; y2 2 V �

For the other types, the splicing is performed as follows:
(x; y) `a<1;4> z i� x = x1ax2; y = y1ay2; z = x1aay2, for some x1; x2; y1; y2 2 V �
(x; y) `a<2;3> z i� x = x1ax2; y = y1ay2; z = x1y2, for some x1; x2; y1; y2 2 V �

We now de�ne simple splicing grammar systems.
De�nition 2 A < 1; 3 >-simple splicing grammar system (< 1; 3 >-SSGS)of degree
n is a construct

� = (N;T; (S1; P1); (S2; P2); � � � ; (Sn; Pn);M)

where
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(i) N;T are disjoint alphabets and Pi, 1 � i � n are �nite sets of production rules
over N [ T .
(ii)M is a �nite subset of (N [T )#$(N [T )# with #, $ two distinct symbols which
are not in N [ T . Each element of M is a < 1; 3 >-simple splicing rule.

The sets Pi are called the components of �. We can consider grammars of the
form Gi = (N;T; Si; Pi), 1 � i � n. By a con�guration, we mean an n-tuple
consisting of words over N [ T .
For Two con�gurations,
x = (x1; x2; � � � ; xn), xi 2 (N [ T )�N(N [ T )�, 1 � i � n
y = (y1; y2; � � � ; yn), yi 2 (N [ T )�, 1 � i � n
we de�ne x)� y if and only if any of the following two conditions holds:
(i)for each 1 � i � n, xi )Pi yi,(ii) there exist 1 � i; j � n such that
xi = x0iax00i , xj = x0jax00j ,
yi = x0iax00j , yj = x0jax00i , for a#$a# 2M , and
yk = xk, for k 6= i; j.
In the derivation x )� y, in < 1; 3 >-SSGS, (i) de�nes a rewriting step, but (ii)
de�nes a < 1; 3 >-splicing step, corresponding to a communication step in a parallel
communicating grammar system. There is no priority of any of these operations
over the other.

A < 2; 3 >-simple splicing grammar system is analogously de�ned.
De�nition 3 A < 2; 3 >-simple splicing grammar system (< 2; 3 >-SSGS) of de-
gree n is a construct

� = (N;T; (S1; P1); (S2; P2); � � � ; (Sn; Pn);M)

where
(i) N;T are disjoint alphabets and Pi, 1 � i � n are �nite sets of production rules
over N [ T .
(ii)M is a �nite subset of #(N [T )$(N [T )# with #, $ two distinct symbols which
are not in N [ T .Each element of M is a < 2; 3 >-simple splicing rule.

The sets Pi are called the components of �. We can consider grammars of the
form Gi = (N;T; Si; Pi), 1 � i � n. By a con�guration, we mean an n-tuple con-
sisting of words over N [ T .
For Two con�gurations,
x = (x1; x2; � � � ; xn), xi 2 (N [ T )�N(N [ T )�, 1 � i � n
y = (y1; y2; � � � ; yn), yi 2 (N [ T )�, 1 � i � n
we de�ne x)� y if and only if any of the following two conditions holds:
(i)for each 1 � i � n, xi )Pi yi,(ii) there exist 1 � i; j � n such that
xi = x0iax00i , xj = x0jax00j ,
yi = x0ix00j , yj = x0jaax00i , for a#$a# 2M , and
yk = xk, for k 6= i; j.
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In the derivation x )� y, in < 2; 3 >-SSGS, (i) de�nes a rewriting step, but (ii)
de�nes a < 2; 3 >-splicing step, corresponding to a communication step in a par-
allel communicating grammar system. Again there is no priority of any of these
operations over the other.

Moreover at any instant only one splicing operation can take place in the <
1; 3 >-SSGS and < 2; 3 >-SSGS.

Also < 1; 3 >-SSGS and < 2; 4 >-SSGS are essentially the same. Likewise
< 2; 3 >-SSGS and < 1; 4 >-SSGS are the same by de�nition.

The language generated by the ith component is de�ned by
Li(�) = fxi 2 T �j(S1; S2; � � � ; Sn))� (x1; x2; � � � ; xn); xj 2 (N [ T )�; j 6= ig,
where )� is the reexive and transitive closure of the relation ).

Two kinds of languages [2] can naturally be associated to a simple splicing gram-
mar system. One of them is the language generated by a single component and,
because no component is distinguished in any way , we may always choose the lan-
guage generated by the �rst component. This language will be called the individual
language of the system.

The second associated language will be the total language, namely

Lt(�) =
n[
i=1

Li(�)

Example 1 Consider the < 1; 3 >-SSGS with regular rewriting rules. Let

�1 = (N;T; (S1; P1); (S2; P2);M),
N = fS1; S2; A;Bg
T = fa; b; cg
P1 = fS1 ! aA; A! aA; A! cg
P2 = fS2 ! cB; B ! bB; B ! bg
M = fc#$c#g
This system produces the languages

L1(�1) = fancbnjn � 1g [ fancjn � 1g
L2(�1) = fcbnjn � 0g
Here the total language is

Lt = fancbnjn � 1g [ fancjn � 1g [ fcbnjn � 0g

Example 2 Consider the < 1; 3 >-SSGS with context free rewriting rules. Let

�1 = (N;T; (S1; P1); (S2; P2);M),
N = fS1; S2; A;Bg
T = fa; b; c; dg
P1 = fS1 ! aAbd; A! aAb; A! abg
P2 = fS2 ! dcB; B ! cB; B ! cg
M = fd#$d#g
This system produces the languages

L1(�1) = fanbndcnjn � 1g [ fanbndjn � 1g
L2(�1) = fdcnjn � 0g
Here the total language is

Lt = fanbndcnjn � 1g [ fanbndjn � 1g [ fdcnjn � 0g
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We denote the family of individual languages generated by simple splicing grammar
systems of degree n, with components of type X by IssgsLn(X).
Similarly we denote the family of total languages generated by simple splicing gram-
mar systems of degree n, with components of type X by TssgsLn(X).
where X 2 fREG;CFg.

Remark (i) In Example 1 and Example 2, if we use the < 2; 4 >-splicing rules
instead of the < 1; 3 >-splicing rules i.e. M = f#c$#cg in Example 1 and M =
f#d$#dg in Example 2 , without changing the rewriting rules, then we obtain the
same languages in Examples 1 and 2 .

(ii) In Example 1, if we use the < 2; 3 >-splicing rule #c$c#, instead of the
< 1; 3 >-splicing rule , without changing the rewriting rules, then we obtain the
following languages:
L1(�1) = fanc2bnjn � 1g [ fanbnjn � 1g [ fancjn � 1g
L2(�1) = fcbnjn � 1g [ fc2g [ f"g
Lt(�1) = fanc2bnjn � 1g [ fanbnjn � 1g [ fancjn � 1g [ fcbnjn � 1g [ fc2g [ f"g

In Example 2, if we use the < 2; 3 >-splicing rule #c$c#, instead of the < 1; 3 >-
splicing rule , without changing the rewriting rules, then we obtain the following
languages.
L1(�2) = fanbnd2cnjn � 1g [ fanbncnjn � 1g [ fanbndjn � 1g
L2(�2) = fdcnjn � 1g [ fd2g [ f"g
Lt(�1) = fanbnd2cnjn � 1g [ fanbncnjn � 1g [ fanbndjn � 1g

[ fdcnjn � 1g [ fd2g [ f"g

3 The Regular and CF Cases
Lemma 1 Let � be a regular < 2; 4 >-SSGS of degree n, Then a regular < 2; 4 >-
SSGS of degree n, �0, exists such that Lt(�0) = L1(�)
Proof. Let

� = (N;T; (S1; P1); (S2; P2); � � � ; (Sn; Pn);M);
be a splicing grammar with the above mentioned property. For proving the assertion,
we construct the system

� = (N 0; T; (S1; P1); (S2; P 02); � � � (Sn; P 0n);M);
where

N 0 = N [ fXg
P 0i = fA! aB j A! aB 2 Pig [ fA! aX j A! a 2 Pig; 2 � i � n:

By this construction, all languages Li(�0); 2 � i � n, become empty and L1(�0) =
L1(�) or, in other words, Lt(�0) = L1(�). 2

The above result holds for < 1; 3 >-SSGS systems also because these two systems
are equivalent.
Theorem 1 For Y 2 fI; Tg,
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1. For X 2 fREG;CFg; X = Y<1;3>ssgsL1(X)
2. REG � Y<1;3>ssgsL2(REG)
3. CF � Y<1;3>ssgsL2(CF )
4. Y<1;3>ssgsL2(REG) contains nonlinear languages.

Proof. The �rst statement immediately follows from de�nitions. The second state-
ment is a consequence of example 1. The third statement is a consequence of example
2.

As far as the last statement is concerned, the individual language generated by
the following < 1; 3 >-splicing grammar system is the non-linear language
L = fancbnamdbmjn;m � 1g:

� = (fS1; S2; A;B;X; Y; Zg; fa; b; c; dg; (S1; P1); (S1; P1);M)
P1 = fS1 ! aA;A! aA;A! cX;B ! aE;E ! aE;E ! dZg
P2 = fS2 ! cB;B ! bB;X ! dY; Y ! bY; Y ! bg
M = fc#$c#; d#$d#g
A derivation in � runs as follows:
(S1; S2))+ (ancjX; cjbnB)

) (ancbnB; cX)
) (ancbnaE; cdY )
) (ancbnamE; cdbm�1Y )
) (ancbnamdjZ; cdjbm)
) (ancbnamdbm; cdZ),

for some n and m � 1. Hence we get
L1(�) = Lt(�) = fancbnamdbm j n;m � 1g and L2(�) = � 2

Theorem 2 Y<2;3>ssgsL2(REG) also contains nonlinear languages.

Proof. In the proof of the fourth statement in Theorem 1, a < 1; 3 >-SSGS splicing
grammar system was constructed which generated a nonlinear language. In this, if
we use < 2; 3 >-splicing rules instead of < 1; 3 >-splicing rules, i.e if we change the
rules in M as
M = f#c$c#;#d$d#g
we obtain
L1(�) = Lt(�) = fanbnambm j n;m � 1g[fanbnamd2bmj n;m � 1g[fanc2bnamd2bmj
n;m � 1g [ fanc2bnambmj n;m � 1g and L2(�) = �. This proves the result. 2

We show that there is an in�nite hierarchy of the classes Y<2;3>ssgsLn(CF )for in-
creasing n.

Theorem 3
CF = Y<2;3>ssgsL1(CF ) � Y<2;3>ssgsL2(CF ) � � � � � Y<2;3>ssgsLn(CF ) � � � �
where Y denotes the total language or the individual language generated in the system
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Proof. We consider the following Y<2;3>ssgs simple splicing grammar system
� = (fS1; � � � ; Sn; A1; � � � ; An; D1; � � � ; Dng; fa; bg; (S1; P1); (S2; P2); � � � ; (Sn; Pn);M)
with
P1 = fS1 ! aA1bD1; A1 ! aA1b; A1 ! abg
P2 = fS2 ! D1aA2bD2; A2 ! aA2b; A2 ! abg

� � �
� � �
� � �

Pn = fSn ! Dn�1aAnb; An ! aAnb; An ! abg
M = f#Di$Di# : i = 1; 2; � � � ; n+ 1g
A useful sample derivation is as follows:
(S1; S2; � � � ; Sn)) (aA1bD1; D1aA2bD2; � � � ; Dn�1aAnb)

)+ (ap�1A1bp�1D1; D1ap�1A2bp�1D2; � � � ; Dn�1ap�1Anbp�1)
) (apbpjD1; D1japbpD2; � � � ; Dn�1apbp)
) (apbpapbpjD2; ; D2japbpD3 � � � ; Dn�1apbp)
� � �
� � �
� � �
) (apbpapbp � � � apbp; D21; D22; � � � ; D2n�1)

Therefore we obtain I<2;3>ssgsLn(CF ) = T<2;3>ssgsLn(CF ) = f(apbp)nj p � 2g [
f�g.

We can see that L(�) is not in Y<2;3>ssgsLn�1(CF ). In fact in any component we
can generate with CF rules only strings of the form anbn pre�xed with a nonterminal
or su�xed with a nonterminal or both but not strings of the form anbncn. When
we splice strings from two components we get strings whose structure is similar to
anbncndn but we cannot get strings with structure similar to anbncndnenfn with two
components. Continuing this argument, we �nd then L(�) cannot be generated by
a Y<2;3>ssgs language with n� 1 components. 2

Theorem 4 Y<2;3>ssgsL2(REG)� CF 6= �
Proof. Consider the following < 2; 3 >-simple splicing grammar system

� = (fS1; S2; A;B;C;Dg; fa; b; c; dg; (S1; P1); (S2; P2);M)
P1 = fS1 ! aS1; S1 ! eA;X ! cX;X ! dD;C ! cg
P2 = fS2 ! dB;B ! bB;B ! eX;A! cA;A! cC;D ! dDg
M = f#e$e#;#d$d#g
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A derivation in � runs as follows.
(S1; S2)! (aS1; dB)

)+ (an+1S1; dbnB)
) (an+1jeA; dbnejX)
) (an+1X; dbne2A)
)+ (an+1cmX; dbne2cmA)
) (an+1cmjdD; djbne2cm+1C)
) (an+1cmbne2cm+1C; d2D)
) (an+1cmbne2cm+2; d3D)

Clearly, this language is Context-sensitive but not CF. This proves the result. 2

In [2], in the conclusion, the question of whether the hierarchy Y sgsLn(REG) �
Y sgsLn+1(REG),Y 2 fI; Tg, is in�nite, is left open. But the splicing operation is
not restricted to be simple. Here we prove that the hierarchy is indeed in�nite.
Theorem 5 REG = Y sgsL1(REG) � Y sgsL2(REG) �

� � � � Y sgsLn(REG) � � � �
Proof. We consider the following splicing grammar system. Let

� = (fS1; � � � ; Sn; A1; � � � ; Ang; fa; bg; (S1; P1); (S2; P2); � � � ; (Sn; Pn);M)
where for i < n and i odd,
Pi = fSi ! ciAi; Ai ! aAi; Ai ! aDi+1g
and for i < n and i even,
Pi = fSi ! ciAi; Ai ! bAi; Ai ! bDi+1g
For i = n
Pn = fSn ! cnAn; An ! aAn; An ! ag if n is odd
Pn = fSn ! cnAn; An ! bAn; An ! bg if n is even
M = f#Di$ci# j 1 � i � ng
We prove the result for n even. Similar arguments hold when n is odd
For n even, the derivation is as follows
(S1; S2; � � � ; Sn)) (c1A1; c2A2; � � � ; cnAn)

)+ (c1am�1A1; c2bm�1A2; � � � ; cnbm�1An)
) (c1amjD2; c2jbmD3; � � � ; cnbm)
) (c1ambmjD2; c2D2; c3jamD3; � � � ; cnbm)
� � �
� � �
� � �
) (c1ambm � � � ambm; c2D2; c3D3; � � � ; cnDn)

Therefore we obtain for n = 2; 4; 6; :::
Y sgsLn(REG) = fc1(ambm)n=2jm � 1g
and for n = 1; 3; 5; :::
Y sgsLn(REG) = fc1am(bmam)(n�1)=2jm � 1g.
It can be seen that L(�) is not in Y sgsLn�1(REG) as it cannot be generated by
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a Y sgs language with n � 1 components. In fact with only one component strings
of the form ciam or cibm can only be generated. But when there are two compo-
nents simple splicing of strings generated in the components gives strings of the
form ciambm. Extending this idea it is seen that the language speci�ed needs n
components. 2

4 Conclusion
Using simple splicing rules, we have examined the power of splicing grammar systems
with regular and CF component grammars. It remains to be seen how does this
compare with parallel communicating grammar systems.
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Modelling Grammar Systems by Tissue P Systems
Working in the Sequential Mode

Rudolf Freund, Marion Oswald
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Abstract
We consider tissue P systems where rules are applied when moving througha channel from one cell to another one. In a very general manner (i.e., work-ing on arbitrary objects as strings, arrays, graphs, etc.), these tissue P systemsequipped with the sequential derivation mode allow for the representation of hy-brid co-operating grammar systems using the classic basic derivation modes �; tand � k;= k;� k, for k � 1; as well as the internally hybrid modes (� k^ � `) ;for k; ` 2 N; k � `; and (t^ � k) ; (t^ = k) ; (t^ � k), for k � 1: Moreover, wealso show how these tissue P systems working in the sequential mode allow forthe simulation of random context grammars, too.

1 Introduction
For the many variants of P systems (introduced as membrane systems in [24]) in-vestigated so far we refer the reader to [25] for a comprehensive overview as wellas [28] for the actual state of research. We assume the reader to be familiar withthe original de�nitions and explanations given for these models, as going into moredetails would go far beyond the scope of an introductory article to a new �eld ofapplying the ideas of membrane computing as this one is intended to be. In thispaper, we consider a general model of tissue P systems that will allow us to modelhybrid co-operating grammar systems when working in the sequential derivationmode, which result will be established for arbitrary object types, e.g., strings andarrays.Co-operating distributed (CD) grammar systems �rst were introduced in [20]with motivations related to two-level grammars. Later, grammar systems became avivid area of research after relating CD grammar systems with Arti�cial Intelligence(AI) notions [2], such as multi-agent systems or blackboard models for problemsolving [22]. A �rst survey on grammar systems is given in [4]. The main idea of(hybrid) CD grammar systems is the co-operation of several components (\agents")on the same sentential form; non-deterministically, one component takes the senten-tial form, performs some derivation steps, and according to some speci�c stoppingcondition returns it back such that another component may continue the work.

Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varjú and Gy. Vaszil,
MTA SZTAKI, Budapest, pages 179 - 199, 2004.

179



There are several ways to formalize this collaboration. The following (derivation)modes have thoroughly been investigated in the literature:
� =)�k: the component which takes the sentential form in order to work on ithas to perform at most k derivation steps.
� =)=k: the component : : : has to perform exactly k derivation steps.
� =)�k: the component : : : has to perform at least k derivation steps.
� =)t: the component : : : has to perform as many derivation steps as possible.
� =)�: the component : : : can perform arbitrarily many derivation steps.

In CD grammar systems, all components work according to the same mode. Inhybrid CD grammar systems introduced by Mitrana and P�aun in [21, 23], di�erentcomponents may work in di�erent modes. In a series of papers on hybrid modes inCD grammar systems, the internally hybrid modes (� k^ � `) ; for k; ` 2 N; k �`; and (t^ � k) ; (t^ = k) ; (t^ � k), for k � 1; were considered: [7] introducedhybrid modes in CD array grammar systems as a natural speci�cation tool for arraylanguages, [15] investigated accepting CD grammar systems with hybrid modes,while [14] as well as [1] stressed descriptional complexity issues. In [12], results onthe combination of the modes t and � k were presented, in [13], results on thecombination of the modes t with the modes � k and = k were presented. Mostparts of [12, 13, 14] are contained in the report [9].The internally hybrid modes informally can be described as follows:
� =)(�k1^�k2): the component which takes the sentential form in order to workon it has to perform at least k1 and at most k2 derivation steps.
� =)(t^�k): the component : : : has to perform as many derivation steps aspossible, and at least k steps.
� =)(t^=k): the component : : : has to perform as many derivation steps aspossible, and exactly k steps.
� =)(t^�k): the component : : : has to perform as many derivation steps aspossible, and at most k steps.

Combinations (� ^ f) for f 2 f�; tg[f� k;= k;� k; j k 2 N g are only an alternativenotation of the original mode f .The rest of the paper is organized as follows: In the next section, we startwith introducing a general model for (sequential) grammars as well as for random-context grammars and ordered grammars, and then we recall some notions for stringgrammars and array grammars in the general setting used in this paper. In the thirdsection, we de�ne a general model of grammar systems covering the variants of hybridco-operating distributed grammar systems considered above. In the fourth section,we de�ne the general model of tissue P systems with channel rules to be used in thefollowing section for modelling hybrid co-operating distributed grammar systems of
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arbitrary types. In the sixth section, we show how random-context grammars canbe simulated by tissue P systems with channel rules. Some results for the array andthe string case that can be derived from the general results proved in the precedingsections are recalled in the seventh section. An outlook to future research concludesthe paper.
2 Preliminary De�nitions
The set of integers is denoted by Z; the set of non-negative integers byN0 and the setof positive integers byN. An alphabet V is a �nite non-empty set of abstract symbols.Given V , the free monoid generated by V under the operation of concatenation isdenoted by V �; the elements of V � are called strings, and the empty string is denotedby �; V � n f�g is denoted by V +: For more details on formal language theory werefer to [6] and [30].
2.1 Grammar schemes
In the following, we shall deal with various types of objects and grammars, hence,we �rst de�ne a general model of a grammar scheme:A grammar scheme G is a construct

(O;OT ; P;=)G) where
� O is the set of objects;
� OT � O is the set of terminal objects;
� P is a �nite set of productions;
� =)G� O�O is the derivation relation of G induced by the productions in P .

The derivation relation =)G is obtained as the union of all =)p� O � O; i.e.,=)G:= [p2P =)p; where each =)p is a relation which we assume at least to berecursive. The reexive and transitive closure of =)G is denoted by �=)G.In the following we shall consider di�erent types of grammar schemes dependingon the components of G; especially with respect to di�erent types of productions.Based on grammar schemes of speci�c types, we now de�ne the notion of a(sequential) grammar.Let G = (O;OT ; P;=)G) be a grammar scheme. Then the pair (G;w) withw 2 O is called a grammar, w is the axiom (start object).The language generated by (G;w) is the set of all terminal objects (we alsoassume v 2 OT to be decidable for every v 2 O) derivable from the axiom, i.e.,
L (G;w) = nv 2 OT j w �=)G vo :

The family of languages generated by grammars of type X is denoted by L (X) :In many cases, the typeX of the grammar scheme allows for the following feature:
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A type X of a grammar scheme is called a type with unit rules if for everygrammar scheme G = (O;OT ; P;=)G) of type X there exists a grammar schemeG0 = (O;OT ; P [ P+;=)G0) of type X such that
� P+ = fp+ j p 2 Pg,
� for all x 2 O; p is applicable to x if and only if p+ is applicable to x, and
� for all x 2 O; the application of p+ to x - in case p+ is applicable to x - yieldsx back again.

2.2 Random-context grammars and ordered grammars
Let G = (O;OT ; P;=)G) be a grammar scheme of type X.A random-context grammar scheme GRC of type X is a construct

(G;P 0; p; f;=)GRC )
where

� P 0 is a subset of P ;
� p is a function assigning a set of permitting productions from P to each pro-duction in P 0;
� f is a function assigning a set of forbidden productions from P to each pro-duction in P 0;
� =)GRC is the derivation relation assigned to GRC such that for any x; y 2 O;x =)GRC y if and only if x =) y by some q from P 0 and, moreover, at leastone production from p(q) is applicable to x as well as no production from f(q)is applicable to x:

A random-context grammar is a pair (GRC ; w), where w 2 O is the axiom. Arandom-context grammar (scheme) is called a grammar (scheme) with permittingcontext if f(q) = ; for every q 2 P 0 and a grammar (scheme) with forbidden contextif p(q) = ; for every q 2 P 0: The families of languages generated by random-contextgrammars, by grammars with permitting context, and by grammars with forbiddencontext of type X are denoted by L (X-RC) ; L (X-pC) ; and L (X-fC), respectively.Obviously, for any arbitrary type X; L (X-yC) � L (X-RC) for y 2 ff; pg :An ordered grammar scheme GO of type X is a construct
((O;OT ; P;=)G) ; <;=)GO)

where < is a partial order relation on the productions in P and =)GO is the deriva-tion relation assigned to GO such that for any x; y 2 O; x =)GO y if and only ifx =) y by some q from P and, moreover, no production r with r > q is applicableto x:An ordered grammar is a pair (GO; w), where w 2 O is the axiom. The familyof languages generated by ordered grammars is denoted by L (X-O) :
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In the general setting used in this paper, the model of ordered grammars is verymuch related with the model of grammars with forbidden context:
Theorem 2.1. For every ordered grammar GO of type X we can construct agrammar with forbidden context GfC of type X such that L (GO) = L (GfC) ; i.e.,L (X-O) � L (X-fC) for any arbitrary type X:
Proof. Let G = (O;OT ; P;=)G) be a grammar scheme of type X and let(G;<;=)GO) be an ordered grammar of type X: Then we construct the grammarwith forbidden context �G;P; f;=)GfC� of type X by de�ning

f (q) := fp j p > qg
for all q 2 P: Obviously, by this construction L (GO) = L (GfC) : 2
The reverse inclusion only holds true for grammars with forbidden context that arenot using additional rules in the sets of forbidden rules:
Theorem 2.2. For every grammar with forbidden context GfC of type X with

�(O;OT ; P;=)G) ; P; f;=)GfC�
we can construct an ordered grammar GO of type X such that L (GfC) = L (GO) :
Proof. We construct the ordered grammar ((O;OT ; P;=)G) ; <;=)GO) by de�ning,for all q 2 P;

p > q if and only if p 2 f (q) :
Obviously, by this construction L (GfC) = L (GO) : 2
2.3 String grammars
A string grammar scheme usually is de�ned as a construct

(N;T; P ) where
� N is the alphabet of non-terminal symbols;
� T is the set of terminal symbols, N \ T = ;;
� P is a �nite set of productions of the form u ! v with u 2 V + and v 2 V �;where V := N [ T .

In the general notion of the preceding subsection, a string grammar scheme G nowis represented as
((V [ T )� ; T �; P;=)G)
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where the derivation relation for u! v 2 P is de�ned as usual by xuy =)u!v xvyfor all x; y 2 V �; thus yielding the well-known derivation relation =)G for the stringgrammar scheme G: A string grammar then is a pair (G;S) where S 2 V �T is thestart symbol.As special types of string grammars we consider string grammars with arbitraryproductions, context-free productions of the form A ! v with A 2 N and v 2 V �;�-free context-free productions of the form A ! v with A 2 N and v 2 V +;(right-)regular productions of the form A ! v with A 2 N and v 2 TV [ T;the corresponding types of grammars denoted by ENUM; CF; CF��; and REG;thus yielding the families of languages L (ENUM), i.e., the family of recursivelyenumerable languages, as well as L (CF ) ; L (CF��) ; and L (REG) ; i.e., the familiesof context-free, �-free context-free, and regular languages, respectively. Observe thatthe types ENUM; CF; and CF�� are types with unit rules (of the form w ! w forw ! v 2 P ); whereas the type REG (in the de�nition given above) is not a typewith unit rules (therefore, we often allow regular productions to be of the generalform A! v with A 2 N and v 2 T �V [ T �):
2.4 Arrays and array grammars
In this subsection we introduce the basic notions for n-dimensional arrays and arraygrammar schemes and array grammars (e.g., see [16], [29], [31]).Let d 2 N. Then a d-dimensional array A over an alphabet V is a function A :Zd ! V [f#g, where shape (A) = fv 2W j A (v) 6= #g is �nite and # =2 V is calledthe background or blank-symbol. We usually write A = f(v;A (v)) j v 2 shape (A)g.The set of all d-dimensional arrays over V is denoted by V �d. The empty arrayin V �d with empty shape is denoted by �d. Moreover, we de�ne V +d = V �n n f�dg.Let v 2 Zd; v = (v1; : : : ; vd) : The translation �v : Zd ! Zd is de�ned by�v (w) = w + v for all w 2 Zd, and for any array A 2 V �d we de�ne �v (A), thecorresponding d-dimensional array translated by v, by (�v (A)) (w) = A (w � v) forall w 2 Zd: The vector (0; : : : ; 0) 2 Zd is denoted by 
d.A d-dimensional array production p over V is a triple (W;A1;A2) ; where W �Zd is a �nite set and A1 and A2 are mappings from W to V [ f#g such thatshape (A1) 6= ;. We say that the array B2 2 V �d is directly derivable from the arrayB1 2 V �d by the d-dimensional array production (W;A1;A2); i.e., B1 =)p B2, if andonly if there exists a vector v 2 Zd such that B1 (w) = B2 (w) for all w 2 Zd n �v (W )as well as B1 (w) = A1 (��v (w)) and B2 (w) = A2 (��v (w)) for all w 2 �v (W ), i.e.,the sub-array of B1 corresponding to A1 is replaced by A2, thus yielding B2:A d-dimensional array grammar scheme is a grammar

�(N [ T )�d ; T �d; P;=)G� where
� N is the alphabet of non-terminal symbols;
� T is the set of terminal symbols, N \ T = ;;
� P is a �nite set of array productions over V , V := N [ T ;
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� =)G is the derivation relation induced by the array productions in P accordingto the explanations given above, i.e., for arbitrary B1;B2 2 V �d; B1 =)G B2,if and only if there exists a d-dimensional array production p = (W;A1;A2) inP such that B1 =)p B2.
A d-dimensional array production p = (W;A1;A2) in P is called

� #-context-free, if shape (A1) = f
dg; a d-dimensional #-context-free arrayproduction p = (W;A1;A2) in the following will be represented in the formA1 (
d)! A2 (
d) f(v;A2 (v)) j v 2 Ug with U =W � f
dg :
� context-free, if it is #-context-free and shape (A1) � shape (A2);
� strictly context-free, if it is context-free and shape (A2) =W ;
� regular, if it is strictly context-free and of one of the following forms:

1. A! b; A 2 N; b 2 T ;
2. A! b f(v; C)g ; A; C 2 N; b 2 T; and v is a vector with norm 1:

A d-dimensional #-context-free array production p = (W;A1;A2) in the followingwill be represented in the form A1 (
d) ! A2 (
d) f(v;A2 (v)) j v 2 Ug with U =W � f
dg :A d-dimensional array grammar is a pair (G;w) grammar where G is a d-di-mensional array grammar scheme and f(v0; S)g with S 2 N and v0 2 Zd is the startarray (axiom).An array grammar (scheme) is said to be of type d-ENUMA, d-#-CFA, d-CFA, d-SCFA, d-REGA, respectively, if every array production in P is of the cor-responding type, i.e., a d-dimensional arbitrary, #-context-free, context-free, strictlycontext-free or regular array production, respectively. The corresponding families ofd-dimensional array languages of type X are denoted by L (X). L (d-ENUMA) isthe family of recursively enumerable d-dimensional array languages. Observe thatonly the types d-ENUMA, d-#-CFA, and d-CFA are types with unit rules.
3 A General Model for Grammar Systems
In this section we de�ne a general model of grammar systems covering the variantsof hybrid co-operating distributed grammar systems considered in this paper.Let

G = (O;OT ; P;=)G)
be a grammar scheme of arbitrary type X. A hybrid co-operating distributed gram-mar scheme GHCD of type X is a construct�G;P1; :::; Pn;=)(f1;:::;fn)GHCD

� where
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predicate de�nitionQ(= k;m; i; y) m = kQ(� k;m; i; y) m � kQ(� k;m; i; y) m � kQ(�;m; i; y) m � 0Q(t;m; i; y) :9z(y )i z)Q((f1 ^ f2);m; i; y) Q(f1;m; i; y) ^Q(f2;m; i; y)
Table 1: De�nition of predicate Q for k 2 N and f1; f2 2 B

� Pi � P; 1 � i � n; n � 1; are tables of productions;
� =)(f1;:::;fn)GHCD is the derivation relation for GHCD; which is de�ned as follows:
For two objects x; y 2 O de�ne x =)i y if and only if y can be derivedfrom x by applying a production from Pi according to the derivation re-lation =)G; x m=)i y stands for a derivation in m; m � 0; such deriva-tion steps. Now de�ne the classic basic (derivation) modesB = f �; t g [f� k;= k;� k j k 2 N g and let D = B [ f (� k^ � `) j k; ` 2 N; k � ` g [f (t^ � k); (t^ = k); (t^ � k) j k 2 N g : For f 2 D, we �rst de�ne a predi-cate Q (see Table 1) and then the relation =)fi by x =)fi y if and only if9m � 0 : (x m=)i y ^ Q(f;m; i; y)): For two arbitrary objects x; y 2 O; nowx =)(f1;:::;fn)GHCD y if and only if for some i; 1 � i � n; x =)fii y:

A hybrid co-operating distributed grammar system GHCD (HCD grammar system)of type X is a pair (GHCD; w) where w 2 O is the axiom. The language generatedby a HCD grammar system is de�ned as:
L (GHCD) := nu 2 OT j w =)fi1i1 w1 : : : =)fimim wm = u

1 � ij � n; 1 � j � m;m � 1g
If F � D, then the family of languages generated by HCD grammar systems of typeX with degree at most n, each component working in one of the modes containedin F , is denoted by L (HCDn; X; F ). In a similar way, we write L (HCD�; X; F )when the number of components is not restricted. If F is a singleton ffg, we simplywrite L (HCDn; X; f), where n 2 N [ f�g; in that case, the HCD grammar systemis called a CD grammar system, and we also write Lf (G) instead of L (G) to denotethe language generated by the CD grammar system GCD in the mode f .Observe that in the string case usually a hybrid co-operating distributed gram-mar system GHCD = �(V �; T �; P;=)G) ; P1; :::; Pn;=)(f1;:::;fn)GHCD ; w� is written in theform

(V � T; T; (P1; f1) ; :::; (Pn; fn) ; w)
for some w 2 V � T:
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4 A General Model of Tissue P Systems with Channel
Rules

In this section we de�ne the general model of tissue P systems in which we are goingto represent the di�erent variants of grammar systems considered in this paper; itis based on the model of tissue-like P systems with channel states introduced in [17]and works in the sequential derivation mode (see [18] and [19]).Let
G = (O;OT ; P;=)G)

be a grammar scheme of arbitrary type X. A tissue P system (of degree m � 1)with channel rules (tP system for short) � of type X (�; 0;+) is a construct
�G;m;W; syn; �R(i;j)�(i;j)2syn ; io

� ;
where

� m is the number of cells assumed to be labelled with 1; 2; : : : ;m;
� W � Om arem strings over O representing the initial �nite multisets of objectspresent in the m cells of the system (we here do not consider communicationwith the environment);
� syn � f(i; j) j i; j 2 f1; 2; : : : ;mgg is the set of links (also called synapses orchannels, between two cells);
� R(i;j) is of the form R, +R or �R, where R � P is a �nite set of rules (we saythat R(i;j) is associated with the channel (i; j) 2 syn); syn and �R(i;j)�(i;j)2synrepresent the connection graph of �;
� io 2 f1; 2; : : : ;mg is the output cell.

The computation starts with the con�guration speci�ed by W . In each time unit,a computation step takes place; in the sequential derivation mode (=)sequ� ) we �rstchoose a synapse (i; j) such that,
R if R(i;j) = R and the application of a rule from R applied to some object x in celli yields y; then x is removed from cell i and y is added in cell j; or
+R if R(i;j) = +R and if each rule from R can be applied to some object x in celli; then this object x can move from cell i to cell j remaining unchanged, or
�R if R(i;j) = �R and if no rule from R can be applied to x; then this object x canmove from cell i to cell j remaining unchanged.
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Observe that we also allow R = ;; i.e., a transition via �; is always possible (and atransition via +; is never possible and therefore makes no sense). The reexive andtransitive closure of the derivation relation =)sequ� is denoted by �=)sequ� . If none ofthe variants of a derivation step described above is possible for any of the synapses,then the derivation stops (halts), yet in contrast to many other variants of (tissue)P systems we do not only consider terminal objects in a halting computation asresults, instead the results of a computation are described by the terminal objectsfrom OT present in cell io at any step during an arbitrary computation, i.e., thelanguage generated by � in the sequential derivation mode is de�ned as
L (�; sequ) = nu 2 OT jW �=)f� U; u = pri0 (U)o ;

the con�guration of � can be described by a vector whose components are thecontents of all m cells i; pri is a projection yielding the contents of cell i. Thefamily of languages generated by tP systems of type X (�; 0;+) is denoted byL (tP;X (�; 0;+)) :If no synapse R(i;j) 2 syn in � = �G;m;W; syn; (R(i;j))(i;j)2syn; io� is of theform +R; then we call � a tP system of type X (�; 0) ; if no synapse R(i;j) 2 synin � is of the form �R; then we call � a tP system of type X (0;+) ; and if allsynapses are of the form R only, then we call � a tP system of type X (0) : Thefamilies of languages generated by tP systems of type X (�; 0) ; X (+; 0) ; and X (0)are denoted by L (tP;X (�; 0)) ; L (tP;X (0;+)) ; and L (tP;X (0)) ; respectively.
5 Tissue P Systems and Grammar Systems
In this section we give a purely structural proof for the main result saying thatgrammar systems of arbitrary type can be modelled by tissue P systems of the sametype working in the sequential derivation mode.
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Figure 1: �-mode, = 1-mode, � 1-mode, � k-mode
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	P�

Figure 2: �-mode in extended variant
Theorem 5.1. For every HCD grammar system GHCD of type X we can constructa tP system of type X (�; 0) working in the sequential derivation mode such that
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L (GHCD) = L (�; sequ) ; i.e., L (HCD�; X; F ) � L (tP;X (�; 0)) for any arbitrarynon-empty set of derivation modes F:
Proof (sketch). Let G = (O;OT ; P;=)G) be a grammar scheme of type X and let

GHCD = �G;P1; :::; Pn;=)(f1;:::;fn)GHCD ; w�
be a HCD grammar system of type X. Then we construct the corresponding tPsystem

� = (G;m;W; syn; (R(i;j))(i;j)2syn; io)
as follows:We take cell 1 as starting point of our derivations as well as the output cell i0;too, i.e.

� W = (w; ;; :::; ;) and
� i0 = 1:
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Figure 3: = k-mode

��
��

-

��
��

- ::: -

��
���

	
� P

?

1 2 k
P P P

P

Figure 4: � k-mode
For each pair (Pi; fi) ; 1 � i � n; we now construct a number of cells togetherwith the corresponding synapses; instead of giving formal descriptions, we describethe structure of the necessary cells and their synapses by illustrative �gures; observethat the \starting point" of all simulations is cell 1.The derivation modes �; = 1; � 1; � 1; and even � k for k � 2 have the samee�ect and can be simulated in � as described in Figure 1, i.e., for a pair (P; f) withf 2 f�;= 1;� 1g[f� k j k � 1g we only need a simple loop and only one additionalcell (as a technical detail we mention that we need to go back with a synapse havingassigned �; because each synapse may carry only one �R or R; we could avoid thisby allowing �nite sets of such objects assigned to a synapse, which would yield theeven simpler solution depicted in Figure 2.
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Figure 5: t-mode
For a pair (P; f) with f 2 f= k j k � 2g we need a simple loop with k � 1additional cells and the structure as depicted in Figure 3.For a pair (P; f) with f 2 f� k j k � 2g we again need a simple loop with k � 1additional cells as well as an additional loop at cell k and the structure as depictedin Figure 4.A pair (P; t) with the t-mode needs only one additional cell, but a nontrivialsynapse with �P as depicted in Figure 5.
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Figure 6: (� k^ � `)-mode, k < l
Suitable simulations of the internally hybrid modes (� k^ � `) ; for k; ` 2 N; k <` (observe that for k = l the derivation mode (� k^ � `) coincides with the mode= k) and (t^ � k) ; (t^ = k) ; (t^ � k), for k � 1; are illustrated in Figures 6, 7, 8,and 9.
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Figure 7: (t^ � k)-mode
In a depictive way, all the �gures explained above show how the tP system � caneasily be constructed from the given HCD grammar system GHCD of type X. More-over, from the given construction we immediately infer L (GHCD) = L (�; sequ) ;again we should like to stress that this result holds true for any arbitrary type X:2
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Figure 8: (t^ = k)-mode
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Figure 9: (t^ � k)-mode
Now let X be a type with unit rules. Then except for the t-mode and the hybridmodes containing the t-mode, tP systems of type X (0) are su�cient:

Corollary 5.2. For every HCD grammar system GHCD
GHCD = �(O;OT ; P;=)G) ; P1; :::; Pn;=)(f1;:::;fn)GHCD ; w�

of a type X with unit rules such that ff1; :::; fng is a subset of
f�g [ f� k;= k;� k j k � 1g [ f(� k^ � `) j k; ` 2 N; k � `g

we can construct a tP system of type X (0) working in the sequential derivation modesuch that L (GHCD) = L (�; sequ) ; i.e.,
L (HCD�; X; F ) � L (tP;X (0))

for any arbitrary non-empty set of derivation modes
F � f�g [ f� k;= k;� k j k � 1g [ f(� k^ � `) j k; ` 2 N; k � `g :
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Figure 10: non-t-modes with unit rules
Proof (sketch). In the construction of the tP system in the proof of Theorem 5.1,the �-mode now can be simulated as shown in Figure 10, where P+ is the set of unitrules corresponding to the set of rules P . 2
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For more restricted sets of derivation modes, the result of the preceding corollaryeven holds for arbitrary types X; moreover, we only need one synapse as shown inFigure 11:

��
��

1
�
	R1;1�

Figure 11: �-mode with unit rules
Corollary 5.3. For every HCD grammar system GHCD

GHCD = �(O;OT ; P;=)G) ; P1; :::; Pn;=)(f1;:::;fn)GHCD ; w�
of an arbitrary type X such that

ff1; :::; fng � f�;= 1;� 1g [ f� k j k � 1g
we can construct the tP system

� = �(O;OT ; P;=)G) ; 1;W; f1g ; R(1;1); 1�
of type X (0) with R(1;1) = [ni=1Pi working in the sequential derivation mode suchthat L (GHCD) = L (�; sequ); hence,

L (HCD�; X; F ) = L (X) � L (tP;X (0))
for any arbitrary non-empty set of derivation modes

F � f�;= 1;� 1g [ f� k j k � 1g :
For the inverse inclusion relations we just mention that the tP systems investigatedin this section exactly characterize the corresponding variants of HCD grammarsystems when having the speci�c connection graphs, i.e., the structures of synapsesand their connections, as described above, the other cells always being arrangedaround the output cell, which also carries the only input object.
6 Tissue P Systems and Random-Context Grammars
To prove our next result in the general case, we need channel rules R(i;j) of the form+R (which allows us to check for permitting context or to check for competence asthis is called by J�urgen Dassow in [5]).
Theorem 6.1. For every random-context grammar GRC of type X we can constructa tP system � of type X (�; 0;+) working in the sequential derivation mode suchthat L(GRC) = L(�; sequ), i.e., L (X-RC) � L (tP;X (�; 0;+)) :
Proof. Let G = (O;OT ; P;=)G) be a grammar scheme of type X and let
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GRC = (G;P 0; p; f;=)GRC )
be a random-context grammar of type X with P 0 = fq1; :::; qng : Then we constructthe corresponding tP system

� = (G; 2n+ 1;W; syn; (R(i;j))(i;j)2syn; 1)
by using the simulation described in Figure 12 for every production qi in P 0, i.e.:

� syn = f(1; i+ 1) ; (i+ 1; 2i+ 1) ; (2i+ 1; 1) j 1 � i � ng ;
� R(1;i+1) = +p (qi) ; 1 � i � n;
� R(i+1;2i+1) = �f (qi) ; 1 � i � n;
� R(2i+1;1) = fqig ; 1 � i � n:
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��

-

��
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-

��
��?

1 i+ 1 2i+ 1
+p(qi) �f(qi)

fqig

Figure 12: � simulating GRC
Observe that even in case f (qi) = ; the simulation still works correctly. In thecase p (qi) = ; we have to omit one cell and the channel rule +p (qi) (see Figur 13);another possibility is to set p (qi) := fqig instead, which is always possible, too.Obviously, by this construction L(GRC) = L(�; sequ); again we should like to stressthat this result holds true for any arbitrary type X: 2
The following corollaries for grammars with forbidden context GfC and grammarswith permitting context GpC are immediate consequences of the construction givenin the proof of the preceding theorem:
Corollary 6.2. For any arbitrary type X; L (X-fC) � L (tP;X (�; 0)) :
Proof. The simulation now works as depicted in Figure 13, i.e., we construct thecorresponding tP system

� = (G;n+ 1;W; syn; (R(i;j))(i;j)2syn; 1)
with

� syn = f(1; i+ 1) ; (i+ 1; 1) j 1 � i � ng ;
� R(1;i+1) = �f (qi) ; 1 � i � n;
� R(i+1;1) = fqig ; 1 � i � n: 2
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Figure 13: � simulating GfC
Corollary 6.3. For any arbitrary type X; L (X-pC) � L (tP;X (0;+)) :
Proof. The simulation now works as depicted in Figure 14, i.e., we construct thecorresponding tP system

� = (G;n+ 1;W; syn; (R(i;j))(i;j)2syn; 1)
with
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fqig

Figure 14: � simulating GpC
� syn = f(1; i+ 1) ; (i+ 1; 1) j 1 � i � ng ;
� R(1;i+1) = +p (qi) ; 1 � i � n;
� R(i+1;1) = fqig ; 1 � i � n:

As a special technical proof detail we mention that without loss of generality wemay assume qi 2 p (qi) : 2
If the underlying type X is a type with unit rules, we do not need channel rulesR(i;j) of the form +R as is shown in Figure 15 and Figure 16 - observe that in caseof p (qi) = ; we have to take p (qi)+ := fqig+ ( = fqi+g ); hence, we obtain thefollowing results:

��
��

-

��
��

-

��
��?

1 i+ 1 2i+ 1
p(qi)+ �f(qi)

fqig

Figure 15: � simulating GRC with unit rules
Corollary 6.4. For any type X with unit rules, L (X-RC) � L (tP;X (�; 0)) :
Corollary 6.5. For any type X with unit rules, L (X-pC) � L (tP;X (0)) :
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Figure 16: � simulating GpC with unit rules
7 Tissue P Systems Working on Strings and Arrays
Based on the general result presented in the preceding section, we can immediatelyinfer the corresponding results for the types of string and array grammars de�nedin the second section.For example, in the string case we cite the following two results from Theorem 19and Corollary 21 in [13]:
Corollary 7.1. If ; 6= F � f= k;� k; (� k^ � `); (t^ � k) j 2 � k � ` g, then

L (HCD�; CF; F [ f(t^ = 1)g) = L (ENUM) :
Corollary 7.2. Let ; 6= F � f�; tg [ f� k;= k;� k; (t^ � k) j k � 1 g [f (� k^ � `) j k; ` � 1; k � ` g. Then, for every m � 2,

L (HCD�; CF; F [ f(t^ = m)g) = L (ENUM) :
Obviously, from these results we immediately obtain the following one due to The-orem 5.1:
Corollary 7.3. For every recursively enumerable string language L we can con-struct a tP system � of type CF such that L (�; sequ) = L; i.e.,

L (ENUM) = L (tP (�; 0) ; CF ) :
The structure of the connection graph of the tP system � in Corollary 7.3 dependson the set of derivation modes F we take according to Corollary 7.1 or Corollary 7.2.Moreover, from Corollary 5.3 we immediately obtain the following result:
Corollary 7.4. Let ; 6= F � f�;= 1;� 1g [ f� k j k � 1 g: Then

L (HCD�; X; F ) = L (X)
for X 2 fENUM;CF;CF��g [ fd-ENUMA; d-#-CFA; d-CFA j d � 1g :
Several other results proved in the preceding sections carry over to the case of arraygrammar systems of various types (e.g., see [3]), too. Following the results elaboratedin [8] and [11], we even get applications of tP systems of types 2-(#-)CFA in thearea of character recognition, e.g., see [10].A generalization of the two-dimensional case to arbitrary dimensions of a resultproved in [16] shows that, for any arbitrary dimension d � 1;
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L (d-ENUMA) = L (d-#-CFA-O);
according to Theorem 2.1,

L (d-#-CFA-O) � L (d-#-CFA-fC) ;
due to Corollary 6.2,

L (d-#-CFA-fC) � L (tP; d-#-CFA (�; 0)) :
In sum, we get the following result:
Corollary 7.5. For any arbitrary dimension d � 1 ;

L (d-ENUMA) = L (d-#-CFA-O) =
L (d-#-CFA-fC) = L (tP; d-#-CFA (�; 0)) :

Without proof we should like to mention that for d 2 f1; 2; 3g we could even showthat
L (d-ENUMA) = L (tP; d-#-CFA (0)) :

8 Summary and Future Research
We have shown that hybrid co-operating distributed grammar systems of arbitrarytypes equipped with arbitrary classic basic derivation modes as well as internallyhybrid derivation modes can be simulated by tissue P systems with channel rulesof the corresponding types when working in the sequential derivation mode andwith only speci�c structures of the underlying connection graph. Moreover, we haveshown how random-context grammars can be simulated by tissue P systems, too.This paper has to be seen as a starting point for future research only. Manytechnical details remain for being investigated in a more precise way. Moreover,we have not considered other models of grammar systems, for example, parallelcommunicating grammar systems, as has been done by Gheorghe P�aun, see [26].
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AbstractThe aim of this paper is to show how PC grammar systems and concurrentprograms might be viewed as related models for distributed and cooperatingcomputation. We argue that it is possible to translate a grammar system intoa concurrent program, where one can make use of the Owicki-Gries theory andother tools available in the programming framework. The converse translation isalso possible and this turns out to be useful when we are looking for a grammarsystem able to generate a given language.In order to show this we use the language: Lcd = fanbmcndm j n;m � 1g,called crossed agreement language, one of the basic non-context free construc-tions in natural and arti�cial languages. We prove, using tools from concurrentprogramming theory, that Lcd 2 NPC3(REG) (non-returning PC grammarsystems with regular components) solving an open problem introduced in [2].We also discuss the absence of strategies in the concurrent programmingtheory to prove that Lcd =2 X2(REG), for X 2 fPC;CPC;NPC;NCPCg, butwe prove this in the grammar system framework.
Keywords: PC grammar systems, multiprogramming, Owicki-Gries theory.

1 Introduction
In the beginning of computation theory, classic computing devices were centralized,that is the computation was accomplished by one central processor. But in modern�This work was possible thanks to the research grant \Programa Nacional para la formaci�on delprofesorado universitario", from the Ministry of Education, Culture and Sports of Spain.
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MTA SZTAKI, Budapest, pages 200 - 211, 2004.

200



computer science distributed computing systems that consist of multiple communi-cating processors play a major role. The reason is illustrated by the advantages ofthis kind of system: e�ciency, fault tolerance, scalability in the relation betweenprice and performance, etc.Since 1960, when the concept of concurrent programming [1] was introduced, ahuge variety of topics related to parallelism and concurrency have been de�ned andinvestigated such as operating systems, machine architectures, communication net-works, circuit design, protocols for communication and synchronization, distributedalgorithms, logics for concurrency, automatic veri�cation and model checking.The same trend was observed in classic formal language and automata theory aswell. In the beginning, grammars and automata were modeling classic computingdevices of one agent or processor, hence a language was generated by one grammaror recognized by one automaton. Inspired by di�erent models of distributed sys-tems in Arti�cial Intelligence, grammar systems theory [3] has been developed as agrammatical theory for distributed and parallel computation. More recently, similarapproaches have been reported for systems of automata [10].A grammar system is a set of grammars, working together, according to a speci-�ed protocol, in order to generate one language. There are many reasons to considersuch a generative mechanism: to model distribution and parallelism, to increase thegenerative power, to decrease the (descriptional) complexity, etc. The crucial el-ement here is the protocol of cooperation. The theory of grammar systems maybe seen as the grammatical theory of cooperation protocols. The central problemsare the functioning of systems under speci�c protocols and the inuence of variousprotocols on various properties of considered systems.One can distinguish two basic classes of grammar systems: sequential and paral-lel. In this paper we consider the second class, called parallel communicating (PC)grammar system [14]. In the next section, we recall the basic de�nitions relatedto this model as well as the basic concepts of concurrent programming and Owicki-Gries theory which is known as the �rst complete programming logic used for formaldevelopment of concurrent programs.Owicki-Gries theory [11] and other strategies of programming were developed tohelp programmers in the analysis and design of multiprograms. In this paper weargue that grammar system theory can bene�t from the tools already developed inthe programming framework. For example, given a grammar system one can provethat it generates a speci�c language by a direct reasoning or one can translate thegrammar system into a multiprogram and prove the same statement by some strate-gies of programming developed in the well known Owicki-Gries theory. Furthermore,we propose another approach to solve problems of the following type: Given a lan-guage �nd a grammar system that generates the given language. The strategy widelyused so far is as follows: �rst one proposes a grammar system and then proves bymeans of language theory that the proposed grammar system generates indeed thegiven language. We give an example of how Owicki-Gries logic of programmingcould guide us in obtaining, simultaneously, the grammar systems that generatesthe given language and a proof that it really generates it. This new approach mightbe of a great bene�t for the grammar systems theory. We apply this strategy for awell-known non-context-free language, namely Lcd = fanbmcndm j n;m � 1g.
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In [2] it was proved that Lcd 2 CPC4(CF ) (see the next section for notations), weimproved this result showing that Lcd 2 NPC5(REG), providing thus a solution toan open problem mentioned in that work. During the workshop, G. P�aun proposedus a more economical solution with respect to the number of components of thegrammar system, namely Lcd 2 NPC3(REG), based on a similar strategy. Wegive here, in Section 3, the solution proposed by P�aun. As we shall see in thesame section, this is actually the most economical solution. The strategy consistsin translating the problem of �nding a non-returning, non-centralized PC grammarsystem � with regular components that generates Lcd; into the problem of �ndinga multiprogram P, with three programs Progi, i = 1; 2; 3, running concurrently,which is correct with respect to the speci�cation:
f(w1 = S1) ^ (w2 = S2) ^ (w3 = S3)gPfw1 2 Lcdg:

Then this multiprogram is translated back into a PC grammar system � with threeregular components, the whole behavior of � being similar to that of P. Actually,this means that the language generated by � is included in Lcd but the detailedreasoning presented in the third section allows us to conclude the equality.In this paper we also show that though PC grammar systems theory can bene�tfrom concurrent programming theory to get positive results, the later theory cannotprovide any strategy to deal with negative results of the type: A given languagecannot be generated by any grammar system of a speci�ed type. This kind of problemshas to be attacked in the grammar system framework, with the tools available there.We exemplify this with a proof that Lcd =2 NPC2(REG).
2 Preliminaries
An alphabet is a �nite and nonempty set of symbols. Any sequence of symbols froman alphabet V is called word over V . The set of all words over V is denoted by V �
and the empty word is denoted by �. Further, V + = V n f�g.For all unexplained notions the reader is referred to [15].
2.1 PC Grammar Systems
A PC grammar system of degree n; n � 1; is an (n+ 3)-tuple

� = (N;K; T; (P1; S1); (P2; S2); (P3; S3); ::::; (Pn; Sn)) ;
where:{ N is a nonterminal alphabet,{ T is a terminal alphabet,{ K = fQ1; Q2; :::::; Qng (the sets N;T;K are mutually disjoint),{ Pi is a �nite set of rewriting rules over N [K[T , and Si 2 N; for all 1 � i � n:
Let V� = N[K[T: The sets Pi, 1 � i � n, are called the components of the system,and the elements Q1; Q2; :::::; Qn of K are called query symbols, the index i of Qipoints to the component Pi of �: A component is said to be regular if all its rules
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are right-linear ones. An n-tuple (x1; x2; :::::; xn) with xi 2 V �� for all i; 1 � i � n; iscalled a con�guration of �: A con�guration (x1; x2; :::::; xn) directly yields anothercon�guration (y1; y2; :::::::; yn) if either:
� No query symbols appears in x1; x2; :::::; xn and then we have a componentwisederivation, xi =) yi in each component Pi, 1 � i � n (one rule is used in eachcomponent Pi), except for the case when xi is terminal, xi 2 T �; then xi = yi,or
� Query symbols occur in some xi: Then a communication step is performed:every xi (containing query symbols) is modi�ed by substituting xj for eachoccurrence of a query symbol Qj , providing xj does not contain query symbols.After all words xi have been modi�ed, the component Pj continues its workon the current string (in the non-returning case) or resumes working fromits axiom (in the returning case. The communication has priority over thee�ective rewriting: no rewriting is possible as long as at least one query symbolis present. If some query symbols are not satis�ed at a given moment, thenthey have to be satis�ed as soon as other query symbols have been satis�ed.

If only the �rst component is entitled to introduce query symbols, then the systemis called centralized.The language generated by a PC grammar system � as above is
L(�) = fx 2 T � j (S1; S2; ::::Sn) =) (x; �2; :::::; �n); �i 2 V �� ; 2 � i � ng:

Hence, one starts from the n-tuple of axioms, (S1; S2; ::::Sn), and proceeds by re-peated rewriting and communication steps, until the component P1 produces a ter-minal string. The component P1 is called the master of the system.The class of languages generated by non-centralized, centralized, non-returningnon-centralized, non-returning centralized PC grammar systems with k regular com-ponents is denoted by PCk(REG), CPCk(REG), NPCk(REG), andNCPCk(REG),respectively.
2.2 Programming
2.2.1 Sequential Programming
A sequential program consists in:{ A number of declarations,{ A sequence of instructions or actions.The actions take place one after another. That is, an action does not begin until thepreceding one has ended. Because a sequential program has a sequence of actionswe consider a program as a transformer of states or predicates (see, e.g., [4] and [7]),where a state fPg describes the relationships between the variables of the systemsand their values by the predicate P . Each action S transforms the current state ofthe system, called precondition of S, to the state fQg which is called postcondition.A Hoare triple is a sequence fPg S fQg ; where:
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{ S is an action or instruction,{ fPg is a state representing the precondition of S,{ fQg is a state representing the postcondition of S.Its operational interpretation is as follows: fPg S fQg is a correct Hoare triple ifand only if it is true that each terminating execution of S that starts from a statesatisfying P is guaranteed to end up in a state satisfying Q. More precisely, iffPg S fQg holds and S starts in a state satisfying P , we can be sure that S eitherterminates in a state satisfying Q or does not terminate at all. Consequently, aprogram ought to be annotated in such a way that each action carries a precondition.In other words, from a logical perspective a sequential program may be viewed as asequence of Hoare triples.We can now formulate the concept of local correctness of a predicate Q in aprogram. We distinguish two cases:{ If Q is the initial predicate of the program, it is locally correct whenever it isimplied by the precondition of the program as a whole. Also we may say that Qsatis�es the hypothesis of the problem which is to be solved.{ If Q is preceded by fPg S, i.e. by atomic action S with precondition P , it islocally correct whenever fPg S fQg is a correct Hoare-triple.A sequential program is partially correct if all its predicates are locally correct andthe last predicate satis�es the requirements of the problem solved, provided that ithalts. A sequential program is totally correct if it is partially correct and alwayshalts.
2.2.2 Concurrent Programming
Concurrent execution or multiprogramming means that various sequential programsrun simultaneously. Actions change the state of the multiprogram, so the criticalquestion now is what happens if two overlapping actions change the same state ofthe multiprogram in a conicting manner.Now we are ready to formulate what we call the Core of the Owicki-Griestheory (see [10]). We consider a multiprogram annotated in such a way that theannotation provides a precondition for the multiprogram as a whole and a precon-dition for each action in each individual program. Then, by Owicki and Gries, thisannotation is correct whenever each individual predicate is correct, i.e.:{ locally correct as described above and{ globally correct. Predicate Q in a multiprogramM is globally correct wheneverfor each fPg S, i.e. for each action S with precondition P , taken from a program ofM, fP ^Qg S fQg is a correct Hoare-triple.To understand how powerful is the concurrent programming, and also how hardis to prove global correctness we give this simple example:
Example 1 Consider this program:

P1 : x := y + 1; ax := y2; bx := x� y c
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If we start in an initial state fx = 7 ^ y = 3g, it will deliver fx = 6 ^ y = 3g as a�nal state.
Example 2 Also consider this simple program:

P2 : y := x+ 1; uy := x2; vy := y � x w
When started in the same initial state fx = 7 ^ y = 3g, it yields fx = 7 ^ y = 42g:Now if we run these programs concurrently we will get 20 possible values for x andy. For instance, one possibility is to run the two programs as follows: a; u; b; v; w; c(the letters represent the program lines) starting from the same state and get theoutput fx = �224; y = 240g. While each of the individual programs is of anextreme simplicity, their composition leads to a rather complicated output. Formore examples we refer to [5].Here we can see the analogy: the components of a grammar systems are similarto the simple programs in a multiprogram. We introduce a proof that shows how totake advantage of this analogy.
3 Main Result
Theorem 1 Lcd 2 NPC3(REG)
Proof. We want to �nd a non-returning, non-centralized grammar system � withregular components that generates Lcd. This problem is transformed into the equiv-alent problem of �nding a multiprogram P that behaves like � and is correct withrespect to the speci�cation:

f(w1 = S1) ^ (w2 = S2) ^ :::::: ^ (wn = Sn) j n � 1gPfw1 2 Lcdg:
The problem remained the same, but we changed the tools to solve it: instead ofinduction and analysis by cases available in the framework of grammar systems weused Logic, Owicki-Gries theory and programming strategies from the programmingframework.The strategy used for this proof is one frequently used for the development ofprograms, called re�nement of the problem that consists in:1. First, start with an outline of the solution, which identi�es the basic principleby which the input can be transformed into the output. De�ne pre and post condi-tions for each of the subproblems that are identi�ed as part of the solution for thehole problem.
For our problem we proposed this idea:f(w1 = S1) ^ (w2 = S2) ^ :::::: ^ (wn = Sn)gSubproblem 1: (Rewrite)p; with p � 1f(w1 = S1) ^ ::::::: ^ (wi = apSi) ^ ::::: ^ (wj = cpSj) ^ :::::: ^ (wn = Sn) ^ (p � 1)gSubproblem 2: (Rewrite; Communication)+
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Find a way to stop the productions of a's and c's, through synchronization bycommunication.
f(w1 = arN1)^ :::::::^ (wk = crN2)^ ::::::^ (wn = Sn)^ (r � 1)^ (N1; N2 2 N)g
Subproblem 3: (Rewrite)m; with m � 1� (w1 = arbmQk) ^ ::::::: ^ (wk = crdm�1N3) ^ :::::: ^ (wn = Sn)^(r;m � 1) ^ (Qk 2 K) ^ (N3 2 N)

�

Subproblem 4: Communication�(w1 = arbmcrdm�1N3) ^ (r;m � 1) ^ (N3 2 N)	
Subproblem 5: Rewrite
f(w1 = arbmcrdm) ^ (r;m � 1)g
or equivalently
fw1 2 farbmcrdm ^ r � 1 j m � 1gg
2. Now we make precise the outline indicated, re�ne the subproblems trying to�nd simultaneously the instructions that solve the subproblems and the proof of itslocal correctness. We also discuss the di�culties we can have when proving globalcorrectness.
In our re�nement of subproblems 1, 2, 3, 4 and 5 we proposed three programsProg1, Prog2 and Prog3: These programs forming the multiprogram P , run simulta-neously behaving like a non-returning, non-centralized grammar system with regularproductions and behave locally correctly with respect to the subproblems that wehave identi�ed in the previous step.

In the case of Subproblem 1 we propose this re�nement:
f(w1 = S1) ^ (w2 = S2) ^ (w3 = S3)g
Subproblem 1: Rewriten; with n � 1

Prog1 rewrites n � 1 times S1 to aS1 and then rewrites S1 to aA; Prog2 rewritesn� 1 times S2 to cS2 and then rewrites S2 to cB and Prog3 rewrites n� 1 times S3to S3, until it decides to �nish the production of a's and c's, rewriting S3 to Q2:
To be sure that w2 = cnB when Prog3 introduces Q2; P rog3 should not beable to rewrite S2, and after Prog2 introduces B it should rewrite it for anothernonterminal and not introduce B anymore.
The reason why w1 = anA and w1 6= anS1 is that this is the only possibility thatdo not lead to deadlock, as the states of the next subproblem show.
f(w1 = anA) ^ (w2 = cnB) ^ (w3 = Q2) ^ (n � 1)g

For Subproblem 2 we propose this sequence of rewritings and communications as are�nement:
f(w1 = anA) ^ (w2 = cnB) ^ (w3 = Q2) ^ (n � 1)g
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Subproblem 2

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

Communicationfw1 = anA ^ w2 = cnB ^ w3 = cnB ^ n � 1gRewriteProg1 rewrites A to A'; P rog2 rewrites B to Q1 andProg3 rewrites B to DWe do not allow other possibility thanw1 = anA' ^ w2 = cnQ1 ^ w3 = cnD:To be sure that w1 = anA' after the rewriting step,we need Prog2 to be only de�ned for A'; and after Prog1introduces A' it should rewrite it to anothernonterminal and not introduce A' anymore.fw1 = anA' ^ w2 = cnQ1 ^ w3 = cnD ^ n � 1gCommunicationf(w1 = anA') ^ (w2 = cnanA') ^ (w3 = cnD) ^ (n � 1)g
In the case of Subproblem 3 this is a possible re�nement:f(w1 = anA') ^ (w2 = cnanA') ^ (w3 = cnD) ^ (n � 1)gSubproblem 3: Rewritem+1 ; with m � 1Prog1 rewrites A' to A" and rewrites m� 1 times A" to bA", and then rewrites A"to bQ3; P rog2 always rewrites A' to A' and Prog3 rewrites D to D', then D' to D"and rewrites m� 1 times D" to dD"�(w1 = anbmQ3) ^ (w2 = cnanA') ^ (w3 = cndm�1D") ^ (n;m � 1)	
Re�nement for Subproblem 4 and Subproblem 5 is very simple:�(w1 = anbmQ3) ^ (w2 = cnanA') ^ (w3 = cndm�1D") ^ (n;m � 1)	Subproblem 4: Communication�(w1 = anbmcndm�1D") ^ (w2 = cnanA') ^ (w3 = cndm�1D") ^ (n;m � 1)	Subproblem 5: RewriteProg1 rewrites D" to df(w1 2 fanbmcndm) ^ (n;m � 1)ggEquivalently we proposed a non-returning, non-centralized grammar system � withthree regular components, de�ned in this way:

� = (N;K; fa; b; c; dg; (P1; S1); (P2; S2); (P3; S3))
where:N = fS1; S2; S3; A;A'; A"; B;D;D'; D"gK = fQ1; Q2; Q3gP1 = fS1 �! aS1; S1 �! aA;A �! A'; A'�! A"; A" �! bA"; A" �! bQ3;D" �! dgP2 = fS2 �! cS2; S2 �! cB;B �! Q1; A'�! A'gP3 = fS3 �! S3; S3 �! Q2; B �! D;D �! D'; D'�! D"; D"�! dD"g.

3. The last and hardest step is to prove global correctness. In our case itmeans that we have to show using Owicki-Gries theory that the multiprogram P weconstructed satis�es this speci�cation:
f(w1 = S1) ^ (w2 = S2) ^ (w3 = S3)gPfw1 2 Lcdg:
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Furthermore, P outputs the word anbmcndn for any input formed by the pair ofpositive integers n;m. This is equivalent to prove that L(�) = Lcd:According to how we de�ned Prog1, Prog2 and Prog3, behaving like G1, G2 andG3, respectively, we propose the following state:
8>>>>>>><
>>>>>>>:

2
4 (w1 = anS1 ^ n � 0) _ (w1 = anA ^ n � 1) _ (w1 = anA' ^ n � 1)__(w1 = avbnA" ^ v � 1 ^ n � 0) _ (w1 = avbnQ3 ^ v � 1 ^ n � 1)__(w1 = avbncgdhD" ^ v; n; g � 1 ^ h � 0) _ (w1 = aebfcgdh ^ e; f; g; h � 1)

3
5^

^ � (w2 = cqS2 ^ q � 0) _ (w2 = cqB ^ q � 1)(w2 = cqQ1 ^ q � 1) _ (w2 = cqarA' ^ q; r � 1)
�^

^ � (w3 = S3) _ (w3 = Q2) _ (w3 = cnB ^ n � 1) _ (w3 = cnD ^ n � 1)__(w3 = cnD' ^ n � 1) _ (w3 = cndmD" ^ n � 1 ^m � 0)
�

9>>>>>>>=
>>>>>>>;

But by Owicki-Gries theory of global correctness one can prove that after n rewritings;with n � 1; the only possible combination of values for the sentential forms w1, w2and w3 that do not lead to a deadlock, is the one expressed by the state:
f(w1 = anA) ^ (w2 = cnB) ^ (w3 = Q2) ^ (n � 1)g

And from this state it can be proved that the only valid continuation is the sequenceof rewritings and communications described in step 2 of the re�nement process, thatreaches to the state containing fw1 2 fanbmcndm j n;m �gg 2

We have proved in the framework of programming that it is possible to generate Lcdwith a grammar system with three components with regular productions, working innon-returning, non-centralized way. The strategy we have presented di�ers from thetraditional approach not in complexity, because the number of cases considered in theproofs are the same, but in the way of reasoning about the problem. We state thatOwicki-Gries methodology provides more possibilities for reasoning about problems,in comparison with the strategies used so far in grammar system framework because:- it allows to reason in a forward or data-driven way, as analysis by cases tech-niques, but also in a backward or goal-directed way.The notion of backward reasoning comes from psychology, as it is pointed in [9]where this description of problem solving occurs: We may have a choice betweenstarting with where we wish to end, or starting with where we are at the moment. Inthe �rst instance we start by analyzing the goal. We ask, \Suppose we did achievethe goal, how would things be di�erent- what subproblems would we have solved,etc.?". This in turn would determine the sequence of problems, and we would workback to the beginning. In the second instance we start by analyzing the presentsituation, see the implications of the given conditions and lay-out, and attack thevarious subproblems in a \forward direction".- the division of problems in subproblems is possible because of the theorem: forany Q fPgS0;S1fRg (= fPgS0fQg ^ fQgS1fRg; where P ,R are predicates andS0;S1 are instructions. Also goals and subgoals are discussed in the psychology textmentioned above ([9]): The person perceives in his surrounding goals capable of re-moving his needs and ful�lling his desires... And there is the important phenomenonof emergence of subgoals. The pathways to goals are often perceived as organized
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into a number of subparts, each of which constitutes and intermediate subgoal to beattained on the way to the ultimate goal.These characteristics make Owicki-Gries strategies more related with human wayof reasoning.Now we want to prove a negative result about grammar systems: There is nogrammar system of any type with two regular components that can generate Lcd.In other words, the solution we proposed is the most economical one with respectto the number of components. If we translate this problem into the programmingframework, we have to prove that it is not possible to �nd a multiprogram P withtwo programs P1 and P2 running concurrently, modifying w1 and w2 in a right-linear way, that is correct with respect to this speci�cation: f(w1 = S1) ^ (w2 =S2)gPfw1 2 fanbmcndm j n;m �gg. But unfortunately we have no strategy orresult in the concurrent programming theory that could help us to reasoning aboutthis problem. The only strategies available in this framework are: veri�cation thatallows to prove the correctness of a multiprogram with respect to a speci�cation,and the constructive approach that was exempli�ed in the previous proof. Butthese strategies are useful to get positive results therefore we have to remain in thegrammar system framework to deal with this kind of problems. We solve it with thetools available there, namely analysis by cases.
Theorem 2 Lcd =2 X2(REG); for X 2 fPC;CPC;NPC;NCPCg.
Proof. Since PC2(REG) (hence CPC2(REG), too), contains context-free languagesonly ([3]), it su�ces to prove that Lcd cannot lie in NPC2(REG). Assume thatLcd = L(�) for some non-returning non-centralized grammar system with two regu-lar components �. Take w = anbmcndm with arbitrarily large n;m. There exist twononterminals A1; A2 such that in the process of generating w the following hold:

(S1; S2) =)� (x1A1; x2A2); x1; x2 2 fa; b; c; dg�;(A1; A2) =)k1 (uA1; vA2); u; v 2 fa; b; c; dg�; uv 6= �
for some k1 � 1. Here =)p denotes a derivation of length p where the communicationsteps are also counted. Let (A1; A2) be the �rst pair of such nonterminals met in theprocess with this property. By the choice of w we infer that u 2 a+ and v 2 c+. Firstwe note that both u and v, if non-empty, are formed by one letter only. Second, ifone is empty, then the other can be \pumped" arbitrarily many times which leads toa parasitic word. Third, by the same argument, all the other choices, except u 2 a+and v 2 c+, lead to parasitic words. Since the subword of w formed by b is arbitrarylong there is a pair of nonterminals (B1; B2) such that the derivation continues asfollows:

(S1; S2) =)� (x1A1; x2A2) =)rk1 (x1urA1; x2vrA2) =)k
(x1ury1B1; x2vry2B2) =)pk2 (x1ury1spB1; x2vry2tpB2) =)� (w;�)

for some terminal words y1; y2; s; t, s 2 b+, positive integers r; p; k; k2, and word �.Moreover, no communication step appears in the subderivation
(x1urA1; x2vrA2) =)� (x1ury1B1; x2vry2B2) =)pk2 (x1ury1spB1; x2vry2tpB2)
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otherwise either an insu�cient number of b's is generated between the two sub-words formed by a and c or the generated word contains the subword cb which iscontradictory.Therefore, the following derivation is also possible in �:
(S1; S2) =)� (x1A1; x2A2) =)rk1 (x1urA1; x2vrA2) =)k1k2+k
(x1ur+k2y1B1; x2vry2tk1B2) =)pk2 (x1ur+k2y1spB1; x2vry2tp+k1B2) =)� (w0; �0);

for terminal word w0 and word �0. However, w0 cannot be in Lcd, which concludesthe proof. 2

We encourage the reader to translate this proof into the programming framework,where the reasoning is the same, but more explanations are needed.
4 Conclusions
The traditional approach to the problem of �nding a grammar system generatinga given language is: �rst propose a grammar system and then �nd a proof that itgenerates the language.In this paper we present a new approach, taken from programming framework,that consists in �nding simultaneously the grammar system that generates the givenlanguage and a proof that the grammar system found generates it. We think thatit would be interesting to study this approach deeper trying to apply it to otherwell-known languages, or trying to �nd other programming strategies, apart fromthe strategy of re�nement of problems shown here, that could be useful in solvingsome problems related to grammar system theory.Until now main e�orts in grammar system theory have been dedicated to �ndgrammar systems with the smallest number of components or di�erent types ofrestrictions applied to productions, to show how distribution and communicationcan make simple components be very powerful when they work together. So exceptfor some studies related with computational complexity measure of PC grammarsystems that considers the number of communication between grammars (see forexample [8] and [13]), the most investigated complexity measure has been the numberof grammars that a PC grammar system consist of, which is clearly a descriptionalcomplexity measure. So a very important matter has been forgotten: the e�cient useof time. The opposite has happened in the programming area (see [6] and [12]), wherethe research has been focused in looking for techniques to parallelize algorithms andto help programmers to design more e�cient concurrent algorithms. We propose tofollow some of the methodical approaches developed in the programming frameworkto construct more e�cient grammar systems.Also it would be very interesting not only to think how PC grammar systemtheory can bene�t from concurrent programming, but how programming theory canbene�t from grammar system theory. The lack of strategies in the programmingframework to prove negative results of the type: L 6= L(�) for a language L andany grammar system �, make us to think that such problems might be solved bytranslating them into the grammar system framework where they can be solvedusing the tools available there.
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Abstract: After sketching the difference between implementation and 
embodiment, and some related problems concerning the Turing-type computation 
and the so-called hyper-computation, the contribution proposes EG-systems as a 
suitable computationalistic formal framework for study some of the relevant 
properties of embodied autonomous agents acting in computationally 
complicated environments.  

 
1. Introduction  
 
We have become very good at modeling fluids, materials, planetary dynamics, 
nuclear explosions and all manner of physical systems. Put some parameters into 
the program, let it crank, and out come accurate predictions of the physical 
character of modeled system. But we are not good at modeling living systems, at 
small or large scales. Something is wrong. What is wrong? There are a number 
of possibilities: (1) we might just be getting a few parameters wrong; (2) we 
might be building models that are below some complexity threshold; (3) perhaps 
it is still a lack of computing power; and (4) we might be missing something 
fundamental and currently unimaginable in our models wrote R. Brooks (2001, 
p. 401). The situation is similar studying cognition, intelli gence, perception, etc. 
We use the traditional conceptual framework of studying computing devices and 
their behaviors interpreted as computation to dissolve the miracle of the 
mentioned phenomena. Having at hand the prepared set of notions and scientific 
rules which express possible relations between them we try to explain the nature 
of these phenomena. We are in certain extent successful in doing that. But 
fundamental diff iculties even with formulation of some questions concerning 
these miraculous phenomena remain open, but there have high actuality for better 
understanding of the just arising completely new meaning of the concept of 
machines; for more details concerning the cultural and scientific evolution of the 
concept of machine during the 20th Century see (Horáková, Kelemen, 2003). 
 

                                                        
1 The author’s research on the subject is supported by the Grant Agency of the Czech Republic, 
grant No. 201/04/0528. 

Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varjú and Gy. Vaszil,
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The concept of machine is not the only one which has been changed considerably 
during the second half of the 20th century. Important changes have been started 
already at the end of the 19th century in viewing the relation of human psyche and 
body thanks to the pioneering work of Sigmund Freud. In his unpublished during 
his life paper written in 1895 (Freud, 1954) he sketched the figure like the 
following one: 
 
Wee can clearly recognize Freud’s division of the psychic and the somatic (in the 
picture the horizontal somat.-psych. Grenze) as well as the humans “I” from the 
outer environment (in the picture the vertical Ich-granze) in his representation of 
the sexual function; cf. e.g. (Panhuysen, 1998). The continuous interaction of the 
human body with its environment is the base for complicated processes the 
psychic processes inclusive, which results in a specific state of the human mind 
and in performing some sexual behavior. Without the body as certain kind of 
“ interface” the state of mind nor the related with it behavior does not emerge in 
human beings. From this fact, among other, follows the importance of the human 
body for human mind and behavior.    
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1: Freud’s schematic representation of the sexual function; from (Penhuysen, 1998). 
 
Situation is very similar in nowadays research in many disciplines focused to 
human beings, to machines, or to the intersection of the both categories in some 
branches of science, cf. e.g. (Humphrey, 2000). Some of the specialists, esp. 
some of those working in the fields of cognitive science, artificial intelli gence, 
and advanced robotics, argue that the source of problems with discovering more 
adequate and effective ways how construct (esp. how to program) machines in 
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order to provide their continuous functioning in dynamically changing 
environments consists in the embodiment of systems, the phenomenon which 
remained almost completely ignored in our recent computationalistic models. The 
traditional so called mind-body problem of philosophers and cognitive scientists, 
and the actual software-hardware problem of computer programmers and robot 
builders are form the perspective of embodiment in certain sense identical. 
 
The core of the problem consists, according (Scheutz, 2002), in the simple fact 
that since symbols are abstract entities, computations cannot be performed on 
them, but have to be mediated through something physical (like organic bodies of 
living beings or inorganic machines) that can be manipulated by some physical 
operations that correspond systematically to the ones performed during the 
abstract computational processes over abstract symbols. Moreover, because of the 
same reasons the symbols themselves must be represented in certain ways by 
suitable physical entities. These entities are then manipulated by the above 
mentioned physical processes and the results of manipulation are reinterpreted as 
the results of an abstract computation. The just described abstract-physical 
dichotomy remains unmentioned at all. But when we concentrate to build 
embodied systems acting in a dynamic, often unpredictable environment, we are 
confronted with the question how the abstract and the physical is related and how 
this relation influenced the behavior of our robots, for instance. This is the core of 
the problem of embodiment (at least for the purposes of this paper).    
 
The problem of embodiment is highly actual e.g. because of effective 
construction of different physically embodied autonomous agents but, 
unfortunately, we have no effective tools at hand to study them with theoretical 
rigor up to now. The aim of this contribution is to sketch, one the base of a short 
analysis of the story of Artificial Intelli gence efforts and on some developments 
in of theoretical computer science, a computationally relevant sub-problem of the 
general problem of embodiment, and to sketch some of consequences of the 
previous developments for a way how to deal with this sub-problem in the frame 
of EG system.   

 
2. The Very Short Story of Artificial Intelligence  
 
An important achievement of Artificial Intelli gence (AI) was the discovery of the 
methodologically new possibili ty how to test our hypotheses on how (some of) 
the intellectual processes run. The history of AI is full of different hypotheses on 
how to “automatize” processes like general problem solving, theorem proving, 
natural language understanding and communication, diagnostics, image 
processing and recognition, scene analysis, etc. in order to obtain working 
computer-based systems performing these tasks at the similar (or at better) 
qualitative level as (specially trained) human beings perform them. In all these 
cases:  
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(1) A working hypothesis is produced first – in the majority of the cases it is 
based on author’s own introspection, then 

(2) the formulated hypothesis is implemented (often using a suitable 
programming language that might be developed for such purposes), and  

(3) the developed system of programs (the implemented version of the 
hypothesis) is then tested on real (or more or less similar to the real ones) 
data.  

 
To proceed according such methodological guidance seems to us as something 
natural. It might be because intellectually we feel prepared for contemplations 
about our own intellectual capacities. Perhaps the most deeply developed system 
of this kind is the well-known system GPS (General Problem Solver) by A. 
Newell, H. A. Simon and their collaborators (Newell, Simon, 1972), (Ernst, 
Newell, 1969) continued in the frame of the project SOAR (Newell, 1990).   
 
The most ill ustrative achievements of the use of the above-sketched methodology 
are the knowledge systems [15] having symbolically represented ontologies of 
notions, their chunks, taxonomies, relations between them, etc. As the 
consequence of that, knowledge systems do not need any bodies (in the physical 
sense). The situation is completely different in the cases when the artificially 
created systems (intended to be intelli gent in certain sense, e.g. cognitive robots) 
are situated and execute tasks in real physical environments. In such a case the 
systems are faced with physically grounded ontologies of objects with real 
physical properties that exist and act in real time scales. Very hard problems 
appearing in such situations in the traditional good old fashioned AI were pointed 
out firs from very different positions and with very different conclusions by M. 
Minsky (1986) and R. Brooks (1999). 

 
Brooks (1999) in his concept of the new AI emphasizes the principal role of 
systems reactivity, which is necessary for their low-level rationality, while 
Minsky (1986) emphasizes the principle of decentralization and organization of 
simplest units (agents) into more complex ones (agencies) and presupposes that 
an agency may play the role of an agent in a more complex agency. Both of these 
positions might be – according to our conviction – combined into one unified 
approach. The main idea consists in two basic steps:  

(1) in emphasizing the role of as direct as possible interaction of the 
cognitive systems with their environments at least at the lowest level of 
sensing and acting, and  

(2) in exploiting the power of organization and of the emergence in highest 
levels in order to receive more complex behaviors. 

 
Both of the above mentioned steps lead us to realize the principal difference 
between implementation of our ideas on how cognitive processes run in natural 
systems and how they may run in artificial ones, into more or less traditional but 
in certain sense rigid computers usually equipped with suitable input-output 
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devices which isolate them form their environments by providing data from it for 
them, and between embodiment of our ideas into artificially created systems 
equipped by sensors providing signals for them, by units for processing signals 
and perhaps compute the decisions, and  by actuators for making changes in their 
environments, and situated and working continuously in real, dynamic, and noisy 
environments; for m����� � ���	��
��������������������������� �����!���"�$# %'&�&�(�)*�  
 
The bodies of our more or less smart machines became the principal problem of 
our scientific consideration. We have very deep experience with understanding 
physical machines as physical systems, e.g. in mechanics. However, as we have 
mentioned above, the mechanistic view of bodies is not sufficient when we are 
interested in behavioral aspects of functioning of machines. In computer science 
we are interested rather in virtual machines, in machines in the case of which we 
make a shift in abstracting behavioral aspects of these machines (the software) 
and exclude from any considerations their bodies (the hardware). This type of 
separation has been and still i s fruitful in certain situation appearing when the 
computers are used in traditional ways, but is not sufficient in some other cases. 

 
3. The Very Short Story of Traditional Computing  
 
According this traditional understanding of computation and computers we can 
recognize any computing device as an externally passive entity which internal 
activity is based on the activities of some finite number of externally passive 
components with predefined message passing possibili ties. Thank to the internal 
activities of these components and their addressed communication possibili ties 
the whole system transforms some inputs provided to it from certain environment 
into some required outputs. If some well-specified requirements are satisfied, 
such transformation is a computation in the traditional sense developed during the 
modern history of computing and computation which started in 30ties of the past 
century with definition and first studies of (abstract devices equivalent with) the 
Turing machine.  
 
Important from the traditional point of view is that considering a Turing machine 
working in an environment, it gets its input in advance at a beginning of it work, 
and outputs the result to the environment at the end of its activity. During the 
computation, the environment is – from the perspective of the Turing machine – 
completely passive. Computing and computation are understood, applying this 
traditional paradigmatic view to the systems understood as computing devices, as 
specific processes corresponding to mathematically defined functions. While the 
function declares a specific relation between variables and values in a set 
theoretic sense (to definition of a function coincides with a defining a suitable 
subset of the Cartesian product of its domain of variables and domain of its 
values), the traditional view of a computation (of a function) is procedural one: a 
computation define a function by means of specifying a step-by-step process of 
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elementary computable transformation steps which transform the given input 
variable to a corresponding output value (of the corresponding function).  
 
The central problems of (theoretical) computer science originated from the point 
of view of the just described traditional paradigm of computing are related with 
the possibili ty, description, execution, and the effectiveness of an idealized rule 
governed algorithmic transformation of input data into the desired outputs.  
 
Inside the above sketched overall picture of the traditional understanding of 
computation, the property of computabili ty – or in other words the (partial) 
recursiveness (of mathematically defined functions) – is derived from the 
computing power of the Turing machine. This is the core idea of the so-called 
Church-Turing thesis, which, in a more precise formulation, states Turing 
machines, logics, lambda calculus, algorithmic computing, and the generative 
capacity of centralized rule-based systems (Chomsky-type formal grammars) as 
equivalent mechanisms for solving problems; cf. (Wegner, Goldin, 2003).  

 
4. Hyper-Computation and Interacting Embodied Agents 
 
However, in present there are strong efforts to prove that the notion of 
computation might be enlarged beyond the traditional boundaries defined by 
Turing computabili ty2. In (Burgin, Klinger, 2004) it is proposed to call 
algorithms and automata that are more powerful than Turing machines as super-
recursive, and computations that cannot be realized or simulated by Turing 
machines as hyper-computations. In our following consideration on the possible 
views of computation we will respect this proposal. 
 
Another possibili ty of viewing systems as computing devices consists in 
considering a computing device as an externally active entity perceiving its 
dynamic (might be hardly predictable, noisy, or completely unpredictable) outer 
environment, and acting in it continuously according the perceived stimuli and 
the own inner rules governing the behavior of the system in order to complete 
given tasks. This is the core idea of the third period of the history of modern 
computing when the more or less freely cooperating and communicating 
interacting processors individual behaviors result in a behavior interpretable as a 
solution of a given problem. The interactivity, as stated in (Copeland, 2004) in 
connection with the analysis of the computational power of the Turing machine 
coupled with its environment, or with the same device appearing as the 
interactive Turing machine in (Wegner, 1997) leads to the hyper-computational 
power of the interacting in the Turing sense computationally universal devices.  
 

                                                        
2 For more detail s on the effort see e.g. (Eberbach, Wegner, 2003) or the monothematic issue of 
the Theoretical Computer Science 317, No. 1-3 (2004) 1-269. 
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The activity of the above mentioned type of systems is based on their own 
coupling of sensed data with appropriate acts performed in their environment, or 
on the activities of individually autonomous components forming these systems, 
and communicating (directly or indirectly) with other components forming them.  
Systems of this type are usually called agents, and the structures formed by these 
agents are called multi-agent systems; cf. e.g. (Ferber, 1999). In (Kelemen, 2003) 
we called the emerging new paradigm of considering computing systems are 
emerging from considering such kind of autonomous “open” systems as 
computing devices instead of the isolated ones as the agent paradigm of 
computing. 
 
Interactions of agents with other agents and with their (dynamically changing, 
unpredictable, noisy, etc.) external environment during their activities in that 
environment are a real promise how to enlarge computational power of agents 
and multi-agent systems in comparison with the computational power of the 
Turing machine; cf. e.g. (Wagner, 1997). In general, interactions inside a multi-
agent system involve the external word and the activities of individual agents into 
the behavior (interpreted as a computation) of the whole system during the 
computation (rather than before and after, as it is in the case of the traditional 
algorithms) which may lead to the computations that cannot be carried out by a 
Turing machine, as stated in (Eberbach, Wegner, 2003). So, agents and multi-
agent systems might be considered as very powerful computational devices and 
may contribute with many innovative concepts to our traditional picture of the 
(theoretical) computer science and engineering. 
 
An important dimension of the agent paradigm consists in considering agents not 
only as products of the development of computer programming techniques and as 
innovative tools for computer use, but also as products of development of electro-
, mechanical-, and computer-engineering, as electro-mechanical (usually 
computer guided) devices for automation of different physical processes – as real 
autonomous machines which do physical (mechanical) work. From such a point 
of view, as we have mentioned already, there exists an important difference 
between real computers and the abstract Turing machine.  
 
In (Sloman, 2002) is stated, for instance, that computers, as built and used, are the 
result o a convergence of the development of the machine- and electro-
engineering, and the progress in understanding computations as processes of 
performing actions on symbols as the Turing machine do that. In our 
terminology, real computers as well as the real agents – (artificially) intelli gent 
systems, esp. the cognitive robots – are entities which cannot be divided into their 
hardware and software parts without missing something fundamental (might be 
something which emerges) form the functioning of both of that their parts. 
According (Sloman, 2002), this difference makes computers useful, but Turing 
machines irrelevant for research in Artificial Intelli gence, for instance. These two 
dimensions of agents – interaction with dynamically changing environment and 
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embodiment – converge into a new understanding of machines as embodied, 
autonomously sensing, acting and deliberating agents – into the form of robots. 
Looking to the Figure 2 we easily realize the substantial difference between the 
abstract universal computing devices equivalent with the Turing machine with 
respect of their computational power in over-simplified environment of symbols 
written on a tape, and the real robots equipped with computers programmed in 
order to control the behavior of these robots in the real dynamically changing 
physical environments.     
 
The mentioned above difference, the properties like the autonomy and continuity 
of machines behavior, the relevance of embodiment, and other physical 
constrains and limitations (esp. the problematic concept of infinity with respect 
their behavior), the importance of communication between individually 
independent, autonomous computational units in order to achieve common goals 
(intentionally or as an emergent effect of their co-existence in a shared 
environment), etc. seems to be crucial for embodied systems like robots; cf. e.g. 
(Parker, 2003). Many computational processes in robots processors run 
continuously and autonomously in different types of environments. Good 
examples are computing processes running in autonomous mobile robots. When – 
for instance – a colli sion avoidance module is programmed, its role is to process 
the input sensory data continuously during the robot mission into the data 
manipulating with robots actuators in order to avoid obstacles in robots 
environments. Of course, all the program equipment of the robot may be 
decomposed into the set of interrelated programs of traditional type. However, 
this type of reduction does not contribute to the solution of the problem of 
colli sion avoidance at all! Instead of particular programs considered as translation 
of mathematical functions into some more procedural languages we must think in 
terms of autonomy and continuity of functioning of systems based on their abili ty 
to sense the environment and act in it. 
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Fig. 2: Compare a particular “abstract” computing device (equivalent with the Turing 
machine) in its “abstract” environment from (Markoš, Kelemen, 2004), and two real 
embodied robots in a real dynamic environment (in Robotic Lab, Institute of Computer 
Science, Silesian University at Opava). 
 
 
While the principal subject of the study of computation from the position of the 
traditional paradigm is to consider them as defined in the form of finite sequence 
of basic transformations executed (sequentially or in parallel) on appropriate data 
structures, the position of the agent paradigm might be characterize by viewing 
computation as the result of communication of collections of individually 
autonomous agents, and vice versa – viewing communication of collections of 
individually autonomous agents as computation. 
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In order to apply this new paradigm in modeling complicated systems (e.g. in 
economics, sociology, biology, robotics, etc.), the following methodological 
experience seems to be important: Instead of the necessity to aggregate specific 
particular data on individual objects as the base for (mathematical) modeling, the 
agent paradigm provides a tool for model each individual behavior separately and 
then study the emerging behavior of the society of these individuals. This 
methodology is present in many nowadays experiments with biological, 
ecological, economic, machine (robotic) or conceptual societies of agents.  

 
5. Hyper-Computation – A Grammar-Theoretic Model 
 
From computational point of view an appropriate sub-problem of the above 
described problem of embodiment is that one which consists in rigorous 
specification of the computational character of results of interaction of the rule 
governed algorithmic symbol-manipulating processes which run inside of the 
agents which interact massively with their computationally complicated behaving 
dynamic environments. Usually we are interested in as precise as possible 
knowledge of the behavior of an agent or a multi-agent system in its environment 
despite of the fact that we have no complete knowledge of the behavior of the 
environment. The solution of this problem is twofold: We may study the 
possibility of performing such and such behavior under such and such conditions 
put to the behavior of the environment. To solve this type of problem is in certain 
extent the traditional role of theoretical computer science. Another possibili ty is 
to concentrate to feasibility (of course, it will be necessary to define rigorously 
what we mean by feasibili ty in our considerations).      
 
For instance, an eco-grammar (or an EG) system (Csuhaj-Varjú et al., 1997) 
consists of fixed number (say n) of agents with internal states described by strings 
of symbols w1, w2, ... wn, and evolving according set of rules P1, P2, ..., Pn applied 
in a parallel way as it is usual in L systems (Rozenberg, Salomaa, 1980). The 
rules of agents depend, in general, on the state of the environment. The agents act 
in commonly shared environment (the states of the environment is described by 
strings of symbols wE) by sets of sequential rewriting rules R1, R2, ..., Rn. The 
environment itself evolves according a set PE of rewriting rules applied in parallel 
as in L systems. The model is schematically depicted in the figure Fig. 3.  
 
The evolution rules of the environment are independent on agents’ states and of 
the state of the environment itself. The agents’ actions have priority over the 
evolution rules of the environment. In a given time unit, exactly those symbols of 
the environment that are not affected by the action of any agent are rewritten.  
 
In the EG systems we assume the existence of the so called universal clock that 
marks time units, the same for all agents and for the environment, and according 
to which the evolution of the agents and of the environment is considered.  

J. Kelemen

234



 
 

 
 
Fig. 3: A schematic view of a traditional EG system. 
 
In (Csuhaj-varjú, Kelemenová, 1998) a special variant of EG systems have been 
proposed in which the agents are grouped into subsets of the set of all agents – 
into the so-called teams – and the generative power of such type of EG systems 
have been studied. In (Wätjen, 2003) the fixed teams are replaced by dynamically 
changing teams of agents. As the mechanism of reconfiguration, a function, say f, 
is defined on the set of integers with values in the same set in order to define 
teams. For the i-th step of the work of the given EG system, the function f relates 
a number f(i). The subset of the set of all agents of thus EG system of the 
cardinality f(i) is the selected for executing the next derivation step of the EG 
system working with Wätjen-type teams. Wätjen proved, roughly speaking, that 
there exists an EG systems such that if f is in the Turing sense non-recursive 
function, then this EG system generates a non-recursive language. In other words, 
we can imagine EG systems in  which subsequently changing groups of active 
agents interact with the dynamic environment such that the result of interaction 
result in the non-recursive behavior of this EG system. So, we have a 
grammatical model of non-recursive behavior based, similarly as in the case of 
the interacting Turing machines, on the interactions. This proves the hyper-
computational power of interactions. The requirement of strict isolation of teams 
from each other, as well as the style of changes of teams during the run of the 
derivation process we can – at least metaphorically – interpret as the requirement 
of some kind of embodiment (or “embodiment” ). So, a system of some simple 
(finite) derivative units – agents – created in some complicated (non-computable) 
way which interact with a specific shared dynamic environment provide the 
hyper-computational power of the behavior of the whole system set up from the 
agents and their environment.        
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The range of question (with certain relevance to Artificial Life or to the 
computational studies of evolution, for instance) we can ask about an EG system 
contains e.g. the following items: 

♦ Is the evolution of a system bounded in time or not? In other words: Enters the 
system a deadlock? When, under what conditions? 

♦ In the case of the infinite evolution, are non-cyclic evolution chains possible? 

♦ What is the effect of „small changes” either in the initial configuration or in 
the evolution/action rules of agents and of the evolution rules of the 
environment? 

♦ What is the effect of introducing further life-like features (the Wätjen-type 
teams are naturally interpretable in the frame of Artificial Life) into the model 
to the answers to the previous questions? 

♦ What is the influence of the number of agents on the system properties? 
 
The role of the body – at least in the case when we discuss it from computational 
point of view – consists first of all in generating the behavior of the embodied 
system with respect the situation appearing in its environment. In order to study 
the conditions and the power of the generation of behaviors of this type formally 
we require at least the following: 

-    to have an opportunity to study the system with respect of its constituent 
parts and their interactions, and 
-   to have an opportunity to study the interaction of the whole system or its 
parts with their environments. 

     
In such a situation, we may ask the following questions, for instance: 

- What is the computational power of the EG system working on the 
environment generated by a super-recursive device? 

- Are EG systems “regulate the super-computable behavior of their 
environment into the form of a computable one? Under what kind of 
circumstances?  

 
Let we suppose now that we are able construct on the base of our knowledge in 
theoretical computer science and with respect the Turing hypothesis only devices 
with behaviors computable in the sense of the traditional Turing-computabili ty. 
Suppose that a good theoretical framework for describing this type of devices is 
the framework of some variant of EG systems. Suppose that the behavior of the 
environment of EG systems might be very unconventional, exotic ones. Suppose 
it might be un-computable in the sense of the traditional Turing-computabili ty; 
for other alternatives see e.g. (Eberbach, Wegner, 2003). Why not? Technically it 
means that instead of an L system supposed as the generative base for 
autonomous changes of the environment in a given EG system we suppose that 
the environment may change in some non-computable in the sense of Turing 
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computability manners. What can we say concerning the behavior of such type of 
EG systems? More technically: What type of the behavior of an EG system we 
may expect when this system works in a non-computably changing environment?   
 
Concerning the study of feasibility, we may be interested not only in the exact 
knowledge of the behavior of an EG system, but also in the (importance of) 
difference between the behavior of an EG system and the required behavior of it.  
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1 Introduction
The model of an eco-grammar system was introduced in [6] and presented in detail in
[7]. It realizes an attempt to create formal speci�cation for investigation of the inter-
play between the environment and agents in systems like ecosystems. Eco-grammar
systems can be used to model some aspects of the behaviour of any cooperating
communities of agents acting in a common dynamic environment. The model is
based on the approaches and methods of formal language theory using generative
framework of grammar systems [2].

Basic information on the topic can be found in overview papers [5], [11], [12],
[13] and [14]. Annotated bibliography www.sztaki.hu/mms/ecobib.html provides a
good source of information on eco-grammar systems.

The model consists of two interconnected parts. The environment, described by a
string developing by L system mode, in totally parallel manner using interactionless
rules, and collection of agents (components), each one described by its own string,
developing by L system mode using its own set of rules. The agent locally changes
the environment using its action rules. Actual state of the environment can inuence
development of agents and the state of each agent can inuence the development of
the environment by the choice of the action rules.

The original model is described in a quite general way in order to demonstrate
wide possibility of the model to investigate various aspects of the behaviour of eco-
systems and to present formal background for such an investigation.

To get insight to the behaviour of eco-grammar systems di�erent special cases,
characterized by various restrictions, were studied. We mention simple eco-grammar
systems, for example, where agents inuence the development of the environment
just by their action rules (but not by the states of agents). (See [2], [4], [8], [9], [17].)

In the present paper we study eco-grammar systems, where the behaviour of the
environment is really inuenced by the state of agents (not only by the existence
of agents and their action rules). We discuss in detail the generative power of

�Research supported by the Grant Agency of the Czech Republic grant No. 201/04/0528

Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varjú and Gy. Vaszil,
MTA SZTAKI, Budapest, pages 240 - 254, 2004.
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monocultures and the generative power of eco-grammar systems with homogeneous
environments. The results are related to the number of components of the systems.

In the Section 2 we give formal de�nition of the eco-grammar system and �x
notations used in the paper.

Section 3 contains various examples of eco-grammar systems and some prelim-
inary results concerning the properties of eco-grammar systems generating some
typical languages of eco-grammar systems.

In Section 4 we start to study systems with identical components, called mono-
cultures. The restriction to monocultures with �xed number of components restricts
also the generative power of eco-grammar systems. An important result is that any
language of eco-grammar system can be transformed to a language of monoculture
simply by adding one word to the original language. Corresponding eco-grammar
system for the monoculture have the same number of components as the original
one. Still open problem remains the equality of the languages classes of monocul-
tures and the (general) eco-grammar languages when no restriction to the number
of components is considered. Number of components is important for the generative
power of monocultures. Language classes with di�erent number of components are
incomparable.

In Section 5 we consider systems with homogeneous environment (systems with
environment described by strings over the unary alphabet). In this case number of
components in eco-grammar systems introduces full hierarchy on the corresponding
language classes. Eco-grammar systems with less components are more powerful.
Languages of unary eco-grammar systems can be generated by eco-grammar systems
with single component.

In Section 6 the unary monocultures are treated, i.e. eco-grammar systems with
identical components and unary alphabet of the environment. Unary monocultures
are as powerful (generative power) as unary eco-grammar systems. This solves an
open problem from Section 4 for unary monocultures. The number of components
in unary monocultures introduces partial hierarchy on the corresponding language
classes, depending on the fact, whether the number of components of the one of the
system is a multiple of the number of components of the other system.

In all previous results context rules are used for action of the components in
the environment. Consequences of the restriction to context-free action rules are
discussed in Section 7. Eco-grammar systems with context-free action rules are
less powerful as those with context action rules. The restriction to the context-
free case leads to di�erent results for the problems we are dealing with. Language
classes of eco-grammar systems with di�erent number of components are incompara-
ble. Monocultures with context-free actions are less powerful as general context-free
eco-grammar systems. Last result holds even if no restriction to the number of com-
ponents are treated. Each context-free eco-language can be extended by one word
to a language of context-free monoculture. Incomparability of language classes with
di�erent size of components is presented, too.
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2 Eco-Grammar Systems: Original Model and its Spe-
cial Versions

The models of eco-grammar systems are introduced in [6], [7]. An eco-grammar
system � consists of two mutually inuencing parts, an environment characterized by
an 0L scheme E = (VE ; PE) and a collection of n agents Ai = (VA; Pi; 'i; Ri;  i); 1 �
i � n characterized by inner developmental rules Pi used to develop i-th agent,
action rules Ri inuencing the environment locally in the chosen place. Selection
functions 'i;  i determine actually active rules.

De�nition 2.1 An eco-grammar system of the degree n (EG(n) for short) is a
structure � = (E;A1; A2; : : : ; An), where

� E = (VE ; PE) is an 0L schema called an environment of the EG(n)
� Ai = (Vi; Pi; Ri; 'i;  i; wi), for 1 � i � n is i-th agent of EG(n), where

{ Vi is a �nite alphabet,
{ Pi is a �nite complete set of context-free rules over Vi,
{ Ri is a �nite set of rules over VE,
{ 'i is a function V �E ! P (Pi),
{  i is a function V +i ! P (Ri),
{ wi is an axiom, wi 2 V �i .

De�nition 2.2 A con�guration (or state) of EG(n) system � is an (n+1)-tuple
hvi = (vE ; v1 ; v2 ; : : : ; vn), where vE is a state of the environment and vi for 1 � i � n
is a state of the i-th agent. The starting con�guration is an (n + 1)-tuple hwi =
(w0 ;w1 ;w2 ; : : : ;wn), where w0 is a starting state (an axiom) of the environment
and w1; w2; : : : ; wn are axioms of the agents A1; A2; : : : ; An, respectively.

De�nition 2.3 A derivation step in the EG(n) system � = (E;A1; A2; : : : ; An) is
a binary relation =)� over V �E � V �1 � V �2 � : : :� V �n such that
(vE ; v1; v2; : : : ; vn) =)� (v0E ; v01; v02; : : : ; v0n) if and only if

� vE = �0�i1�1�i2 : : : �n�1�in�n,
v0E = �00�0i1�01�0i2 : : : �0n�1�0in�0n,where
�k =)E �0k; 0 � k � n,
�ik ! �0ik 2  ik(vik); 1 � k � n; fi1; : : : ; ing = f1; 2; : : : ; ng.

� vi =)'i(vE) v0i; 1 � i � n.

We assume that all agents are active in any derivation step (expressed by fi1; : : : ; ing =
f1; 2; : : : ; ng).

In the case when it is clear which � is considered the symbol � can be omitted.
A transitive closure of the relation =) is denoted by =)+ and a transitive and
reexive closure of the relation =) is denote by =)�.
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A derivation is in a canonic form, if moreover
vE = �1�2 : : : �n�n;
v0E = �01�02 : : : �0n�0n:

In the case when the choice of an action rule is independent on the actual state of
agent A, i.e.  A(v) = RA for all v 2 V +A the environment is independent on actual
states of the agents and agents inuence the development of the environment by the
set of its action rules only. The selection function for activity of agents is universal
(any action rule can be active). In this case we specify agents simply by A = fRAg.
Such an agent is called a simple agent. An eco-grammar system with simple agents
only is called simple eco-grammar system.

A con�guration of the simple eco-grammar system consists only of the state of
the environment. A derivation step =)� over V �E of the simple eco-grammar system
� = (E;A1; A2; : : : ; An) has the form v =)� v0 if and only if
v = �0�i1�1�i2 : : : �n�1�in�n, and v0 = �00�0i1�01�0i2 : : : �0n�1�0in�0n, for�k =)E �0k; 0 � k � n, and �ik ! �0ik 2 Rik ; 1 � k � n; fi1; : : : ; ing = f1; 2; : : : ng.
De�nition 2.4 A language of an EG(n) system � = (E;A1; A2; : : : ; An) and the
initial state of the environment w0 is a language of all states of the environment
which can be derived from the initial con�guration, i.e.
L(�; w0) = fv : (w0; w1; w2; : : : wn) =)� (v; v1; v2; : : : vn)g.

De�nition 2.5 An EG(n) system � is monoculture (MEG(n) for short) if Ai = A
for all 1 � i � n. We shall use the denotation � = (E;An) in this case.

An EG(1) system is evidently monoculture.
De�nition 2.6 An EG(n) system � is unary (UEG(n)) if jVE j = 1. Unary mono-
culture with n agents is denoted by MHEG(n).

De�nition 2.7 The language class of eco-grammar systems (monoculture, unary,
unary monoculture) of the degree n is denoted by L(EG(n)) (L(MEG(n)), L(UEG(n)),
L(MUEG(n))).

3 Systems with Locally Restricted Exponential Behav-
ior

The language Ll;m = fali+m : i 2 Ng is frequently used in the further parts of the
paper. Its typical property is that each underlining EG system for Ll;m has exactly
one rule in the environment.

Lemma 3.1 Let Ll;m = L(�; w0) for an EG(n) system � = (E;A1; : : : ; An). Then
PE = fa! aljg for some j � 1.

Proof: Assume contrary, that two di�erent rules a ! ar; a ! as are in PE and
r > s. There are in�nitely many words in L(�; w0) with at least one symbol rewritten
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by the rules of the environment. Therefore in�nitely many pairs of words u; v in
L(�; w0) have juj � jvj = r � s. But Ll;m does not have that property.
Let PE = fa! asg for some �xed number s: We have s 6= 0; s 6= 1 since L(�; w0) is
�nite for PE = fa! �g and there are in�nitely many pairs of words u; v 2 L(�; w0)
such that u =) v; with constant juj � jvj for PE = fa! ag.
Assume s = lj + d for some �xed j and d, 0 � d < lj+1 � lj . We prove that d = 0.
Let (ak; w1; w2; : : : ; wn) =) (ak0 ; w01; w02; : : : ; w0n) for k = li + m and k0 = li0 + m.
Let r � n letters are rewritten to t letters by action rules and all other letters are
rewritten by the rule of the environment in that derivation step. Then

k0 = ks� rs+ t;
li0 +m = (li +m) � s� rs+ t;

Now we assign c0 = sm � rs + t �m. All numbers are constant (s;m) or limited
(r; t) so c0 is limited too.

li � s+ c0 = li0 ;
li(lj + d) + c0 = li0 ;

li+j + li � d+ c0 = li0 :

We can choice i such that li � d+ c0 > 0; li > max(jc0j) so
li+j + li � d+ c0 > li+j

and so for lj � lj�1 � 1 � d we obtain
li+j + li � d+ c0 � li+j+1 � li + c0 < li+j+1:

No i0 exists so d = 0 and PE = fa! aljg for some j � 1. 2
Example: Various representations of the language Ll;m = fali+m : i 2 Ng by
EG(m) systems are possible. They di�er in the rule of the environment.

�j = (E;A1; Am�1);
E = (fag; fa! aljg);
A1 = (V; P;R; ';  ; Y );
A = (V; P;R; ';  ;X);
V = fX;Y g;
P = fX ! X;Y ! Xg;
R = fa! ag [ fal+1 ! ali+1 : 1 � i � jg;

'(w) = P; for w 2 a�
 (Y ) = fal+1 ! ali+1 : 1 � i � jg;
 (X) = fa! ag:

Derivations in the system are of the form
(al+m; Y;X; : : : ;X) =) (ali+m; X;X; : : : ;X) =) (alilj+m; X;X; : : : ;X) =)
(alil2j+m; X;X; : : : ;X) =) : : :
In the �rst step, the �rst agent replaces l + 1 letters by one of the words

al1+1; : : : ; alj+1 and each of the remaining m� 1 agents leave symbol a unchanged.
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After the �rst step one of the words al+m; : : : ; alj+m is generated. In next steps
agents leave m symbols unchanged and ali symbols are rewritten by the rule of the
environment. So L(�; al+m) = Ll;m.

Lemma 3.2 Let L = fw1; : : : ; wng; n � 2 and jwij � k � 1 for all 1 � i � n. Then
L is not an EG(k) language.

Proof: Each agent of an EG(k) system rewrites at least one symbol of the envi-
ronment. Any language with at least two words produced by an EG(k) system has
to have the word of the system of the length at least k, which is chosen to be the
axiom. Otherwise no word can be generated from the axiom. 2

4 Monocultures
Monocultures are eco-grammar systems with identical agents including their axioms.
Obviously, each system with one agent is a monoculture. Monocultures with at least
two agents are less powerful than eco-grammar systems with the same number of
agents.

Theorem 4.1 L(MEG(n)) � L(EG(n)) for n > 1.

Proof: We have L(MEG(n)) � L(EG(n)) by the de�nition.
For n > 1 L = fan�1; ang 2 L(EG(n)) � L(MEG(n)) and simple EG(n) system
� = ((fag; fa! ag), fa! �g, fa! agn�1) with axiom an generates L(�; an) = L.
We prove L 62 L(MEG(n)) by contradiction. Suppose that there is an MEG(n)
system �0 = (E0; A0n); A0 = (V 0; P 0; R0; '0;  0; w00) producing L.
The axiom of the environment is an since each agent rewrites in one step at least one
letter. To obtain an�1 one of the agents acts with the rule a! �. But, alternatively,
the same rule a ! � can be used by all agents, too, and the system �0 produces �
contradictory with the form of L. 2
The situation may be di�erent in a case, where no limitation to the number of agents
is considered.

Open problem: (In)equality of classes L(EG) and L(MEG).
It is surprising that there is not too big di�erence between generative power of
the eco-grammar systems and monocultures. Indeed, an arbitrary language of eco-
grammar system can be transformed to language of monoculture by adding one
special word to it.

Theorem 4.2 Let L 2 L(EG(n))�L(MEG(n)). Then there is a word u such that
L [ fug 2 L(MEG(n)).

Proof: Let L 2 L(EG(n)) � L(MEG(n)) and L = L(�; w) for axiom w and for
� = (E;A1; A2; : : : ; An), E = (VE ; PE); Ai = (Vi; Pi; Ri; 'i;  i; wi;0).
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Assume Vi \ Vj = ; for i 6= j and jVE j > 1. Let us choose any u = u1u2 : : : un
such that ui 2 V +E and jujui = 1 for i = 1; : : : ; n. (In the case jVE j = 1 we extend
the alphabet to the binary one, in order to get an axiom u with the above property.)

We construct an MEG system �0 = (E;An); A = (V; P;R; ';  ; a) such that
L0 = L [ fug = L(�0; u):

V = V1 [ V2 [ : : : [ Vn [ fag [ fai : 1 � i � ng for
(V1 [ V2 [ : : : [ Vn) \ (fag [ fai : 1 � i � ng) = ;;

P = P1 [ P2 [ : : : [ Pn [ fa! ai : 1 � i � ng [
[ fai ! wi;0 : 1 � i � ng;

R = R1 [R2 [ : : : [Rn [ fui ! ui : 1 � i � ng [
[ fu1 ! wg [ fui ! � : 2 � i � ng;

' : '(u) = fa! ai; ai ! wi;0 : 1 � i � ng;
'(v) = '1(v) [ '2(v) [ : : : [ 'n(v) for v 2 L;

 :  (a) = fui ! ui : 1 � i � ng;
 (a1) = fu1 ! wg;
 (ai) = fui ! � : 2 � i � ng;
 (x) =  i(x) for all x 2 V �i :

The derivation in �0 proceeds as follows:

(u; a; a; : : : ; a) =)�0 (u; a1; a2; : : : ; an) =)�0 (w;w1;0; w2;0; : : : ; wn;0)

�0 is in starting con�guration of system � generating language L(�; w) and next
steps follow derivation in �, therefore L(�0; u) = L(�; w) [ fug. 2

Theorem 4.3 L(MEG(n)) and L(MEG(m)) are incomparable for n 6= m.

Proof: Let n > m:
a) Ln;m = fani+m : i 2 Ng 2 L(MEG(m))� L(MEG(n)).
For MSEG(m) system � = ((fag; fa ! ang); fa ! agm) we have L(�; a1+m) =

Ln;m.
Suppose there is an MEG system � with n; n > m agents for Ln;m. In the

�rst derivation step n agents can use the same rule x ! x0 and all letters in the
remaining part of the environment are rewritten to the power of n letters by Lemma
3.1. Therefore the axiom w0 = xny is rewritten to w0 = (x0ny0n), jx0j�n+jy0j�n = kn,
i.e. ni +m = kn for some k and this is not valid for n > m > 0.

b) Ln = f(aibi)n : i � 1g 2 L(MEG(n)) � L(MEG(m)): The MEG(n) system
� = (E;An) for Ln has E = (fa; bg; fa ! a; b ! bg), A = fab ! aabbg and the
axiom (ab)n:

To prove Ln =2 L(MEG(m)) for n > m assume contrary that there is an MEG(m)
system �0 = (E0; A0m) and L(�0; w) = Ln for some axiom w. We prove that PE0 =
fa! ai; b! big for some i 2 N .

The environment does not contain a rule with both symbols a; b on the right
side. Otherwise some derived word contains more than n occurrences of subword ab
or ba.
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The environment contains neither rules a ! bi nor b ! aj . Otherwise some
derived word starts with b or ends with a.

The environment contains neither a pair of rules a ! ai; a ! aj nor pair of
rules b ! bi; b ! bj for i 6= j. Otherwise both aiw0; ajw0 2 L(�0; w)) or both
w0bi; w0bj 2 L(�0; w) and Ln does not have such a property.

The environment does not contain rules a ! ai; b ! bj for i 6= j, otherwise the
language L(�0; w) contains words w with jwja 6= jwjb.This gives E0 = (fa; bg; fa !
ai; b! big) for some i � 1.

Let r be maximum number of symbols rewritten by agents and t be maximum
number of symbols generated by agents in one derivation step. Let us consider a
derivation step (w;w1; : : : ; wm) =) (w0; w01; : : : ; w0m) for w = (ahbh)n; h > r; h > t.
The value of h guarantees that action rules u! v used to rewrite (ahbh)n have u; v 2
a�b� [ b�a�. Each agent can change some symbols in one neighboring occurrences of
subwords ah; bh. At least one occurrence of ah or bh is rewritten by the rules of the
environment. Assume that rules of agents are applied in the pre�x (ahbh)mah of w
in the discussed derivation step ((ahbh)n; w1; : : : ; wm) =) (w0; w01; : : : ; w0m). Then
the last occurrence of the string bh in w is rewritten by the rules of the environment
and we have w0 = (ah0bh0)n = v0abhi. For i = 1; h0 = h; w0 = w and the language
L(�0; w)) is �nite. For i > 1; h0 = 2h and (ah+1bh+1)n =2 L(�0; w). Therefore
L =2 L(MEG(m)):

c) a�an and fam�1g are examples of languages both in L(MEG(m)) and also in
L(MEG(n)) for n > m > 0. 2

5 Unary Eco-Grammar Systems
In this section systems with homogeneous environment represented by unary alpha-
bet are studied. We compare generative power of unary eco-grammar systems with
di�erent number of components. These language classes are ordered by inclusion
relation. The power of systems increases by decreasing the number of agents.

Theorem 5.1 L(UEG(n+ 1)) � L(UEG(n)) for n � 1.

Proof: To prove L(UEG(n + 1)) � L(UEG(n)) assume a UEG(n+1) system
� = (E;A1; A2; : : : An; An+1), with Ai = (Vi; Pi; Ri; 'i;  i; wi;0) for 1 � i � n + 1.
We construct an equivalent UEG(n) system �0, where the last component of �0
simulates both the behaviour of n-th and n+ 1-st component of �.

�0 = (E;A1; : : : ; An�1; B), where B = (VB; PB; RB; 'B;  B; wB;0) and

VB = Vn [ V 0n+1;
PB = Pn [ P 0n+1;
RB = f�n�0n+1 ! �n�0n+1 : �n ! �n 2 Rn; �n+1 ! �n+1 2 Rn+1g;
'B = 'n [ '0n+1;

 B(wnw0n+1) = fak ! al : k = kn + kn+1; l = ln + ln+1; akn ! aln 2  n(wn);
akn+1 ! aln+1 2  n+1(wn+1)g;

wB0 = wn;0w0n+1;0:
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By V 0n+1; P 0n+1; �0n+1; �0n+1; w0n+1;0 we mean primed copy of the original objects.
L(�; w0) = L(�0; w0) follows from the property:

(wi; w1;i; : : : ; wn;i; wn+1;i) =)� (wi+1; w1;i+1; : : : ; wn;i+1; wn+1;i+1)
if and only if
(wi; w1;i; : : : ; wn;iw0n+1;i) =)�0 (wi+1; w1;i+1; : : : ; wn;i+1w0n+1;i+1).

� and �0 are unary, therefore place where agents act do not inuence the resulting
word. Assume that agents rewrite the pre�x of the actual environmental word and
that developmental rules of environment are used to rewrite its su�x. This gives
identical environmental words derived by systems � and �0.

fan; an�1g 2 L(UEG(n))� L(UEG(n+ 1)) implies proper inclusion. 2
Important consequence of the previous theorem is that unary eco-grammar systems
with one component can generate all UEG languages.
Theorem 5.2 L(UEG(1)) = L(UEG)
Proof: L(UEG(n)) � L(UEG(1)) for each n � 2 directly follows from the Theo-
rem 5.1 and

L(UEG) = S1i=1 L(UEG(n)) � L(UEG(1)) � L(UEG).
So all � has to be equality, which gives the Theorem. 2

6 Unary Monocultures
According the previous Sections eco-grammar systems with homogeneous environ-
ments posses hierarchy on the language classes de�ned by systems with di�erent
number of components, while monocultures with di�erent number of components
are incomparable with respect to the generative power. In the present Section we
show that homogeneous monocultures introduce partial ordering on the language
classes of eco-grammar systems with di�erent number of components.
Theorem 6.1 Let m;n be natural numbers n > m > 0:

L(UMEG(n)) � L(UMEG(m)) for m dividing n,
L(UMEG(n)) and L(UMEG(m)) are incomparable, otherwise.

Proof: Let n = cm for c > 1. We prove L(UMEG(cm)) � L(UMEG(m)). Let
UMEG(cm) system � = (E;Acm); A = (V; P;R; ';  ;w0) produces L = L(�; w).
We construct an UMEG(m) system �0 = (E;Bm); B = (V 0; P 0; R0; '0;  0; w0o) such
that L(�0; w) = L(�; w) = L:

V 0 = V [ f@g;
P 0 = P [ f@! @g;
R0 = f�1 : : : �c ! �01 : : : �0c : �i ! �0i 2 R; 1 � i � cg;

'0(wE) = '(wE) [ f@! @g;
 0(w1@w2@ : : :@wc) = f�1�2 : : : �c ! �01�02 : : : �0c : �i ! �0i 2  (wi); 1 � i � cg;

w00 = (w0@)c�1w0:
Agent B simulates the behaviour of c agents A with respect to the environment, so
L(�; w) = L(�0; w).
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248



The above inclusion is proper. To prove it we verify Ln;m = fani+m : i 2 Ng 2
L(UMEG(m))� L(UMEG(n)):

There is a UMEG(m) system � = ((fag; fa ! ang); fa ! agm) such that
L(�; an+m) = Ln;m.

Suppose there is an UMEG(n) system � for Ln;m. In the �rst derivation step n
agents can use the same rule and all letters in the remaining part of the environment
are rewritten to the power of n as in Lemma 3.1. Therefore w0 = xny is rewritten
to w0 = (x0ny0n), jx0j � n + jy0j � n = kn, i.e. ni +m = kn and this is not valid for
n > m > 0.
Lm;n = fami+n : i 2 Ng 2 L(UMEG(n))� L(UMEG(m)) for m not dividing n:
To prove Lm;n is not in L(UMEG(m)) analogously to the discussion above we have
mi + n = km. This can be satis�ed just for m dividing n.

Languages a�an and fam+1g are both in L(UMEG(m)) and L(UMEG(n)) for
n > m > 0. (For L = a�an n or less agents can guarantee n letters in the derived
word, other occurrences of a can be generated by PE = fa ! �; a ! a; a ! aag.
Axiom of the system always belongs to the generated language. So eco-grammar
system for the singleton contains the only word as axiom and all rules acting in the
environment of the eco-grammar system are of the form a! a.) 2
Next theorem solves the open problem from Section 3 for unary systems.
Theorem 6.2 L(UMEG) = L(UEG).
Proof: L(UEG) = S1n=1 L(UEG(n)) = L(UEG(1)) = L(UMEG(1)) =S1n=1 L(UMEG(n)) = L(UMEG).

2

7 Context-free action rules
In this section the eco-grammar systems with context-free action rules are studied.
Such a restriction decreases the generative power of the corresponding eco-grammar
systems.
Theorem 7.1 L(0EG(n)) � L(EG(n)) for n � 1;

L(X0EG(n)) � L(XEG(n)) for n � 1 and X 2 fM;U;UMg:
Proof: The relation � follows from the de�nition in all cases. To prove proper
inclusions we consider the languageL3;2n = fa3i+2n : i 2 Ng.

L3;2n 2 L(UMEG(n)) and L3;2n = L(�; a3+2n) for the simple eco-grammar
system � = ((fag; fa ! a3g); faa ! aagn). To prove L3;2n =2 L(0EG(n)) assume
contrary that there is an 0EG(n) system �0 = ((fag; P 0E); A01; A02; : : : ; A0n) and w0
such that L(�0; w0) = L3;2n.

By Lemma 3.1 we have P 0E = fa! a3kg for some k. Let n symbols are replaced
by agents to at most t symbols in one derivation step. Let us discuss a derivation
step (a3h+2n; w1; : : : ; wn) =) (w0; w01; : : : ; w0n).

jw0j = 3h+k + 3kn+ c
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where 0 � c � t�n symbols are added by agents. We show that such a system is not
able to generate the word a3h+1+2n. Assume that jw0j = 3h+k+3kn+ c = 3h+1 + 2n
Then we get contradiction c = 3h(3 � 3k) + n � (2 � 3k) < �n < 0 � c. Therefore
we conclude with L3;2n =2 L(0EG(n)). 2
We compare the power of context-free monocultures with that of context-free eco-
grammar systems. We obtain proper inclusion even if no restriction to the number
of components is considered. (Compare with open problem in general case.)
Theorem 7.2 L(M0EG) � L(0EG) and L(UM0EG) � L(U0EG).
Proof: The relation � follows from the de�nition in both cases. We prove L 2
L(0EG) � L(M0EG) for unary language L = fa42i : i � 2g [ fa44i+1�4 : i �
1g [ fa44i+3�5 : i � 1g:

We use 0EG system � = fE;A1; A2g and the axiom a44 to generate L.

E = (fag; fa! a4g);
A1 = (V; P;R1; ';  1; A);
A2 = (V; P;R2; ';  2; A);
V = fA;B;C;Dg;
P = fA! B;B ! C;C ! D;D ! Ag;
R1 = fa! �; a! a20g;
R2 = fa! a4; a! a3; a! a8g;

' : '(w) = P;

 1 :  1(A) = fa! �g;  2 :  2(A) = fa! a4g;
 1(B) = fa! a20g;  2(B) = fa! a4g;
 1(C) = fa! �g;  2(C) = fa! a3g;
 1(D) = fa! a20g;  2(D) = fa! a8g:

Derivations in � for the axiom a44 are of the form
(a44 ; A;A) =) (a45�4; B;B) =) (a46 ; C; C) =) (a47�5; D;D) =) (a48 ; A;A) =)
: : :
(a44i ; A;A) =) (a44i+1�4; B;B) =) (a44i+2 ; C; C) =) (a44i+3�5; D;D) =)
(a44(i+1) ; A;A) =) : : :
Therefore L = L(�; (a44 ; A;A)).

To prove L =2 L(M0EG) we proceed by contradiction. Let monoculture �0 =
(E;An) generates language L. We prove following points i), ..., v) for �0:

i) PE = fa! a4lg for some l 2 N .
To obtain an "almost" exponential growth of the language we can use only one

environmental rule, i.e. PE = fa! a4lg for some l 2 N . (See Lemma 3.1)
ii) All agents use identical action rules in one derivation step.

Let i-th step be the �rst step where di�erent action rules of agents are used
(w;wnA) =)i�1 (wi�1; w1;i�1; w2;i�1 : : : wn;i�1) =) (wi; w1;i; w2;i : : : wn;i).

Suppose that the �rst and the second agents use di�erent action rules. Denote wi
the word of the environment and let k be the di�erence between lengths of right
sides of action rules used by the �rst and the second agent. Because all action rules
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used in i� 1 previous steps were the same and all right sides of action rules are the
same, similar e�ect to the environmental word can be obtained after i� 1 steps by
derivations when both agents work like the �rst or like the second agent, respec-
tively. Follow the i�th derivation step in both cases:
(w;wnA) =)i�1 (wi�1; w1;i�1; w1;i�1; w3;i�1 : : : wn;i�1) =) (w0i; w1;i; w1;i; w3;i : : : wn;i),
(w;wnA) =)i�1 (wi�1; w2;i�1; w2;i�1; w3;i�1 : : : wn;i�1) =) (w00i ; w2;i; w2;i; w3;i : : : wn;i).
We have jwij � jw0ij = k and jw00i j � jwij = k, but no three-tuple of words from L
ful�lls that condition.

Points i) and ii) result to the deterministic behaviour of the system �0 with
respect to the development of the environment.

iii) w0 = a44 .
Assume that a44 is not the axiom and follow the derivation step producing word

a44
(ar; w1; w2; w3; : : : ; wn) =) (a44 ; u1; u2; : : : un). Then r � 45 � 4: PE = fa ! a4lg
so action rules of agents eliminate symbols of the environment. Action rules are
context-free, i.e. a! � each component eliminates at most one symbol. To produce
a44 from some ar 2 L we need at least 3 � 44 � 4 components. This blocks the
derivation of the word a44 contrary with the fact that L is in�nite. It gives w0 = a44 .

iv) l = 1 and PE = fa! a4g.
Due to points i)-iii) there is only one possible derivation for the environment in

�0, namely
a44 =)+ a45�4 =)+ a46 =)+ a47�5 =) : : :

In this derivation the only rule, a ! a4l , of the environment is used combined by
action rules of at most 44 agents.
The second part of the above derivation gives

46 = (45 � 4� n) � 4l + n � i � (45 � 4� n) � 4l � (45 � 4� 44) � 4l � (3 � 44 � 4) � 4l

This gives l < 2.
v) We determine the number of agents n of �0. For derivation steps producing

a45�4 and a47�5 we have
(44 � n) � 4 + i � n = 45 � 4; (46 � n) � 4 + i � n = 47 � 5;

n = 4=(4� i); n = 5=(4� i);
0 � i < 4; 1 � n � 4 i = 3; n = 5:

There is no n satisfying derived conditions. Therefore no M0EG system exists for
language L. 2
Similarly as in general case we can add to a language of eco-grammar system one
special word to obtain a language of context-free monoculture. The construction
of the eco-grammar system in the proof of Theorem 4.1 does not save the context-
freeness of the action rules. We can add to the alphabet of the environment VE new
letters u1; u2; : : : ; un and use construction analogous to that for general case. In the
proof of the next theorem we give another construction which does not increase the
size of at least binary environmental alphabet. There are more than two initialization
steps needed in this case.
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Theorem 7.3 Let L 2 L(0EG(n)) and jalph(L)j � 2. Then there is a word u 2
(alph(L))� such that L [ fug 2 L(M0EG(n)).

Proof: The case L 2 L(M0EG(n)) is trivial. Let L 2 L(0EG(n))� L(M0EG(n))
and L = L(�; w) for axiom w and for � = (E;A1; A2; : : : ; An), where E = (VE ; PE)
and Ai = (Vi; Pi; Ri; 'i;  i; wi;0); 0 � i � n. We choose u = ban�1 for a; b in VE and
we present M0EG(n) system �0 = (E;An) for L [ fban�1g, where axiom is ban�1
and each agent A = (V; P;R; ';  ; a) is determined by:

V = V1 [ V2 [ : : : [ Vn [ fag [ fai;j : 1 � i; j � ng for
(V1 [ V2 [ : : : [ Vn) \ (fag [ fai;j : 1 � i; j � ng) = ;;

P = P1 [ P2 [ : : : [ Pn [ fa! ai;1 : 1 � i � ng [
fai;j ! ai;j+1 : 1 � i � n; 1 � j � n� 1g [ fai;n ! wi;0 : 1 � i � ng;

R = R1 [R2 [ : : : [Rn [ fb! b; a! a; b! �; a! w0g;
' : '(u) = fa! ai;1 : 1 � i � ng[

fai;j ! ai;j+1 : 1 � i � n; 1 � j � n� 1g [ fai;n ! wi;0 : 1 � i � ng;
'(v) = '1(v) [ '2(v) [ : : : [ 'n(v) for v 2 L;

 :  (a) = fa! a; b! bg;
 (ai;i) = fb! bg for 1 � i � n� 1;
 (ai;j) = fa! ag for i 6= j; 1 � i � n; 1 � j � n� 1;
 (an;n) = fa! w0g;
 (ai;n) = fb! �g for 1 � i � n� 1;
 (x) =  i(x) for all x 2 V �i :

We describe the behaviour of the agents in �0. All agents start with a. In the
�rst step each agent gets its number as the index i in ai;1. Symbol ai;j is the state
of i-th agent after j steps of derivation. In the environment an agent in state ai;j
rewrites symbol b for i = j, otherwise it rewrites symbol a. Two agents can have
same number k, but after k steps both of the agents have to rewrite symbol b and
there is only one symbol b in the environment, derivation stops. Note that the state
of the environment is identical with the axiom during these steps. In a successful
derivation we have one agent of each type after n steps. The last agent rewrites the
symbol b to w0 and the other agents eliminate a-s. In the same time the states of
all agents are rewritten to their original starting state in �. Formally

(ban�1; an) =) (ban�1; a1;1; a2;1; : : : ; an;1) =) (ban�1; a1;2; a2;2; : : : ; an;2) =) : : : =)
(ban�1; a1;n�1; a2;n�1; : : : ; an;n�1) =) (ban�1; a1;n; a2;n; : : : ; an;n) =)
(w0; w1;0; w2;0; : : : ; wn;0)

�0 is in starting con�guration of system � and next steps follow derivation in �,
therefore L(�0; ban�1) = L(�; w) [ fban�1g: 2
We continue with comparison of the generative power of monocultures with di�erent
number of components. The restriction to context-free action rules destroys the
(partial) hierarchy on language classes introduced by the number of components of
systems.
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Theorem 7.4 L(X0EG(n)) and L(X0EG(m)) are incomparable but not disjoint
for X 2 fM;U;UMg and n;m 2 N;n 6= m.
Proof: Let n > m. fam; �g 2 L(UM0EG(m))� L(0EG(n)) by Lemma 3.2.

It is enough to prove Ln+1;n+1 2 L(UM0EG(n))�L(0EG(m)) where Ln+1;n+1 =
fa(n+1)i+n+1 : i 2 Ng. We have Ln+1;n+1 = L(�; a2n+2) for the simple unary
M0EG(n) system � = ((fag; fa! an+1g); fa! �gn).

To verify Ln+1;n+1 =2 L(0EG(m)) for n > m assume contrary that some 0EG(m)
system �0 = ((fag; PE); A01; A02; : : : ; A0m) generates Ln+1;n+1. By Lemma 3.1 we have
P 0E = fa! a(n+1)kg for some k.

Consider a derivation step (a(n+1)j+n+1; w1; w2; : : : ; wn) =) (w0; w01; w02; : : : ; w0n)
For n > m at least (n + 1)j + 2 symbols of the environment are rewritten by the
rule of the environment a! a(n+1)k to (n+ 1)j+k + 2(n+ 1)k symbols. Agents can
add some symbols c � 0 up to agents maximum cA.

(n+ 1)j+k + 2(n+ 1)k + c � (n+ 1)j+r + (n+ 1) for r � k,
c � (n+ 1)j+r � (n+ 1)j+k � 2(n+ 1)k + (n+ 1) < 0.
System �0 does not generate Ln+1;n+1 and there is no U0EG(m) system for

Ln+1;n+1. 2
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Abstract

Grammar systems and membrane computing are two well developed
branches of (theoretical) computer science, having many things in common,
but whose relationships and cross-fertilization possibilities were not yet sys-
tematically investigated. This paper starts such a systematic study, trying to
import features of (mathematical or computational) interest from one area to
another one. We consider in some detail the case of cooperating distributed
(CD) and parallel communicating (PC) grammar systems: the t-mode of coop-
eration from CD grammar systems can be used instead of the target indications
from cell-like P systems, while the use of multisets of strings in PC grammar
systems leads to a sort of tissue-like P systems (able to solve SAT in linear time).
The paper has a preliminary character; many open problems and research topics
are formulated.

1 Introduction

Grammar systems and membrane computing are two active areas of theoretical
computer science, with di�erent starting points and motivations, but with several
similarities (both areas deal with distributed computing devices, where such notions
as parallelism, cooperation, communication, decentralization are crucial).

The basic idea of grammar systems is to have several grammars cooperating to-
gether according to a speci�ed protocol in generating a unique language. The initial
motivations were related to two-level grammars and arti�cial intelligence issues (we
refer to [1] for details), but ideas from robotics, eco-systems, internet, distributed
and parallel computing were later incorporated. Two main classes of systems were
initially considered: cooperating distributed (CD) grammar systems, with the com-
ponent grammars working sequentially, in turns, on a common sentential form, and

Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varjú and Gy. Vaszil,
MTA SZTAKI, Budapest, pages 255 - 275, 2004.

255



parallel communicating (PC) grammar systems, where each component grammar
works on its own sentential form, and communicates on request with other com-
ponents. In the case of CD grammar systems, �ve basic cooperation protocols are
investigated, stating when a component can/must leave the sentential form to be
processed by the other components: at any time (the mode �), after at most, at
least, or a speci�ed number of steps (the modes � k;� k;= k, respectively, for a
speci�ed k), when no further rule can be used (the mode t). This latest mode will
be considered here, using it in order to control the communication among regions of
cell-like membrane systems.

In its turn, membrane computing starts from the goal of de�ning a computing
model inspired from the structure and the functioning of the living cell, hence it
is a branch of natural computing, a powerful trend now in computer science. In
short, in the compartments of a hierarchical arrangement of membranes one places
objects which evolve (in a maximally parallel manner) by means of rules which are
also localized in regions. In the basic variant of such systems (called P systems) one
works with symbol-objects, hence the evolution rules are multiset-processing rules,
but here we consider the case where the objects are structured and can be described
by strings over a given alphabet. Such P systems, with the objects processed by
usual context-free rewriting rules, were already considered in the literature (we refer
to [11] for details). In these systems, the string-objects are passed from a com-
partment to another one according to target commands associated with rewriting
rules; speci�cally, the rules are of the form X ! u(tar), where X ! u is a usual
context-free rule and tar is one of the indications here, in, out, with the meaning
that the string obtained after the use of the rule X ! u remains in the same region,
goes into a directly lower region, or exits the membrane, going to the surrounding
region, respectively.

Comparing the CD grammar systems and P systems, one can easily see the
similarities and the di�erences. It is also obvious that ideas from one type of systems
can be used in the functioning of the other type. Actually, the question of de�ning
the communication of strings among the regions of a P system based on principles as
used in CD grammar systems was formulated several times. In a di�erent context,
P systems (with symbol-objects) with limited parallelism, reminding the modes � k
and = k, were already investigated in [5], [7]. The case = 1 corresponds to P systems
with immediate communication (see [11]). In what follows, we investigate the case
of mode t (and we leave as a topic of research for the reader to consider the modes
�;� k;= k;� k for the case of string-objects P systems).

More exactly, we replace the target indication in, or the target indication out, or
both, by t: a string is processed in a given region until no further rule can be applied
to it in that region; then, it will go to an inner region, to the surrounding region,
or to any of these regions. We identify these cases with tin; tout; tgo, respectively.
(In the �rst two cases, the commands out; in, respectively, remain to be introduced
by rules, as usual in string-object P systems.) The power of P systems with these
types of communication commands is investigated, in comparison with the power of
CD grammar systems, of Chomsky grammars, and of Lindenmayer systems. The
results are as expected: universality for a small number of membranes, covering CF
and ET0L families at certain levels of the obtained hierarchies { without however
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knowing whether or not these results are optimal.
In what concerns the PC grammar systems, their natural membrane computing

counterpart are the tissue-like P systems, where the membranes are placed in the
nodes of a graph, and they communicate along a given set of channels (edges in
the graph). A P system uses however multisets of strings and communicates them
by means of target indications associated with the rewriting rules. In PC gram-
mar systems, one communicates on request, by means of query symbols. Thus,
an immediate idea is to consider PC grammar systems with multisets of strings
in each component, processed simultaneously; this can be also interpreted as a P
system with the communication done on request: when a component introduces
one or more query symbols in a string, then the rewriting of that string stops and
the queries are satis�ed by replacing the query symbols by all strings which do not
contain query symbols (if no such a string exists in the queried component, then
the string containing a query symbol which cannot be satis�ed disappears { it is
like replacing this query symbol by elements of an empty set) from the component
indicated by the query symbol, in all possible combinations (if, for instance, in a
string one introduces two query symbols, pointing to two components with two avail-
able strings each, then we get in total four strings in the receiving component). In
this way, the strings can be replicated, which suggests that such systems can solve
computationally hard problems in an e�cient way. We con�rm this expectation by
proving that SAT can be solved in this framework in a polynomial time.

We do not investigate here the power of multiset PC grammar systems but we
only show that systems with one component can already generate non-context-free
languages. It is highly probable that these systems are computationally universal,
they can characterize the family of recursively enumerable languages. Finding how
many components would be su�cient to this aim remains as an open problem.

Actually, several open problems and research topics are formulated below, and,
in some sense, this should be considered the main contribution of this preliminary
version of the paper: calling the attention to the fruitfulness of bridging grammar
systems area with membrane computing area.

2 Prerequisites

We introduce here some notation and terminology, but the reader is assumed to have
some familiarity with basic elements of formal language theory (regulated rewriting
included), grammar systems, and membrane computing, e.g., from the monographs
mentioned in the bibliography.

Our notations are as follows: V � is the free monoid generated by the alphabet
V with respect to the operation of concatenation; � is the empty string; the length
of x 2 V � is denoted by jxj, and jxjU is the number of occurrences in x of symbols
from U � V ; a Chomsky grammar is presented in the form G = (N;T; S; P ), where
N is the non-terminal alphabet, T is the terminal alphabet, S is the axiom, and P is
the set of rewriting rules; LIN;CF;CS;RE are the families of linear, context-free,
context-sensitive, recursively enumerable languages, respectively; ET0L is the fam-
ily of languages generated by extended tabled interactionless Lindenmayer (ET0L)
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systems.
In the universality proofs we will use the notion of a matrix grammar (with

appearance checking) in the strong binary normal form. Such a grammar will be
given as a tuple G = (N;T; S;M; F ), where N = N1[N2[fS;#g, with these three
sets mutually disjoint, and with the matrices in M in one of the following forms:

1. (S ! XA); with X 2 N1; A 2 N2;

2. (X ! Y;A! x); with X;Y 2 N1; A 2 N2; x 2 (N2 [ T )�,

3. (X ! Y;A! #); with X;Y 2 N1; A 2 N2,

4. (X ! �;A! x), with X 2 N1; A 2 N2; and x 2 T �.

Moreover, there is only one matrix of type 1 (that is why one uses to write it in the
form (S ! X0A0), in order to �x the symbols X;A present in it), and F consists
exactly of all rules A ! # appearing in matrices of type 3; there are at most
two symbols A 2 N2 which appear in rules of the form A ! # (we identify these
symbols with B(1) and B(2)); # is a trap-symbol, because once introduced, it is
never removed. A matrix of type 4 is used only once, in the last step of a derivation.

For each matrix grammar there is an equivalent matrix grammar in the strong
binary normal form, hence such grammars characterize RE.

For the sake of completeness, we give here some basic de�nitions from grammar
systems area.

A CD grammar system is a construct of the form � = (N;T; S; P1; : : : ; Pm),
where N;T are disjoint alphabets, S 2 N , and P1; : : : ; Pm are �nite sets of context-
free rules over N [ T (with N interpreted as the non-terminal alphabet and T the
terminal alphabet of the system). The sets Pi are called components of �, and their
number { m above { is the degree of the system.

The derivation relation according to a set Pi is de�ned as usual in the context-free
grammar Gi = (N;T; S; Pi) and denoted by)i, 1 � i � n. Then, for x; y 2 (N[T )�

we de�ne

x)t
i y i� x)�

i y and there is no z 2 (N [ T )� such that y )i z:

The language generated by � in the t-mode of cooperation is

Lt(�) = fw 2 T � j S )t
i1 w1 )t

i2 : : :)
t
ik wk = w;

for some 1 � i1; i2; : : : ; ik � m; k � 1g:

That is, the sentential form is processed by a component until no rule of that compo-
nent can be applied; then, another component, non-deterministically chosen, takes
the string and rewrites it; we start from the axiom S and we collect in the generated
language all strings over T .

The family of languages generated by CD grammar systems of degree at most
m � 1 in the t-mode of cooperation is denoted by CDm(t); if the number of compo-
nents is not restricted, then the corresponding family (hence the union of all families
CDm(t);m � 1) is denoted by CD�(t). The following relations are know:

CF = CD1(t) = CD2(t) � CD3(t) = CD�(t) = ET0L:
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That is, systems with one or two components characterize the context-free languages,
while three components already give the maximal power of such systems, namely, a
characterization of ET0L languages.

It is interesting to note that if the order of enabling the components of a CD
grammar system is controlled by a graph, then the power is not increased, still we
characterize ET0L (by systems with three components).

We introduce now the standard PC grammar systems (with one string in
each component), which are constructs of the form � = (N;K; T; (S1; P1); . . . ,
(Sm; Pm)); m � 1; where N; T; and K are pairwise disjoint alphabets (of non-
terminal symbols, terminal symbols, and query symbols, respectively), and for all
1 � i � m, Si 2 N (axioms) and Pi are �nite sets of context-free rewriting rules of
the form A! u, with A 2 N; u 2 (N [ T [K)�. Each (Si; Pi); 1 � i � m, is called
a component of �. One of the components is said to be the master of �: Without
any loss of generality, this can be the �rst one, (S1; P1).

For a system as above, an m-tuple (x1; : : : ; xm) with xi 2 (N [ T [K)�, 1 �
i � m, is called a con�guration of �. (S1; : : : ; Sm) is the initial con�guration.

PC grammar systems change their con�gurations by performing direct derivation
steps, in the following way. Let (x1; : : : ; xm) and (y1; : : : ; ym) be two con�gurations
of a system �: We say that (x1; : : : ; xm) directly derives (y1; : : : ; ym) (in mode�, to
be speci�ed below), denoted by (x1; : : : ; xm))� (y1; : : : ; ym), if one of the following
two cases holds:

1. There is no xi which contains any query symbol, that is, xi 2 (N [T )� for all
1 � i � m: Then, for each i; 1 � i � m, xi )i yi (yi is obtained from xi by a direct
derivation step in component i) for xi =2 T �, and xi = yi for xi 2 T �.

2. There is some xi; 1 � i � m; which contains at least one occurrence of
a query symbol. Then, for each xi; 1 � i � m; with jxijK 6= 0 we write xi =
z1Qi1z2Qi2 : : : ztQitzt+1, where zj 2 (N [T )�; 1 � j � t+1, and Qil 2 K; 1 � l � t:
If jxil jK = 0 for each l; 1 � l � t; then yi = z1xi1z2xi2 : : : ztxitzt+1 and (a) in
returning systems we have yil = Sil , while (b) in non-returning systems we have
yil = xil ; 1 � l � t. If jxil jK 6= 0 for some l; 1 � l � t; then yi = xi: For all
j; 1 � j � m; for which yj is not speci�ed above, yj = xj .

In the returning mode, � = R, while in the non-returning mode we write � = nR.
Let )�

� denote the reexive and transitive closure of )�; � 2 fR;nRg. Then,
the language generated by the system � (with the master component (S1; P1)) in the
mode � is L�(�) = fx 2 T � j (S1; : : : ; Sm) )�

� (x1; : : : ; xm), for some x1; : : : ; xn 2
(N [ T [K)� such that x = x1g.

Let the class of languages generated by returning PC grammar systems having
at most m context-free components be denoted by RPCmCF and the corresponding
family of languages generated in the non-returning mode be denoted by nRPCmCF .
When the number of components is not limited, we replace the subscript m with �.

The following relations are know (see [11], [3], [9]):

1. CF = RPC1CF = nRPC1CF � (RPC2CF \ nRPC2CF ):

2. RE = RPC5CF = nRPC�CF .

That is, systems with one component generate only context-free languages, two com-
ponents su�ce for generating non-context-free languages, while returning systems
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with 5 components and non-returning systems (with no bound on the number of
components) characterize the recursively enumerable languages.

3 From CD to P: P Systems Using the t-Communication

We pass now to exploring the possibility to use features of grammar systems in P
systems, and conversely. In this section we consider the way from CD to P, namely,
we use the t-mode of cooperating in a CD grammar system as a substitute for target
indications in, out in a P system.

We introduce the classes of P systems we are going to investigate, for all cases
where the t-mode can be used as a communication mode, then we illustrate the
de�nition with some examples; results about the power of the obtained systems are
given (in most cases, without a proof) in a diagrammatic form (it is highly possible
that several of these results can be improved).

An extended P system (of degree m � 1) with string-objects and t-com-
munication is a construct

� = (V; T; �; (w; i0); R1; : : : ; Rm);

where:

1. V; T are alphabets such that T � V ;

2. � is a membrane structure (of degree m, with the membranes labeled in a
one-to-one manner with elements of a set H; in this de�nition we use H =
f1; 2; : : : ;mg);

3. w is a non-empty string over V , present in region i0 of �, for some 1 � i0 � m;

4. R1; : : : ; Rm are �nite sets of evolution rules associated with the m regions
(membranes) of �; in what follows, the rules are of the forms a ! u or a !
u(tar), where a 2 V , u 2 V �, and tar 2 fin; outg. In a given system at most
one of the target indications in; out may be present in the rules.

We note the di�erence between the de�nition above and that of usual P systems with
string-objects, where several axiom-strings are present in the system at the beginning
of any computation. Because we do not consider here halting computations, the
evolution of each string is independent from the evolution of other strings; also in
order to be closer to the form of a CD grammar system, we consider here only
one string initially present in the system. This means that in any moment of a
computation there is only one string in the system, which is either eventually sent
into the environment, or remains forever inside. This string is rewritten by the rules
from the region where it is placed; in each step, only one rule is applied (hence the
rewriting is performed in a sequential manner); if a string cannot be rewritten, then
it remains unchanged.

New here is also the way the strings are communicated among regions. If a
string is rewritten by a rule a ! u(in), then the string obtained after rewriting is
immediately moved to one of the directly inner regions, non-deterministically chosen;
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if no inner membrane exists, then such a rule cannot be applied. If the used rule
was a! u(out), then the resulting string is immediately sent out of the membrane
where it was produced. If we use a rule without any target indication, then the
resulting string remains in the same region if it can be further rewritten there, or it
exits if no local rule can be applied to it, being communicated to one of the adjacent
regions as speci�ed below.

Three cases (three types of systems) are distinguished:

1. A system which uses rules of the form a ! u(in) (hence not also of type
a ! u(out)) is said to be of tout type; a string which cannot be further
rewritten in a given region is communicated to the upper region, that is, the
t-mode from CD grammar systems enforces the out target command.

2. A system which uses rules of the form a ! u(out) (hence not also of type
a! u(in) is said to be of tin type; a string which cannot be further rewritten
in a given region is communicated to one of the directly lower regions, that is,
the t-mode from CD grammar systems enforces the in target command; if the
membrane is elementary, then the string remains forever in that region.

3. A system which uses only rules of the form a ! u (hence without any target
command) is said to be of tgo type; a string which cannot be further rewritten
in a given region is communicated either to the upper region or to one of the
directly lower regions, non-deterministically choosing the direction and the
region.

In all cases, if a string arrives in a region where no rule can be applied to it, then
this is interpreted as a maximal derivation in that region and the string is moved
immediately up or down in the membrane structure, according to the type of the
system.

By using the rules and moving the strings as speci�ed above, we get a compu-
tation. The language generated by the system consists of all strings over T which
are sent out of the system during any possible computation. We note again that we
do not work here with halting computations { a string sent into the environment
cannot be further processed, hence its evolution is �nished.

The language generated by a system � is denoted by L(�). The family of all
languages generated by systems of degrees at mostm � 1 of type � 2 ftout; tin; tgog
is denoted by ELSPm(�); if we use systems of an arbitrary degree, then we replace
the subscript m with �; when we use non-extended systems, that is with T = V , the
front letter E is removed.

We illustrate the previous de�nitions with two simple examples. Consider the
system { of type tout:

� = (V; T; �; (w; i0); R1; R2); where

V = fa; b; c; c0; d; d0g;

T = fa; bg;

� = [1[2 ]2]1;

w = cd; i0 = 1;
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R1 = fc! ac0b(in); d! ad0b; d0 ! d0;

c! ab; d! abg;

R2 = fc0 ! c; d0 ! dg:

Assume that we have a string ancbnamdbm in region 1, with some n � m � 0;
initially, n = m = 0. If we apply the rule c ! ac0b(in), then the string goes
immediately to region 2; if we apply �rst the rule d! ad0b, then the string remains
in region 1, where it can evolve forever by means of rule d0 ! d0, hence, in order
to proceed further, we have to also use the rule c ! ac0b(in). Thus, we send to
region 2 a string of the form an+1c0bn+1amdbm an+1c0bn+1am+1d0bm+1. In region
2 we have to perform a maximal derivation, hence we return to region 1 a string
an+1cbn+1am+idbm+i, for i 2 f0; 1g. The process is iterated. If we use the rules
c! ab; d! ab from region 1, then we send out a terminal string. If only the �rst
of these rules is used, then the computation will produce no result, because we obtain
a string of the form ancbnamd0bm which cannot leave region 1. If we use only the rule
d! ab, then the computation will continue by increasing the number of occurrences
of a and b in the pre�x anbn of the string. Therefore, L(�) = fanbnambm j n � m �
1g. Note that this is not a context-free language and that the generated language
is the same if we consider T = V (the non-extended counterpart of the system):
as long as any symbol from V � T is present, the string can be rewritten, hence it
cannot leave the system.

A system which generates a non-context-free language can be easily constructed
also for the tin case. We consider the system

� = (fa; b; b0; c; c0g; fa; b; cg; [1[2 ]2]1; (bc; 1); R1; R2); where

R1 = fb! ab0a; c! ac0a; c00 ! aca(out)g;

R2 = fb0 ! b; c0 ! c(out); c0 ! c00(out)g:

The string is again repeatedly moved across membrane 2, increasing either both
\blocks" anbn or only the second one (this latter case happens when in region 2 we
do not use the rule b0 ! b but only the rule c0 ! c(out)). When sent out, because
c0 is not a terminal symbol, the use of the rule c00 ! aca(out) ensures the increase
of the second \block", hence the generated language is L(�) = fanbanamcam j m >
n � 1g.

Thus, the families LSP2(tout); LSP2(tin) contain non-context-free languages
(passing from the language generated by the non-extended version of a system to
the extended one corresponds to an intersection with T �, and CF is closed under
intersection with regular languages). This result can be strengthened: these fami-
lies also contain languages which are not semilinear, but we omit the proof of this
assertion.

4 The Power of P Systems of tout and tin Types

The relationships from the diagram from Figure 1 hold (the arrows indicate inclu-
sions which are not known to be proper, while the arrows marked with a dot indicate
strict inclusions; the unrelated families are not necessarily incomparable).
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Figure 1.
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We give here the proofs for two of the relations from this diagram, namely, for
the universality results.

Lemma 4.1 ELSP6(tout) = RE:

Proof. We start from a matrix grammar in the strong binary normal form, G =
(N;T; S;M;F ), with k matrices of the formmi : (X ! Y;A! u) and hj matrices of
the formmi : (X ! Y;B(j) ! #); j = 1; 2. In all terminal matrices (X ! �;A! u)
we replace the �rst rule with X ! f , where f is a new symbol.

We construct the P system of degree 6

� = (V; V; �; (X0A0; 1); R1; : : : ; R6); where

V = fX;X 0; X 00; X 000 j X 2 N1 [ ffgg [ T

[ fXi;j ; X 0
i;j ; X

00
i;j ; X

000
i;j ; �Xi;j j mi : (X ! Y;A! u); 1 � i � k; 0 � j � kg

[ fAi;j ; A0
i;j ; A

00
i;j ; A

000
i;j j mi : (X ! Y;A! u); 1 � i � k; 0 � j � kg

[ fX(j)
i j mi : (X ! Y;B(j) ! #); 1 � i � kj ; j = 1; 2g;

� = [1[2[3[4 ]4]3]2[5 ]5[6 ]6]1;

and with the sets of rules given in Table 1 (in all cases, 1 � j < i and s = 1; 2):
We also add the following rules to set R1:

X ! X; X 2 N1;

A! A; A 2 N2;

f 000 ! �:

Membranes 5 and 6 are used for simulating the matrices mi : (X ! Y;B(s) ! #),
for s = 1; 2, respectively, while membranes 2, 3, 4, together with the skin region,
simulate the matrices of the form mi : (X ! Y;A! u), 1 � i � k.

Speci�cally, the string Xw from the skin region is sent to one of the directly
inner membranes by using one of the rules A ! Ai;0(in); X ! X(s)

i (in). If the
string is sent to a \wrong" membrane, then it never leaves that membrane, because
of the rules of the form �! �.

If we want to simulate a matrix mi : (X ! Y;A! u), hence the string has the
form Xw1Ai;0w2 and it has arrived in membrane 2, then we continue by using a
rule X ! �Xr;0(in) and the string �Xr;0w1Ai;0w2 is sent to membrane 3. From here,
it is sent (with the bar of X removed) to membrane 4, where the second subscript
of symbols X and A is increased by one. Assume that we are in a stage when a
string X 0

r;r0w1A0
i;i0w2 is sent from region 4 to region 3. The string can exit only after

having both X and A double primed, then from membrane 2 it is sent to the skin
region, with A being triple primed. Now, in the skin region we can use either the
rule X 00

r;r0 ! X 000
r;r0(in), and this is the correct continuation, or a rule of the form

B ! Bt;0(in). In the latter case, the string will arrive in region 2 and will remain
forever here, rewritten by the rule Bt;0 ! Bt;0. In the former case, the string is sent
to region 3 by means of the rule X 000

r;r0 ! Xi;j(in) from R2, and then to region 4 by
means of the rule A000

i;i0 ! Ai;i0(in) from R3. In this way, the process of increasing
the second subscript of the two symbols X and A is iterated.
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Table 1: The rules of the system from the proof of Lemma 4.1

mi : (X ! Y;A! u) mi : (X ! Y;B(s) ! #)
R1 A! Ai;0(in) X ! X(s)

i (in)
X 00

i;j ! X 000
i;j(in)

Xi;j ! Xi;j(in)
Y 000 ! Y

R2 X ! �Xi;0(in) X(s)
i ! X(s)

i
X 000

i;j ! Xi;j(in)
A00
i;j ! A000

i;j
Ai;0 ! Ai;0
Y 00 ! Y 000

R3 �Xi;0 ! Xi;0(in)
X 0

i;j ! X 00
i;j

A0
i;j ! A00

i;j
A000
i;j ! Ai;j(in)

Y 0 ! Y 00

R4 Xi;j ! Xi;j+1
Ai;j ! Ai;j+1
Xi;i ! Y 0

Ai;i ! u
�Xi;0 ! �Xi;0
A000
i;j ! A000

i;j
R5 Xi;0 ! Xi;0 X(1)

i ! Y
Ai;0 ! Ai;0 X(2)

i ! X(2)
i

X 000
i;j ! X 000

i;j B(1) ! B(1)

R6 Xi;0 ! Xi;0 X(2)
i ! Y

Ai;0 ! Ai;0 X(1)
i ! X(1)

i
X 000

i;j ! X 000
i;j B(2) ! B(2)

If both the symbols X and A get a subscript i; i, then the matrixmi is simulated.
Assume that only X gets identical subscripts, hence we send from membrane 4

to membrane 3 a string Y 0w1A0
i;i0w2; we pass to Y 00w1A00

i;i0w2, which is sent to region
2, where we produce Y 000w1A000

i;i0w2 which is sent to the skin region. The string cannot
exit the system, because of the rules Y 000 ! Y; Y ! Y , hence in order to continue
we have to apply a rule B ! Bt;0(in). If Y is present (hence the rule Y 000 ! Y was
used), then we can move the string to membrane 3, otherwise we get stuck, the rule
Bt;0 ! Bt;0 can be used forever. If the string �Ys;0w1A000

i;i0w2 is present in membrane
3, then is will be sent to membrane 4 by using one of the rules �Ys;0 ! Ys;0(in) (and
then A000

i;i0 is still present) and A000
i;j ! Ai;j(in) (and then �Xs;0 will be present). In

either case, the string remains forever in membrane 4.
Assume now that we use the rule Ai;i ! u from R4 without also using the rule

Xi;i ! Y 0, hence we send to membrane 3 a string X 0
r;r0w. It will pass to membrane
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2 in the form X 00
r;r0w and from here it will go unchanged to the skin region. If we

apply here a rule B ! Bs;0(in), then the string will get stuck in region 2. If we
apply the rule X 00

r;r0 ! X 000
r;r0(in) from R1, then the string returns to region 2, here

the symbol X loses the primes and the string is sent to region 3, where nothing can
happen. The string is sent out to region 2, and from here to region 1, unchanged,
but it comes back because of the rule Xr;r0 ! Xr;r0(in). If a rule B ! Bs;0(in) is
used, then the string arrives in region 2 and it never exits.

Therefore, the simulation of the matrix mi should be complete, otherwise we get
no result.

If the matrix was terminal, then the string should be terminal, otherwise it is
sent to region 2 and gets stuck there, because of the rules Ai;0 ! Ai;0.

If we want to simulate a matrix mi : (X ! Y;B(j) ! #), hence a rule X ! X(j)
i

is used, then either the string gets stuck in membranes 2 or 7 � j, or it arrives in
the right membrane 4 + j. If the symbol B(j) is present, then the string remains
forever in this membrane, otherwise it can exit, after using the rule X(j)

i ! Y , which
correctly simulates the matrix.

Because of the rules A ! A;X ! X from the skin region, only strings which
are terminal with respect to G can be sent out. Consequently, L(G) = L(�). 2

Lemma 4.2 ELSP9(tin) = LSP11(tin) = RE:

Proof. Consider �rst the extended case. In order to prove the inclusion RE �
ELSP9(tin), we start again from a matrix grammar in the strong binary normal
form, G = (N;T; S;M;F ), with k matrices of the form mi : (X ! Y;A ! u) and
hj matrices of the form mi : (X ! Y;B(j) ! #); j = 1; 2. In all terminal matrices
(X ! �;A! u) we replace the �rst rule with X ! f , where f is a new symbol.

We construct the P system of degree 9

� = (V; T; �; (X0A0; 1); R1; : : : ; R9); where

V = fX;X 0; X 00; X 000 j X 2 N1 [ ffgg [ T

[ fXi;j ; X 0
i;j ; X

00
i;j ; X

000
i;j ; �Xi;j j mi : (X ! Y;A! u); 1 � i � k; 0 � j � kg

[ fAi;j ; A0
i;j ; A

00
i;j ; A

000
i;j j mi : (X ! Y;A! u); 1 � i � k; 0 � j � kg

[ fX(j)
i j mi : (X ! Y;B(j) ! #); 1 � i � kj ; j = 1; 2g;

� = [1[2[3 ]3[6[7 ]7]6[8[9 ]9]8]2[4[5 ]5]4]1;

and with the sets of rules given in Table 2 (in all cases, 1 � j < i and s = 1; 2):
We also add the rule f 00 ! �(out) to set R1. (In all rules associated with a

matrix mi : (X ! Y;A ! u) where Y = f , the corresponding variants of Y are
variants of f { primed, barred, etc.)

The work of the system � is similar to the work of the system from the proof of
Lemma 4.1: membranes 6, 7 simulate matrices mi : (X ! Y;B(1) ! #), membranes
8, 9 simulate matrices mi : (X ! Y;B(2) ! #); the interplay of regions 1, 2, 3, 4, 5
ensures the correct simulation of matrices without appearance checking rules (with
the same technique of double subscripts, which ensures the simulation of both rules
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Table 2: The rules of the system from the proof of Lemma 4.2

mi : (X ! Y;A! u) mi : (X ! Y;B(s) ! #)
R1 Ai;j ! A0

i;j+1 Y (i) ! Y (i)

Xi;j ! X 0
i;j+1

Ai;i ! Ai
Xi;i ! �Y
Y 00 ! Y

R2 X ! Xi;0 X ! Y (s)

X 0
i;j ! X 00

i;j
X 000

i;j ! Xi;j(out)
A0 ! Ai;0(out)
A0
i;j ! Ai;j

Ai ! Ai
�Y ! �Y

R3 X 00
i;j ! X 000

i;j(out)
A! A0(out)

R4 X 0
i;j ! X 0

i;j
A0
i;j ! A0

i;j
�Y ! Y
Ai ! u
Y 0 ! Y 00(out)

R5 Y ! Y 0(out)
R4+2s Xi;0 ! Xi;0 Y (s) ! Y

Ai;j ! Ai;j Y (3�s) ! Y (3�s)

X 00
i;j ! X 00

i;j B(s) ! B(s)

Y 0 ! Y (out)
R5+2s Y ! Y 0(out)

of the matrix). The task of checking the details is left to the reader and we only
mention that L(G) = L(�).

For the non-extended case, we consider two additional membranes, with labels
c1; c2, with the following rules:

Rc1 = fA! A j X 2 N2g [ ff ! f 000(out)g;

Rc2 = ff 0 ! f(out)g;

and the rule f 00 ! �(out) from R1 is replaced with f 000 ! �(out).
All the used symbols are introduced in the alphabet of �; the terminal alphabet

is equal to the total alphabet. A string can exit the system only after passing through
membranes c1; c2, which are used to check whether or not the string is terminal {
only in the a�rmative case it can be sent out of the system. 2

We close this section with the remarks that the P systems of type tgo are particular
cases of graph controlled CD grammar systems: after each maximal rewriting in
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a membrane, the string leave that region, going up or down in the graph which
described the membrane structure; that is, we have a tree controlled CD grammar
system. Because we can generate each ET0L language by such a system with three
components (using extended systems of type tgo), all families obtained in this case
are known: CF for one or two components, ET0L for at least three components.

5 In Between PC and P: PC Grammar Systems with

Multisets of Strings

We pass now to the bridge between PC grammar systems and P systems. The devices
we de�ne can be considered at the same time as tissue P systems with string-objects
and communication on request, or as PC grammar systems with multisets of strings
present in each component. We use below the second terminology, but the way of
presenting our devices is inuenced also by the style used in membrane computing.

A PC grammar system (of degree m � 1) with multisets of strings (in short, an
MPC grammar system) is a construct

� = (N;K; T;M1; : : : ;Mn; R1; : : : ; Rm; io);

where:

1. N;K; T are pairwise disjoint alphabets, with K = fQ1; : : : ; Qmg (the elements
of K are called query symbols and they are associated with the n components
of �); we denote V = N [ T [ T ;

2. M1; : : : ;Mm are �nite multisets of strings over N [ T ;

3. R1; : : : ; Rm are �nite sets of context-free rules of the form A! u, with A 2 N
and u 2 V �;

4. io 2 f1; 2; : : : ;mg (the master/output component of �).

The work of such a system is a combination of rewriting in a PC grammar system (in
the non-returning mode) and of evolution in a tissue P system with string-objects.
Speci�cally, we start from the initial con�guration (M1; : : : ;Mm), and we pass from
a con�guration (M 0

1; : : : ;M
0
m), consisting of multisets of strings over N [ T placed

in the m components of the system, to another con�guration (M 00
1 ; : : : ;M

00
m) in the

following way. Each string from each multiset M 0
i which can be rewritten according

to the rules from Ri; 1 � i � m, is rewritten. This means the use of one rule
from Ri, non-deterministically chosen, for each string (at the level of each string,
the rewriting is sequential). The strings which cannot be rewritten (no rule can be
applied to them) remain unchanged. If no query symbol is introduced (by a given
choice of rules), then the resulting multisets of strings are M 00

i ; 1 � i � m.
Note that the rewriting of strings is maximally parallel, in the sense that all

strings which can be rewritten must be rewritten, and that the process is non-
deterministic, the choice of rules and the places where the rules are applied can lead
to several possible new multisets of strings.
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If any query symbol is introduced, then a communication is performed: each
symbol Qj introduced in a string from component i is immediately replaced by all
strings from the component j which do not contain query symbols. If in component
j there are several strings without query symbols, then each of them is used, hence
the string from component i is replicated (with the occurrence of Qj replaced with
strings from component j). If there are several query symbols in the same string
from component i, then all of them are replaced (we also say that they are satis�ed)
at the same time, in all possible combinations.

If a query symbol Qj cannot be satis�ed (either component j contains no string,
or all strings from component j contain query symbols), then the string containing
Qj is removed (it is like replacing it with the strings from an empty language).

In this way, in each step all query symbols introduced by the rewriting rules
disappear, they are either satis�ed (replaced by strings without query symbols),
or they disappear together with the string which contain them (in the case when
they cannot be satis�ed). The multisets obtained in this way are M 00

1 ; : : : ;M
00
m,

constituting the next con�guration of the system.
Note the di�erence from the way the communication is de�ned in a standard

PC grammar system and in an MPC grammar system. In our case, a query symbol
cannot wait unsatis�ed until the requested component contains a string without
query symbols (hence the con�gurations are m-tuples of strings over N [T , without
occurrences of query symbols). This detail, rather natural for the case when we work
with multisets of strings, will be crucial for the work of the system from Theorem
6.1, because it entails a nice way of \protecting" a string against communication:
if we introduce a query symbol in a string x from a component j, asking for any
string z which we know to be over N [ T , even if that string x is requested by
a component i, it cannot be moved from component j to component i; the query
symbol from component i is either satis�ed by other strings from component j, or
the string containing it disappears.

We also note that the way the system works corresponds to the non-returning
mode from standard PC grammar systems, that is, we do not return to Mj after
communicating strings from component j to other components { not even in the
case when the component j will contain the empty multiset { but we continue from
the remaining strings, if any.

We leave the task of formally de�ning a transition between two con�gurations in
the system � to the reader. All terminal strings produced in component io during
any possible computations in � is accepted in the language L(�) generated by the
system �. The family of all languages generated in this way by MPC grammar
systems of degrees at most m � 1 is denoted by MPCmCF ; if we use systems of
an arbitrary degree, then we replace the subscript m with �. (As for standard PC
grammar systems, we can consider MPC grammar systems with rules which can be
regular, linear, metalinear, etc, that is why we have preserved the indication CF
in the notation; the investigation of such classes of systems remains as a research
topic.)

We close this section with an example, proving the somewhat surprising re-
sult that MPC systems with only one component can generate non-context-free
languages.
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Let us consider the MPC system (of degree 1)

� = (fS;Ag; fQ1g; fa; bg; f(S; 1); (A; 1); (b; 1)g; R1; 1); with

R1 = fS ! aSa; S ! Q1; A! A; A! Q1Q1g:

We start with three strings in the system, S;A, and b. From S we can generate
anSan, for any n � 0, then we have to replace S with Q1. If at the same time
we have produced Q1Q1 from A, then we simultaneously get anban and bb, both of
them included in L(�), and the computation stops.

If A is still present, then we get the strings anAan and anban, and A and b are
\consumed". The string anAan will eventually lead to anQ1Q1an, and hence to
ananbananbanan, which is in L(�).

If from A we produce Q1Q1 while both anSan and b are present, then we obtain
four strings: anSananSan; anSanb; banSan; bb (and b is no longer present). The �rst
three strings will be rewritten by the rule S ! aSa for a number of steps, and
eventually the rule S ! Q1 is used. The query symbol will be either replaced by a
string which contains again S, hence the process continues, or by bb. Consequently,
if any terminal string is obtained on this path, then it contains the substring bb.

Consequently, L(�)\a+ba+ba+ = fa2nba2nba2n j n � 1g, which is not a context-
free language.

It is highly expected that MPC systems with context-free rules can characterize
the recursively enumerable languages, but at this moment we do not have a proof
of this assertion.

6 The E�ciency of MPC Grammar Systems

We show now how the possibility of MPC systems to create exponentially many
strings in a linear time can be used for solving computationally hard problems in
a polynomial time. The framework is that customary in membrane computing (see
[11] and, especially, the formal approaches from [12], [13]). Briey speaking, we
work with conuent systems, constructed in a semi-uniform manner; starting from
a given instance of a decision problem, we construct in a polynomial time (by a
Turing machine) an MPC system which always stops in a known number of steps,
in spite of a possible non-deterministic behavior, and all computations give the
same result, which is the answer to the problem (that is, the system is also sound
and complete). The result will be obtained in the output component; for decision
problems, the answer will be yes if and only if in a speci�ed step this component
will contain a speci�ed string.

We illustrate this strategy by solving the satis�ability problems for propositional
formulas in the conjunctive normal form, SAT.

Theorem 6.1 SAT can be solved in linear time by MPC grammar systems.

Proof. Let us consider a propositional formula  = C1 ^ : : : ^ Cm, consisting of
m clauses Cj = yj;1 _ : : : _ yj;kj , 1 � j � m, where yj;i 2 fxl;:xl j 1 � l � ng,
1 � i � kj (there are used n variables).
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For each i, 1 � i � n, let us denote by true(; ti) the string cj1cj2 : : : cjs indicating
the clauses in  which contain xi, and by true(; fi) the string cj1cj2 : : : cjs of clauses
in  which contain :xi (therefore, these strings are over the alphabet fci j 1 � i �
ng).

We construct the MPC system (of degree 3n + 3m + 2, with the components
labelled with 0; 1:1; 1:2; 1:3; : : : ; i:1; i:2; i:3; . . . , n:1; n:2; n:3; 1; 10; 100; . . . , m;m0;m00;
m+ 1)

� = (N;K; T;M0;M1:1; : : : ;Mm00 ;Mm+1; R0; R1:1; : : : ; Rm00 ; Rm+1;m+ 1);

N = fai j 1 � i � 3n+ 2m+ 1g

[ fa0i; a
00
i j 1 � i � 2ng

[ fti; fi j 1 � i � ng

[ fci j 1 � i � mg

[ fbg;

K = fQ0; Qm+1g

[ fQi:1; Qi:2; Qi:3 j 1 � i � ng

[ fQi; Qi0 ; Qi00 j 1 � i � mg;

T = fdg;

M0 = fbg;

Mi:1 = Mi:2 =Mj =Mj0 =Mm+1 = fa1g; for all 1 � i � n; 1 � j � m;

Mi:3 = fa0i; a
00
i g; for all 1 � i � n;

Mi00 = fdg; for all 1 � i � m;

R0 = ;;

R1:1 = fa1 ! Q0; b! t1bg;

R1:2 = fa1 ! Q0; b! f1bg;

R1:3 = fa01 ! a02; a
00
1 ! a002; a

0
2 ! Q1:1; a002 ! Q1:2g;

Ri:1 = faj ! aj+1 j 1 � j � 2(i� 1)g

[ fa2i�1 ! Qi�1:3; b! tibg; for all i = 2; 3; : : : ; n� 1;

Ri:2 = faj ! aj+1 j 1 � j � 2(i� 1)g

[ fa2i�1 ! Qi�1:3; b! fibg; for all i = 2; 3; : : : ; n� 1;

Ri:3 = fa0j ! a0j+1; a
00
j ! a00j+1 j 1 � j � 2i� 1g

[ fa02i ! Qi:1; a002i ! Qi:2g; for all i = 2; 3; : : : ; n� 1;

Rn:1 = faj ! aj+1 j 1 � j � 2(n� 1)g

[ fa2n�1 ! Qn�1:3; b! tng;

Rn:2 = faj ! aj+1 j 1 � j � 2(n� 1)g

[ fa2n�1 ! Qn�1:3; b! fng;

Rn:3 = fa0j ! a0j+1; a
00
j ! a00j+1 j 1 � j � 2n� 1g

[ fa02n ! Qn:1; a002n ! Qn:2g

[ fti ! true(; ti); fi ! true(; fi) j 1 � i � ng;

R1 = faj ! aj+1 j 1 � j � 3ng
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[ fa3n+1 ! Qn:3; c1 ! Q100g;

R10 = faj ! aj+1 j 1 � j � 3n+ 1g

[ fa3n+2 ! Q1g;

Ri = faj ! aj+1 j 1 � j � 3n+ 2(i� 1)g

[ fa3n+2(i�1)+1 ! Qi�1; ci ! Qi00g; for all i = 2; 3; : : : ;m;

Ri0 = faj ! aj+1 j 1 � j � 3n+ 2(i� 1) + 1g

[ fa3n+2(i�1)+2 ! Qig; for all i = 2; 3; : : : ;m;

Ri00 = ;; for all i = 1; 2; : : : ;m;

Rm+1 = faj ! aj+1 j 1 � j � 3n+ 2mg

[ fa3n+2m+1 ! Qmg:

The system works as follows. All symbols ai; a0i; a
00
i are counters, used for the syn-

chronization of the computation. The components i:1; i:2; i:3 are used for expanding
the variable xi, so that in component n:3 we get all 2n truth-assignments for the n
variables in the form of strings �1�2 : : : �n, with �i 2 fti; fig, with ti indicating the
value true and fi indicating the value false. In the same component n:3 one also
identi�es for each truth-assignment the sequence of clauses which are satis�ed; this
leads to 2n strings over the alphabet fci j 1 � i � mg. These strings are examined in
components i; i0; i00 in order to see whether at least one string exists which contains
all ci; 1 � i � m. If such a string exists, then a string over fci j 1 � i � mg[fdg will
be present in component m+ 1 after step 3n+ 2m+ 1, indicating that the formula
is satis�able; if no string of this form will be present in component m+ 1 after step
3n+ 2m+ 1, then  is not satis�able.

Let us now examine in a closer manner the computations in �.
In the �rst step, both components 1.1, 1.2 introduce Q0, hence b from component

0 is replicated and sent to the two components; here, b is replaced by t1b and
f1b, respectively, corresponding to the true and false values for x1. Note that b is
reproduced. In the �rst step, the component 1.3 increases the counters, while in the
second step one uses the rules a02 ! Q1:1; a002 ! Q1:2. The strings from components
1.1 and 1.2 are moved to component 1.3. From now on, components 1.1 and 1.2 will
be empty.

During the �rst two steps, components 2.1 and 2.2 (actually, all components of
the system where counters are present) just increase the counters. In step 3, both
components 2.1 and 2.2 ask for the strings of component 1.3, hence these strings are
replicated and sent to components 2.1 and 2.2. We have in each of these components
the strings t1b; f1b, hence in the fourth step we use the rule b ! t2b in component
2.1 and the rule b! f2b in component 2.2. The strings we obtain are t1t2b; f1t2b in
component 2.1, and t1f2b; f1f2b in component 2.2. At the same time (hence in step
4), component 2.3 asks for all these strings, hence component 2.2 will contain now
the strings t1t2b; t1f2b; f1t2b; f1f2b, which means that the �rst two variables were
expanded (in four steps).

In general, in 2i steps, we expand the �rst i variables x1; : : : ; xi, and this is
true also for i = n. After obtaining all 2n truth-assignments �1�2 : : : �n, with
�i 2 fti; fig, in component n:3 we use the rules ti ! true(; ti); fi ! true(; fi).
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Each string has length n, hence we will have n steps to perform in order to replace
each ti; fi by the sequence of satis�ed clauses. (Note that it is possible that the same
ti; fi satis�es none, one, or several clauses, hence the strings over fcj j 1 � j � mg we
obtain now can be of any length between zero { when a truth-assignment satis�es no
clause { to nm { the case of a truth-assignment where each ti; fi satis�es all clauses.)

After these 3n steps, we pass to examining all the obtained strings, checking
whether at least one exists which contains all ci; 1 � i � m. During the 3n steps,
components j; j0, j = 1; 2; : : : ;m, have just increased the counters. In step 3n+1, in
component 1 we use the rule a3n+1 ! Qn:3, which brings all strings from component
n:3 into component 1. In all �rst 3n + 1 steps, component 10 has increased the
counters. In step 3n + 2 we can use the rule c1 ! Q100 in component 1 (and this
is obligatory for each string which contains the symbol c1) and, simultaneously, the
rule a3n+2 ! Q1 in component 10. In this way, all strings which contain at least one
occurrence of c1 will contain now the query symbol Q100 , while the strings which do
not contain c1 remain unchanged (hence they contain no query symbol). Therefore,
all strings which do not contain the query symbol are \cleaned" from component 1,
and moved to component 10. Simultaneously, all strings which were \protected" by
the symbol Q100 will replace Q100 by d and will remain in component 1.

In the next step, component 2 will request all strings from component 1 (in
the �rst 3n + 2 steps, this component has only increased the counters { like all
components i; i0 for i = 2; 3; : : : ;m;m + 1). The process is iterated, checking in
the same manner whether c2; c3; : : : ; cm are present. The checking takes two steps
for each clause. After 2m steps (added to the 3n steps of producing the strings
of satis�ed clauses) we have in component m the strings which correspond to the
truth-assignments which have satis�ed all clauses { maybe none, if no such a truth-
assignment exists. Therefore, if any string survives the checking phase, then in step
3n+ 2m+ 1, when component m+ 1 uses the rule a3n+2m+1 ! Qm, we can see in
component m+1 whether the formula is satis�able: a string arrives here if and only
if the formula is satis�able.

We close this discussion by pointing out that the conditions we have stated at
the beginning of this section in order to claim that we have solved the problem are
ful�lled: the system can be constructed in a polynomial time (it has a polynomial
size, in terms of the number of used symbols, number of rules, total length of rules),
it is conuent (some non-determinism is allowed in the place of using the rules
ti ! true(; ti); fi ! true(; fi), and then in the place of using the rules ci !
Qi00 ; 1 � i � m, but the result is the same in all cases, because there are n steps
of using the �rst type of rules, rewriting strings of length n, and m steps of using
the second type of rules, which is enough for checking the presence of all clauses,
hence each computation gives the same result), sound and complete (the problem
has a solution if and only if the system indicates that a solution exists). With the
observation that the result is obtained in a linear time, the proof is complete. 2

Let us note that the system constructed in the previous proof depends only on n and
m, with one exception, the rules ti ! true(; ti); fi ! true(; fi); for 1 � i � n,
from Rn:3, which directly depend on the instance of SAT we are handling. Therefore,
if we consider these rules as an input to the system, then the construction can be
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considered uniform; if this convention is not allowed, then the instance must be
codi�ed by means of strings which have to be introduced in the initial con�guration
of the system in a speci�ed component (added to the multiset of that component).
The construction of such a system remains as an open problem.

7 Further Remarks, Further Research Topics

As we have stressed several times in the paper, this is only a �rst approach towards a
systematic investigation of the possibilities to bridge the grammar systems area and
the membrane computing area. The bene�t will be mutual, and this was already
proved by the previous results.

Several open problems and research topics were already mentioned in the paper,
but several others remain to be considered. We only mention a few topics which
seems to be both natural and of interest: Consider classes of MPC grammar systems
like in the case of usual PC grammar systems, that is, centralized or non-centralized,
returning or non-returning. We have considered here strings; what about working
with multisets of symbol-objects (hence having a computing device closer to tissue
P systems, namely, tissue P systems with communication by request)?

And, of course, after investigating the possible relationships between CD or PC
grammar systems and P systems, we can also consider other classes of grammar
systems, such as the colonies [8], eco-grammar systems [2] (problem Q36 from [11]
already asks this), networks of language processors [4]. The case of eco-grammar
systems would mean having evolution rules not only in the components/cells, but
also in the environment, a case not addressed yet in membrane computing, although
it looks rather realistic. In turn, from networks of language processors we can
borrow the idea of �lters for the communicated strings (or symbols, when working
with multisets of symbols). This can be of a special interest in the case of multisets
of symbols, because we can request from a component only part of the available
symbols.
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at MTA SZTAKI EU Centre of Excellence, Budapest. Part of the results reported
here were obtained in collaboration with E. Csuhaj-Varj�u and Gy. Vaszil and they
will constitute the starting point of more elaborated papers, now in preparation,
about relationships of CD and PC grammar systems and P systems. It is also worth
mentioning a forthcoming paper by E. Csuhaj-Varj�u, J. Kelemen, A. Kelemenov�a,
Gh. P�aun, and Gy. Vaszil, about P colonies.
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AbstractMotivated by the study of Dassow and Mitrana [3], we consider GrammarSystems that describe Images or Pictures of rectangular arrays with the com-ponents consisting of two-dimensional Grammars and domino splicing rules [8]with the grammars working in parallel and splicing rules acting on arrays of twocomponents, yielding rectangular arrays of symbols. The resulting systems arecalled Image Splicing Grammar Systems (ISGS). Certain Properties of ISGSwith di�erent component grammars are obtained.
1 Introduction
The theory of Grammar systems is a well-investigated �eld of formal language theory,
providing a theoretical framework for modelling various kinds of multi-agent systems
at the symbolic level [2]. A grammar system consists of several grammars or other
language identifying mechanisms, that cooperate according to some well-de�ned pro-
tocol. The components of the system correspond to the agents, the current string(s)
in generation to a symbolic environment, and the system's behaviour is represented
by the language. Among a variety of grammar system models, Parallel Communicat-
ing Grammar Systems, in which the components are generative grammars working
on their own sentential forms in parallel and communicating with each other by
sending their sentential forms by request, have been of intensive study [1, 2].

On the other hand, there has been a lot of interest in the study of formal language
theory applied to DNA computing. Head [6] de�ned splicing systems motivated

Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varjú and Gy. Vaszil,
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by the behaviour of DNA sequences under the action of restriction enzymes and
ligases. The splicing systems make use of a new operation, called splicing on strings
of symbols. Theoretical investigation of splicing on strings has been extensively done
by di�erent researchers [7].

A new type of Parallel Communicating grammar systems has been introduced
in [3] by replacing communication by splicing of strings.

In syntactic approaches to generation and recognition of image or picture pat-
terns, considered as digitized arrays, several two-dimensional grammars have been
proposed and studied [9]. As a simple and e�ective extension of the operation of
splicing on strings a new method of splicing on images of rectangular arrays is in-
troduced in [8] . The idea here is that two rectangular arrays are column spliced or
row spliced by using the domino splicing rules in parallel.

Freund [4] has introduced and investigated cooperating distributed array gram-
mar systems extending the concept of cooperation in string grammar systems and
using array grammars. Here, motivated by the study of Dassow and Mitrana [3],
we consider Grammar Systems that describe Images or Pictures of rectangular ar-
rays. The components of the Grammar system consist of two-dimensional Grammars
[5, 10, 9] and domino splicing rules [8] with the grammars working in parallel and
splicing rules acting on arrays of two components yielding rectangular arrays of
symbols. The resulting systems are called Image Splicing Grammar Systems. Dif-
ferent component grammars such as Regular Matrix grammars [5, 10], Context-free
Matrix grammars [5, 10], are considered and properties such as generative power,
comparison etc. are obtained.

2 Preliminaries
The basic notions and notations on arrays are now recalled [5, 10].

Let � be a �nite alphabet. �� is the set of all words over � including the empty
word �: An image or a picture A over � is a rectangular m� n array of elements of
� of the form

A =
2
64

a11 � � � a1n... . . . ...
am1 � � � amn

3
75

or in short A = [aij ]m�n. We write an array A without enclosing it in square brack-
ets when there is no confusion. The set of all images is denoted by ���. A picture
language or a two dimensional language over � is a subset of ���:
De�nition 1 For an array A of dimension m � n and an array B of dimension
m0 � n0, the column catenation A�B is de�ned only when m = m0 and the row
catenation A�B is de�ned only when n = n0.

Informally speaking, in row catenation A�B, B is attached below A. In column
catenation A�B, B is attached to the right of X. We refer to [5, 10]for a formal
de�nition of column and row catenations of rectangular arrays.
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De�nition 2 (Two-Dimensional Matrix Grammars) A 2D matrix grammar

is a 2�tuple (G1; G2) whereG1 = (H1; I1; P1; S) is a Regular, CF or CS grammar,
H1 is a �nite set of horizontal nonterminals,
I1 = fS1; S2; � � � ; Skg, a �nite set of intermediates, H1 \ I1 = ;,
P1 is a �nite set of production rules called horizontal production rules,
S is the start symbol, S 2 H1,G2 = (G21; G22; � � � ; G2k) whereG2i = (V2i; T; P2i; Si); 1 � i � k are regular grammars,
V2i is a �nite set of vertical nonterminals, V2i \ V2j = ;; i 6= j,
T is a �nite set of terminals,
P2i is a �nite set of right linear production rules of the form X �! aY or X �! a
where X;Y 2 V2i; a 2 T
Si 2 V2i is the start symbol of G2i.
The type of G1 gives the type of G , so we speak about regular, context-free, con-
text sensitive 2D matrix grammars if G1 is regular, context-free, context sensitive
respectively. Derivations are de�ned as follows: First a string Si1Si2 � � � Sin 2 I�1 is
generated horizontally using the horizontal production rules of P1 in G1. That is,
S ) Si1Si2 � � � Sin 2 I�1 : Vertical derivations proceed as follows: We write

Ai1 � � � Ain

+
ai1 � � � ain
Bi1 � � � Bin

if Aij ! aijBij are rules in P2j ; 1 � j � n: The derivation terminates if Aj ! amjare all terminal rules in G2.The set L(G) of all matrices generated by G consists of all m � n arrays [aij ]such that 1 � i � m; 1 � j � n and S )�
G1

Si1Si2 � � � Sin )�
G2

[aij ] : We denote
the picture language classes of regular, CF, CS 2DMatrix grammars by 2DRML,
2DCFML, 2DCSML respectively.

We next recall the notion of splicing on strings [6, 7].
De�nition 3 Let V be an alphabet and #; $ two special symbols not in V . A splicing
rule over V is a string of the form r = u1#u2$u3#u4, where ui 2 V �; 1 � i � 4. For
such a rule r and strings x; y; z 2 V �, we write

(x; y) `r z i� x = x1u1u2x2; y = y1u3u4y2; z = x1u1u4y2for some x1; x2; y1; y2 2 V �. We say that z is obtained by splicing x; y, as indicated
by the rule r; u1u2 and u3u4 are called the sites of the splicing.
We now recall the notions of domino splicing rules and Splicing of arrays using these
rules [8].
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De�nition 4 Let V be an alphabet. #; $ are two special symbols, not in V . A
domino over V is of the form a

b or a b for some a; b 2 V
A domino column splicing rule over V is of the form r = �1#�2 $�3#�4 where
each �i = a

b for some a; b 2 V [ f#g .
A domino row splicing rule over V is of the form r = �1#�2 $�3#�4 where each�i = a b for some a; b 2 V [ f#g .
We refer to �1; �2; �3; �4 of a column splicing rule r = �1 # �2 $ �3 # �4 as the �rst,second, third and fourth dominoes of r respectively. Similarly for a row splicing rule
r = �1#�2 $�3#�4: �1; �2; �3; �4 are the �rst, second, third and fourth dominoes
of r respectively.

Given two arrays X and Y of sizes m� p and m� q respectively,

X =
a11 � � � a1;j a1;j+1 � � � a1pa21 � � � a2;j a2;j+1 � � � a2p... . . . ... ... . . . ...
am1 � � � am;j am;j+1 � � � amp ;

Y =
b11 � � � b1;k b1;k+1 � � � b1qb21 � � � b2;k b2;k+1 � � � b2q... . . . � � � ... . . . ...
bm1 � � � bm;k bm;k+1 � � � bmq

air; bis 2 V; for 1 � i � m; 1 � r � p; 1 � s � q: We write (X;Y ) j� Z if there
is a sequence of column splicing rules r1; r2; :::rm (not necessarily all di�erent) such
that

ri = ai;jai+1;j # ai;j+1ai+1;j+1 $ bi;kbi+1;k # bi;k+1bi+1;k+1
for all i; 1 � i � m� 1 and for some j; k 1 � j � p� 1; 1 � k � q � 1 and

Z =
a11 � � � a1;j b1;k+1 � � � b1qa21 � � � a2;j b2;k+1 � � � b2q... . . . ... ... . . . ...
am1 � � � am;j bm;k+1 � � � bmq

In other words, we can imagine that a 2�1 window is moved down the jth column of
X The sequence of dominoes collected are the �rst dominoes of the rules r1; r2; :::; rm(not all necessarily di�erent). When a 2 � 1 window is moved down the j + 1st
column of X the sequence of dominoes collected are the second dominoes of the
rules r1; r2; :::; rm. Likewise for the kth and k + 1st columns of Y When such rules
exist in the system, the column splicing of the arrays X and Y amounts to the array
X being vertically \cut" between jth and j + 1st columns and the array Y between
kth and k + 1st columns and the resulting left subarray of X \pasted" (column
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catenated) with the right subarray of Y to yield Z We now say that Z is obtained
from X and Y by domino column splicing in parallel.

We can similarly de�ne row splicing operation of two arrays U and V of sizes
p� n and q � n; using row splicing rules to yield an array W .

U =

c11 c12 � � � c1n... ... . . . ...
cr;1 cr;2 � � � cr;ncr+1;1 cr+1;2 � � � cr+1;n... ... . . . ...
cp1 cp2 � � � cpn ;

V =

d11 d12 � � � d1n... ... . . . ...
ds;1 ds;2 � � � ds;nds+1;1 ds+1;2 � � � ds+1;n... ... . . . ...
dq1 dq2 � � � dqn

crj ; dsj 2 V; for 1 � j � n; 1 � r � p; 1 � s � q:
We write (U; V ) j� W if there is a sequence of row splicing rules r1; r2; � � � rn(not necessarily all di�erent) such that

rj = cr;j cr;j+1 # cr+1;j cr+1;j+1 $ ds;j ds;j+1 # ds+1;j ds+1;j+1
for all j; 1 � j � n� 1 and for some r; s 1 � r � p� 1; 1 � s � q � 1 and

W =

c11 c12 � � � c1n... ... . . . ...
cr;1 cr;2 � � � cr;nds+1;1 ds+1;2 � � � ds+1;n... ... . . . ...
dq1 dq2 � � � dqn

As done for the column splicing of arrays, we can imagine 1 � 2 windows being
moved over respective rows. The row splicing of the arrays U and V can be thought
of as U being horizontally \cut" between the rth and r + 1st rows and V between
sth and s + 1st rows and the upper subarray of U \pasted" (row catenated) to the
lower subarray of V to yield W We now say that W is obtained from U and V by
domino row splicing in parallel.

We illustrate with an example.
Example 1 Let V = fa; bg;

Rc = fp1 : a
b # $ # b

a
p2 : b

a # $ # a
b g

Rr = fq1 : a b # $ # b a
q2 : b a # $ # a b g
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Column splicing in parallel of an array with itself using the rules given is shown
below: a b

b a
a b
b a j� a b a b

b a b a
Likewise, row splicing in parallel of an array with itself using the rules given is shown
below:

a b a b
b a b a

a b a b
b a b a j�

a b a b
b a b a
a b a b
b a b a

A vertical bar `j ' or a horizontal bar `��' indicates the place where splicing is done.

3 Image Splicing Grammar System
We now introduce the notion of Image Splicing grammar system in which the com-
ponent grammars are 2DMatrix grammars.
De�nition 5 An Image Splicing Grammar system is a construct
� = (Vh;�I ; Vv; T; (S1; Rh

1 ; Rv
1); :::; (Sn; Rh

n; Rv
n);M) where,

Vh is a �nite set of variables called horizontal variables;
Vv is a �nite set of variables called vertical variables;
�I � Vv is a �nite set of intermediates;
T is a �nite set of terminals;
Si; 1 � i � n is the start symbol of the corresponding horizontal component;
Rh
i ; 1 � i � n is a �nite set of rules called horizontal productions

and the rules can be regular or context free or context sensitive;
Rv
i ; 1 � i � n is a �nite set of right linear rules called vertical productions;

M is a �nite set of domino column or row splicing rules of the form
m = �1 # �2 $ �3 # �4 or �1 # �2 $ �3 # �4

where �i = a
b and �i = c d for some a; b; c; d 2 Vv [ fTg [ f�g.

The derivations take place in two phases as follows :
Each component grammar generates a word called intermediate word, over in-

termediates starting from its own start symbol and using its horizontal production
rules ; the derivations in this phase are done with the component grammars working
in parallel.

In the second phase any of the following steps can take place :
(i) each component grammar can rewrite as in a two dimensional matrix grammar

using the vertical rules, starting from its own intermediate word generated in
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the �rst phase. (The component grammars rewrite in parallel).Note that the
component grammars together terminate or together continue rewriting in the
vertical direction.

(ii) At any instant the array X generated in the ith component for some 1 � i � n
and the array Y generated in the jth component for some 1 � j � n can
be spliced using column / row domino splicing rules as in de�nition 4, thus
yielding array Z in ith component and W in the jth component; In fact Z
will have a pre�x of X column concatenated with a su�x of Y and W will
have a pre�x of Y , column concatenated with a su�x of X, the pre�xes and
su�xes being given by the splicing rules. In any other components (other
than ith; jth components), the arrays generated at this instant will remain
unchanged during this splicing process.

There is no priority between steps (i) and (ii).
The language Li(�) generated by the ith component of � consists of all arrays,

generated over T , by the derivations described above.
This language will be called the individual language of the system and we may

choose this to be the language of the �rst component and Lt(�) = Sn
i=1 Li(�) asthe total language. The family of individual languages generated by ISGS with

n components of type X for X 2 fREG;CFg is denoted by IisgsLn(X), and the
corresponding family of total languages by TisgsLn(X) respectively and YisgsLn(X)
when Y 2 fI; Tg. We basically deal with individual languages although the results
obtained apply to total languages as well.
Example 2 Let � = (fS;Xg ; fA;B;Cg ; fA;B;C;Dg f:; xg ; (S;Rh; Rv); (S;Rh; Rv);
(S;Rh; Rv);M)
where
Rh = fS ! AX;X ! BX;X ! C
Rv = fA! xA;A! x;B ! xD;D ! :D;D ! x;C ! xC;C ! xg.
M = f x

: # x
x $ # x

x
:
: # x

x $ # x
x

:
D # x

C $ # x
A

x : # A D $ # x x
: : # D D $ # x x
: x # D D $ # x x g

The horizontal rules in a component generate intermediate words of the form ABnC
with the same value of n � 1 at a time. The vertical rules of the components gen-
erate from an intermediate word rectangle pictures of (:)'s surrounded or bordered
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by x's except the bottom border which will be of the form ADnC. At this stage
with domino splicing rules, column or row splicing of the array in a component with
the array in another component can take place before rewriting is terminated in
the components with terminating vertical rules. In fact any picture generated in
the individual language of this Image splicing grammar system will be either (i)
rectangular pictures in which any row, except the �rst and the last, will be of the
form (x(:)n)kx for some k�f1; 2; 3g or (ii)rectangular pictures in which any column,
except the �rst and the last, will have a similar feature or (iii)simply a column of
x0s. Two such pictures obtained are shown in Figures 1(a) and 1(b).

x x x x x

x : : : :
x : : : :
x : : : :
x x x x x

x x x x x

x : : : :
x : : : :
x : : : :
x x x x x

x x x x x x

x : : : : x

x : : : : x

x : : : : x

x x x x x x

Figure 1(a). A Picture of Example 2

x x x x x

x : : : x

x : : : x

x : : : x

x x x x x

x : : : x

x : : : x

x : : : x

x : : : x

x x x x x

x : : : x

x : : : x

x : : : x

x : : : x

x x x x x

Figure 1(b). Another Picture of Example 2
Example 3

Let � = (fS;Xg ; fA;B;Eg ; fA;B;C;D;Eg f:; xg ; (S;Rh; Rv); (S;Rh; Rv); (S;Rh; Rv);M)
where
Rh = fS ! EXE;X ! AXB;X ! ABg
Rv = fA! aC;C ! :C; C ! a;

B ! bD;D ! :D;D ! b;
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E ! xE;E ! xg
and M = f b

: # x
x $ x

x # a
:

:
: # x

x $ x
x # :

:
:
D # x

E $ x
E # :

C g

The horizontal rules generate in a component intermediate words of the form EAnBnE
with the same value of n � 1 at a time. The vertical rules of the components gen-
erate from an intermediate word rectangle pictures of (:)'s bordered on the top by
words of the form xambmx, on the bottom by words of the form ECmDmE , the
leftmost column being a column of x's ending with E and the rightmost column
being a column of x's ending with E. At this stage with domino splicing rules,
column splicing of the array in a component with the array in another component
can take place before rewriting is terminated in the components with terminating
vertical rules. One such picture obtained is shown in Figure 2.

x a a b b
x : : : :
x : : : :
x : : : :
x a a b b

a a b b
: : : :
: : : :
: : : :
a a b b

a a b b x

: : : : x

: : : : x

: : : : x

a a b b x

Figure 2. A Picture of Example 3.
Theorem 1 For Y 2 fI; Tg,

1. 2DRML = YisgsL1(REG)
2. 2DRML � YisgsL2(REG)
3. 2DCFML = YisgsL1(CF )
4. 2DCFML � YisgsL2(CF )

Statements (1) and (3) are obvious. The proper inclusion in statement (2) is a
consequence of Example 2. In fact the pictures in Figures 1(a) and 1(b) cannot be
generated by any 2DRMG as both the rules in both the horizontal and vertical
phases are only regular rules. Likewise the proper inclusion in statement (4) is a
consequence of Example 3 since the rules in the horizontal phase of a 2DCFMG
are only CF rules and so the pictures as in Figure 2 require CS rules in the �rst phase.
Example 4 Let � = (fS1; � � �Sn; Xg ; fA1; � � � ; An; B1; � � � ; Bn; C1; : : : ; Cn; g ;fA1; � � � ; An; B1; � � � ; Bn; C1; : : : ; Cn; D1; : : : ; Dng ;
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f:; x; a; bg ; (S;Rh1 ; Rv1); (S;Rh2 ; Rv2); � � � ; (S;Rhn ; Rvn);M)
where
Rh1 = fS1 ! A1X;X ! B1X;X ! C1Rv1 = fA1 ! xA1; A1 ! x;B1 ! aD1; D1 ! :D1; D1 ! a;C1 ! xC1; C1 !x;Di ! a if i � 2 and i odd;Di ! b if i � 2 and i even;Ci ! xg.

Fori > 1 and i even
Rhi = fSi ! AiX;X ! BiX;X ! CiRvi = fAi ! xAi; Ai ! x;Bi ! bDi; Di ! :Di; Ci ! xCi; g.

Fori > 1 and i odd
Rhi = fSi ! AiX;X ! BiX;X ! CiRvi = fAi ! xAi; Ai ! x;Bi ! aDi; Di ! :Di; Ci ! xCi; g.
M = f a

: # x
x $ # x

x
b
: # x

x $ # x
x

:
: # x

x $ # x
x

:
Di

# x
Ci

$ # x
Ai

g

We note that the top and bottom rows of the rectangular arrays generated in the
individual language will be of the form xamxbmxamxbm:::x as there are n com-
ponent grammars.
Theorem 2 For Y 2 fI; Tg,

1. 2DRML = YisgsL1(REG) � YisgsL2(REG) �� � � � YisgsLn(REG) � � � �
2. 2DCFML = YisgsL1(CF ) � YisgsL2(CF ) �� � � � YisgsLn(CF ) � � � �

The �rst statement follows in view of the Example 4. The second can be shown on
similar lines.

4 Conclusion
The image splicing grammar system introduced in this paper appears to be a pow-
erful means of generating picture arrays. It remains to compare other picture gen-
erating mechanisms with these systems.
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Distributed Probabilistic Finite Automata
G. N. Santhana Krishnan, Kamala Krithivasan, Ashish ChoudharyDept of Computer Science and EngineeringIndian Institute of Technology MadrasChennai, India 600036.kamala@iitm.ernet.in

AbstractIn this paper we consider multiple choice probabilistic automaton and showthat it can be simulated by a (single choice) probabilistic automaton. We de�nedistributed probabilistic automata with four cooperating modes and show thatdistribution does not give any additional power.
1 Introduction
Recent developments in the �eld of Computer Science are towards processing in-formation that are distributed among geologically di�erent locations. In various�elds like Arti�cial Intelligence, Cognitive Psychology etc, we have to deal withmore and more complex tasks distributed among set of 'processors', which are work-ing together in a well de�ned way. Parallel computers, computer nets, distributeddatabases and knowledge sources are practical materialization of this idea. FormalLanguage Theory constructs, namely Grammar Systems, modelling distribution andparallelism were coined in the early nineties. [1] deals with many types of GrammarSystems. Distributed Automata have been considered in [2].Very often, in the world of distributed information processing systems, there arisesituations where the system is random and its course of operation nondeterministic.Probabilistic grammars were introduced as mathematical generative models for cap-turing the randomness in a classical computing environment [3, 4]. Probabilisticgrammar systems were studied in [5, 6] with application to network-load modelling[7]. In this paper we study distributed probabilistic automata. We �rst study mul-tiple choice probabilistic automaton where we include the idea of both randomnessand non-determinism. We show that a multiple choice probabilistic automaton canbe simulated by a single choice probabilistic automaton. We de�ne distributedprobabilistic automata and consider four standard modes of cooperation betweenthe components, viz, �;= k;� k;� k modes. We show that a distributed proba-bilistic automaton can be simulated by a multiple choice probabilistic automaton.Since multiple choice probabilistic automaton can be simulated by a single choiceprobabilistic automaton, we see that distribution does not increase the power ofprobabilistic automaton in any of the four modes of cooperation.

Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varjú and Gy. Vaszil,
MTA SZTAKI, Budapest, pages 287 - 299, 2004.
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In the next section we de�ne probabilistic automata. In section 3 we de�nemultiple choice probabilistic automata and show the equivalence to single choiceprobabilistic automata. In section 4 we de�ne distributed probabilistic automatonwith four modes of cooperation and show that in any mode, it can be simulated bya multiple choice probabilistic automaton. The paper concludes with some remarksin section 5.
2 Probabilistic Automaton
In this section, we consider the de�nition of probabilistic automaton. For the de�ni-tion and details of probabilistic grammars, the reader is referred to [3, 4]. A studyof probabilistic automata is done in [8].
De�nition 2.1 A �nite probabilistic automaton over a �nite alphabet V is an or-dered triple PA = (S; s0;M) where S = fs1; s2; s3; :::; sng is a �nite set with n � 1elements(the set of internal states), s0 is an n-dimensional stochastic row vector(theinitial distribution) andM is a mapping of V into the set of n-dimensional stochasticmatrices. For x 2 V , the (i; j)th entry in the matrix M(x) is denoted by pj(si; x)and referred to as the transient probability of PA to enter into the state sj , afterbeing in the state si after consuming the input x.
As an example, consider the following example. PA1 = (fs1; s2g; (1; 0);M) over thealphabet fx; yg where

M(x) = " 0 11 0
# M(y) = " 1=2 1=21=2 1=2

#

The initial distribution indicates that s1 is the initial state. From the matrices Mwe see that s1 changes to s2 with a probability of 1/2 on reading the symbol y. Thiscan be indicated in a diagram with the states being the nodes and arcs having labelsin the form x(p) where x is the symbol while p is the probability of transition fromone node to the other on scanning the symbol x.For a �nite probabilistic automaton, we increase the domain of M from V to V �as follows:
1. M(�) = I
2. M(wx) = M(w)M(x)

Now for a word w, the (i; j)th entry of M(w) would denote the probability that theautomaton would move to state sj after getting the input w if it were initially instate si.
De�nition 2.2 Let PA = (fs1; : : : ; sng; s0;M) be a �nite probabilistic automatonover V and w 2 V �. The stochastic row vector s0M(w) is termed as the distributionof states caused by the word w and is denoted by PA(w).
We notice that for a word w, the ith entry of PA(w) is the probability that theautomaton is in state si starting from the initial distribution s0.
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De�nition 2.3 Let s1 be a n�dimensional column vector, each component of whichequals either 0 or 1, and the PA as in the previous de�nition. Let � be a real numbersuch that 0 � � � 1. The language accepted in PA by s1 with the cut-point � isde�ned by
L(PA; s1; �) = fwjs0M(w)s1 � �g.

A language L is ��stochastic if for some PA, � and s1, L = L(PA; s1; �). A languageL is stochastic if it is ��stochastic for some �.
Theorem 2.1 Every regular language is stochastic. Further, every regular languageis ��stochastic for every 0 � � � 1.
Theorem 2.2 Every 0-stochastic language is regular.
3 Multiple-Choice Probabilistic Automaton
Now we consider multiple choice probabilistic automaton.
De�nition 3.1 (Multiple-Choice Probabilistic Automaton)A �nite Multiple-Choice probabilistic Automaton over a �nite alphabet V is an ordered tripleNDPA= (S; s0;M) where S = fs1; s2; : : : ; sng is a �nite set with n � 1 elements (the setof internal states), s0 is an n�dimensional stochastic row vector(the initial distribu-tion) and M is a collection of mapping of V into the set of n�dimensional stochasticmatrices. For x 2 V , the (i; j)th entry in each of the matrices in M(x) is denotedby pj(si; x) and referred to as the transient probability of NDPA to enter into thestate sj after being in the state si and consuming the input x.
We de�ne the language accepted in a similar fashion as above, with the considerationthat whenever a matrix needs to be chosen for an alphabet symbol a, the choiceis made non-deterministically among the matrices in M(a). We talk about twodi�erent modes of acceptance, namely the max�mode and the p�mode.
De�nition 3.2 Lmax(NPA; s1; �) = fwjmaxfs0M(w)s1g � �g, where s1, � and s0are as de�ned above and fs0M(w)s1g denotes the set of all derivations of the stringw.
De�nition 3.3 Lp(NPA; s1; �) = fwjprobfs0M(w)s1g � �g, where s1, � and s0are as de�ned above and probfs0M(w)s1g denotes the probability of the derivationof the string w considering all possible derivations of the string w.
Let Lmax(NPA) denote the family of languages generated by multiple choice prob-abilistic automata in the max� mode, Lp(NPA) denote the family of languagesgenerated in the p�mode and L(PA) denote the family of languages generated byprobabilistic automata, i.e. let it denote the family of stochastic languages.
Theorem 3.1 Lp(NPA) = L(PA):
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Proof. Let M1(x);M2(x); : : : ;Mk(x) be the various choices for the alphabet x. Letthe system be in distribution s1, and the input which is read next is x. The proba-bility that the new state is sj is :
pj = kX

l=1 p(l) � (
nX
i=0 s1i � plj(si; x))

Where
� pj is the probability that the automaton is in state sj after reading the alphabetx.
� s1i is the ith entry in s1. In other word, it stands for the probability that thesystem were in the state si initially.
� plj(si; x)) is the transient probability in Ml(x) that the automaton wouldchange from state si to sj on encountering the symbol x.
� p(l) is the probability of choice of the matrix Ml(x).

Noting that the matrices are chosen non-deterministically, the above equation re-duces to
pj = kX

l=1(1=k) � (
nX
i=0 s1i � plj(si; x))Now the above can be written in the vector notation as

s2 = kX
l=1(1=k) � s1 �Ml(x)

or in other words,
s2 = s1 � kX

l=1(1=k) �Ml(x)
If we consider the PA with (S; s0;M), with the set of all matrices for each alphabetreplaced with their arithmetic mean, we obtain the same distribution of states at eachstage. So, this clearly proves that Multiple-Choice probabilistic automata are at leastas powerful as probabilistic automata. Also, since every probabilistic automaton isalso a multiple-choice probabilistic automaton, the inclusion holds the other waytoo. Hence the theorem. 2

4 Distributed Probabilistic Automaton
We now de�ne the various kinds of distributed probabilistic automaton with certainrestrictions as to transfer of control, and we study various families of languagesaccepted.
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De�nition 4.1 (Distributed Probabilistic Automaton) A distributed �niteprobabilistic automaton over a �nite alphabet V is an ordered (k + 2)-tuple DPA= (S; s0;M1;M2; : : : ;Mk), where S = fs1; s2; : : : ; sng is a �nite set with n � 1elements(the set of internal states), s0 is an n�dimensional stochastic row vec-tor(the initial distribution) and each of the Mi's is mapping of V into the set ofn�dimensional stochastic matrices. For x 2 V , the (j; k)th entry of each of the ma-trices in Mi(x) is denoted by pik(sj ; x) and referred to as the transient probabilityof DPA to enter into the state sk, after being in the state sj after consuming theinput x in component i.
We now de�ne the various modes of cooperation. To achieve that end, we �rst de�nethe various modes of transition.
De�nition 4.2 (Transition Modes) There are four possible modes of transitions.

� �-mode: The transition from Mi to some other component Mj occurs at anyarbitrary stage.
� =k-mode: The transition from Mi to some other component Mj occurs afterexactly k transitions in Mi.
� � k-mode: The transition from Mi to some other component Mj occurs afterat least k transitions in Mi.
� � k-mode: The transition fromMi to some other componentMj occurs beforek+1 transitions in Mi.

We note that conventional t�mode does not make sense in this context since allthe matrices involved are stochastic, and hence the derivation in any Mi cannotterminate unless the string has been completely processed. Also the derivationalways starts with M1 (without loss of generality, this can be assumed).
De�nition 4.3 L(p;�)(DPA; �) = fw 2 V �jprobfs0M(w)s1g � �g, where � is thetransition mode, � 2 f�;= k;� k;� kjk � 1g and probfs0M(w)s1g denotes theprobability of derivation of the string w considering all possible derivations of thestring w.
De�nition 4.4 L(max;�)(DPA; �) = fw 2 V �jmaxfs0M(w)s1g � �g , where � isthe transition mode, � 2 f�;= k;� k;� kjk � 1g and maxfs0M(w)s1g refers tothe maximum probability of the derivation of the string w amongst all the possiblederivations of it.
We study the acceptance power of DPA in the various modes of transition. Weprove that L(p;�) generates just a stochastic language in the following theorem. Weleave the study of L(max;�) as an open problem.
Theorem 4.1 Given � 2 f�;= k;� k;� kg and given a DPA M, there exists aPA M00 such that L(p;�)(s0;M; �) = L(s0;M 00; �):
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Proof. Case 1: � = �.Let M = (S; s0;M1;M2; : : : ;Ml). Let the cardinality of the set S is n. We tryto de�ne a corresponding PA M00 = (S00; s000;M 00) in the following way.S00 = f[q; i]j1 � i � l; q 2 Sg. Without loss of generality, we assume that themachine starts working in the �rst component. s000 is a nl stochastic row vector, whichde�nes the new initial state distribution in M00. Since we have assumed that themachine M starts working in the �rst component, so if the initial state distributionin M is (pq1 ; pq2 ; : : : ; pqn), then the initial state distribution in machine M00 wouldbe represented as:
s000 = (p[q1;1]; p[q2;1]; : : : ; p[qn;1]; 0; 0; : : : ; 0(nl � n)times)

At any instance of time, the machine M can be in any one of the component.Suppose at current instance t, the machine M is in component i, then the statedistribution in M would have been represented as:
st = (pq1 ; pq2 ; : : : ; pqn)The corresponding state con�guration in machine M00 would be represented by a nlstochastic row vector as:

s00t = (0; 0; : : : ; p[q1;i]; p[q2;i]; : : : ; p[qn;i]; 0; 0; : : : ; 0)where the non-zero entries are from the position n(i � 1) + 1 to n(i � 1) + n andp[qj ;i] = pqj , 81 � j � n. Also the �nal state con�guration has to be changed in M00.If the �nal state con�guration in M is (pq1 ; pq2 ; : : : ; pqn)T where each of the valuespqi , 8i; 1 � i � n is either 0 or 1, then the corresponding �nal state con�guration inM00 would be represented by a nl-dimensional column vector:
(p[q1;1]; p[q2;1]; : : : ; p[qn;1]; p[q1;2]; p[q2;2]; : : : ; p[qn;2]; : : : ; p[q1;l]; p[q2;l]; : : : ; p[qn;l])Twhere p[qi;j] = pqi , 8i; j; 1 � i � n; 1 � j � l. From each of the Mi, we have lpossible matrices to choose and from each of the matrices, we choose the matrix forgiven alphabet. We can encompass both these steps into a single step. The changeof Mi to Mj can be done by having the present stochastic vector, representing thecurrent state distribution, multiplied by the following matrix:

M(i; j) =
264 0 0 00 I 00 0 0

375
where M is a (nl)x(nl) matrix and I is a nxn identity matrix which starts o� at theentry (i � 1)n + 1 , (j � 1)n + 1. It can be easily seen that the matrix carries thetransition from Mi to Mj . For example, consider M(1; 2). This is a matrix whichcarries out the transformation from M1 to M2. Considering that n = 2; l = 3 wehave:

M(1; 2) =
266666664

0 0 1 0 0 00 0 0 1 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

377777775
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Suppose the state were s = (p1; p2; 0; 0; 0; 0).Then s1 = s �M(1; 2), which is

(p1; p2; 0; 0; 0; 0) �
266666664

0 0 1 0 0 00 0 0 1 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

377777775
which is (0; 0; p1; p2; 0; 0).We thus see that M(i; j) transfers control from Mi to Mj .For each alphabet a, we de�ne the matrix as follows:

M 00(a) =
26664
M1(a) 0 : 00 M2(a) : 0: : : :: 0 : Ml(a)

37775
Consider the same example as above. Suppose, we have l = 3 and n = 2. Suppose,the present vector is (p1; p2; 0; 0; 0; 0), and we read the symbol a. The matrix for awould be

M 00(a) =
266666664

p11(s1; a) p12(s1; a) 0 0 0 0p11(s2; a) p12(s2; a) 0 0 0 00 0 p21(s1; a) p22(s1; a) 0 00 0 p21(s2; a) p22(s2; a) 0 00 0 0 0 p31(s1; a) p32(s1; a)0 0 0 0 p31(s2; a) p32(s2; a)

377777775
Now,consider s2.s2 = s �M 00(a), which is

(p1;p2;0;0;0;0)�
266666664

p11(s1;a) p12(s1;a) 0 0 0 0p11(s2;a) p12(s2;a) 0 0 0 00 0 p21(s1;a) p22(s1;a) 0 00 0 p21(s2;a) p22(s2;a) 0 00 0 0 0 p31(s1;a) p32(s1;a)0 0 0 0 p31(s2;a) p32(s2;a)

377777775
which is (p1 � p11(s1; a) + p2 � p11(s2; a); p1 � p12(s1; a) + p2 � p12(s2; a); 0; 0; 0; 0).We can view it in other way. The above can be seen as follows in the blockmatrix-multiplication format.264 sn;1 �M1(a) sn;2 � 0 sn;3 � 0sn;1 � 0 sn;2 �M2(a) sn;3 � 0sn;1 � 0 sn;2 � 0 sn;3 �M3(a)

375
where sn;1; sn;2 and sn;3 represent the �rst, second and third n elements in thecurrent state con�guration. In the context of the above example, sn;1; sn;2 and sn;3
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represents the �rst, second and last two elements in the current state con�guration.So, we now see that M 00(a) helps us process the string as if it were under the controlof one Mi.In order to incorporate the transition from Mi to Mj , we premultiply M 00(a) byM(i; j).Consider the above example. Instead of having justM 00(a), we will haveM(1; 2)�M 00(a),M(1; 3)�M 00(a),M(2; 1)�M 00(a),M(2; 3)�M 00(a),M(3; 1)�M 00(a),M(3; 2)�M 00(a) and of course M 00(a) itself. For each alphabet, thus we have l � (l � 1) +1 matrices to choose from. We are now left with the p�mode of acceptance inthe multiple-choice probabilistic automaton, which we have already proved to beequivalent to probabilistic automaton.Case 2: � = =k.Suppose we are given a distributed probabilistic automatonM with l componentsand n states M = (S; s0;M1;M2;M3; : : : ;Ml)
Without loss of generality, we assume that initially the automaton is in the �rstcomponent. Since the mode of cooperation is = k, the automaton should spendexactly k steps in the current component before switching to some other component,other than the present component.To simulate the working of this distributed automaton with a single probabilisticautomaton, we look atM in a di�erent way. We think that we have exactly k copiesof each of the components M1;M2;M3; : : : ;Ml i.e

M11;M12;M13; : : : ;M1k
M21;M22;M23; : : : ;M2k

: : :
Ml1;Ml2;Ml3; : : : ;Mlk

Here Mij = Mi , 8i; j , 1 � i � l; 1 � j � k.All the transition matrices in M11;M12;M13; : : : ;M1k are identical as in M1.Similarly all the transition matrices in M21;M22;M23; : : : ;M2k are identical as inM2 and so on. Now the original distributed probabilistic automaton M is convertedinto another distributed probabilistic automaton M0 as follows:
M0 = (S0; s00;M11;M12; : : : ;M1k;M21;M22; : : : ;M2k; : : : ;Ml1;Ml2; : : : ;Mlk)

where
� S0 is the new set of states inM0 such that S0 = f[q; ij]j1 � i � l; 1 � j � k; q 2Sg. In M0 since the components are replicated, we also include the numberof the component and the number of the copy of the component to which thestate belongs along with each state in the new set of states. The cardinalityof the set S0 is nlk.
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� s00 is a n � l � k stochastic row vector which denotes the new initial probabilitydistribution of M0. If s0 = (pq1 ; pq2 ; : : : ; pqn) then we have :
s00 = (p[q1;11]; p[q2;11]; : : : ; p[qn;11]; 0; 0; : : : ; 0(n � l � k � n)times)

such that pqi = p[qi;11] 8i; 1 � i � n. Here pqj is interpreted as the probabilityof being in state qj in M and p[qj ;11] is interpreted as the probability of beingin the state [qj ; 11] in M0.
� M11;M12; : : : ;M1k;M21;M22; : : : ;M2k; : : : ;Ml1;Ml2; : : : ;Mlk are the set of tran-sition matrices such that :

Mi1 = Mi2 = Mi3 = : : : ;= Mik = Mi; 8i; 1 � i � l:
The probabilistic state distribution at any instance of time is given by a n � l � kstochastic row vector such that if at current instance the M thij component is activethen the probability distribution is:

(0; 0; : : : ; 0; p[q1;ij]; p[q2;ij]; : : : ; p[qn;ij]; 0; 0; : : : ; 0)
where the non-zero entries are from the position [(i � 1) � k + j � 1] � n + 1 to[(i� 1)k + j � 1] � n+ n.In the original DPA M, if the system is in some component Mi, then it remainsin Mi for exactly k steps and after that it non-deterministically switches to someother component Mj , 1 � j � l; j 6= i for next k steps. This step is simulated in M0by forcing the transition from Mi1 to Mi2, from Mi2 to Mi3,. . . , from Mi(k�1) to Mikand then from Mik to Mj1 , 1 � j � l , j 6= i. Also M0 makes sure that the systemspends only one step in any component Mij , 1 � i � l; 1 � j � k at any instanceof time. The change of component from Mij to Mij(+1), 8i; j, 1 � i � l; 1 � j < kis done in M0 by having the present stochastic row vector representing the currentstate distribution multiplied by the following matrix:

M(ij; i(j + 1)) =
264 0 0 00 I 00 0 0

375
where M(ij; i(j + 1)) is a (n � l � k) x (n � l � k) matrix and I is a n � n identitymatrix staring at the entry [(i� 1)k + j � 1]n+ 1 , [(i� 1)k + j]n+ 1.The change from the component Mik to Mj1, 8i; j , 1 � i � l; 1 � j � l; i 6= jis done in M0 by having the present stochastic row vector representing the currentstate distribution multiplied by the following matrix:

M(ik; j1) =
264 0 0 00 I 00 0 0

375
where M(ik; j1) is a (n � l � k) x (n � l � k) matrix and I is a n � n identity matrixstaring at the entry (ik � 1)n+ 1 , [(j � 1)]n+ 1.
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To understand the above notions, we take an example. Suppose we have l =3; k = 4; n = 2. Then in M0 the state con�guration is represented by a 1 x 24stochastic row vector. Suppose that at current instance the machine M0 is in thecomponent M22, then the present con�guration is :
s1 = (0; 0; 0; 0; 0; 0; 0; 0; 0; 0; p[q1;22]; p[q2;22]; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0)

To switch the current component fromM22 toM23 we multiply s1 with the followingmatrix:

M(22;23)=

26666666666666666666666666666666666666666666666664

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

37777777777777777777777777777777777777777777777775
Multiplying s1 with M(22; 23) we get new state distribution as :

s2 = (0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; p[q1;23]; p[q2;23]; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0)
such that p[q1;23] = p[q1;22] and p[q2;23] = p[q2;22].Now we construct an equivalent probabilistic automata M00 having single com-ponent with multiple choice for each alphabet symbol from M0 as follows:

M00 = (S00; s000;M 00)
where

� S00 = S0.
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� s000 = s00.
� M 00 is the set of transition matrices.

The �nal state con�guration inM00 has to be changed. If the �nal state con�gurationin M is (pq1 ; pq2 ; : : : ; pqn)T , then the corresponding �nal state con�guration in M00is represented as a nlk-dimensional column vector(0; 0; : : : ; 0(nk�n)times; p[q1;1k]; p[q2;1k]; : : : ; p[qn;1k]; 0; 0; : : : ; 0(nk�n)times; p[q1;2k],p[q2;2k]; : : : ; p[qn;2k]; : : : ; 0; 0 : : : ; 0(nk � n)times; p[q1;lk]; p[q2;lk]; : : : ; p[qn;lk])Twhere p[qi;jk] = pqi , 8i; j; 1 � i � n; 1 � j � l. The matrices in the set M 00 isconstructed from the matrices M11;M12; : : : ;Mlk as follows:For each alphabet a, we de�ne the transition matrix M 00(a) as follows:

M 00(a) =

26666666666666666664

M11(a)
M12(a)

:

M21(a)
M22(a)

:

M2k(a)
:

Ml1(a)
Ml2(a)

:

Mlk(a)

37777777777777777775
Here Mij(a) = Mi(a) , 8i; j , 1 � i � l; 1 � j � k.
Example: Suppose we have l = 2; k = 2; n = 2 , then M\(a) is de�ned as:266666666664

p[11;1](s1; a) p[11;2](s1; a) 0 0 0 0 0 0
p[11;1](s2; a) p[11;2](s2; a) 0 0 0 0 0 00 0 p[12;1](s1; a) p[12;2](s1; a) 0 0 0 00 0 p[12;1](s2; a) p[12;2](s2; a) 0 0 0 00 0 0 0 p[21;1](s1; a) p[21;2](s1; a) 0 00 0 0 0 p[21;1](s2; a) p[21;2](s2; a) 0 00 0 0 0 0 0 p[22;1](s1; a) p[22;2](s1; a)0 0 0 0 0 0 p[22;1](s2; a) p[22;2](s2; a)

377777777775
where" p[11;1](s1; a) p[11;2](s1; a)p[11;1](s2; a) p[11;2](s2; a)

# = " p[12;1](s1; a) p[12;2](s1; a)p[12;1](s2; a) p[12;2](s2; a)
# = M1(a)

Similarly" p[21;1](s1; a) p[21;2](s1; a)p[21;1](s2; a) p[21;2](s2; a)
# = " p[22;1](s1; a) p[22;2](s1; a)p[22;1](s2; a) p[22;2](s2; a)

# = M2(a)
Now as in the case of �-mode, we will premultiply M 00(a) with the matrices whichforces M00 to switch the component from Mij to Mi(j+1) if j < k or otherwise fromMik to Mj1 , 81 � i � l; 1 � j � l; i 6= j.
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Example: In the above example, we will have M(11; 12)(a) �M 00(a), M(21; 22)(a) �M 00(a), M(12; 21)(a) �M 00(a), M(22; 11)(a) �M 00(a).So now inM00 we have l(k�1)+l(l�1) matrices in total for each alphabet symbola. Thus from the distributed probabilistic automaton M we get a multiple choiceprobabilistic automaton M00, and we have already proved that any multiple choiceprobabilistic automaton can be simulated by a probabilistic automaton(with singlechoice). Thus a distributed probabilistic automaton with = k-mode of cooperationin p-mode of acceptance is equivalent to a probabilistic automaton.Case 3: � = � k .The idea of the proof in this case will be same as that of = k-mode. Suppose weare given a distributed probabilistic automaton with l components
M = (S; s0;M1;M2; : : : ;Ml)

We construct M0 from M and M00 from M0 in the same way as in the case of = k-mode. The �nal state con�guration here has to be changed as it is changed in = k-mode, with slight di�erence. If the �nal state distribution inM is (pq1 ; pq2 ; : : : ; pqn)T ,then the corresponding �nal state con�guration in M00 is represented by a nlk-dimensional column vector:(p[q1;11]; p[q2;11]; : : : ; p[qn;1k]; p[q1;12]; p[q2; 12]; : : : ; p[qn;12]; : : : ; p[q1;lk]; p[q2;lk]; : : : ;p[qn;lk])T , where pqi = p[qi;jm], 8i; j;m; 1 � i � n; 1 � j � l; 1 � m � k. The onlydi�erence here occurs in the choice of matrices in M00. Since the machine M isworking in � k-mode, the system remains in any component at most k steps afterwhich it has to forcibly switch to some other component. This is simulated inM00 byforcing the machine to make the transition from Mij to Mi(j+1) or Mr1, 8i; j; r : 1 �i � l; j < k; 1 � r � l; r 6= i or from Mik to Mr1 , 8i; k; r : 1 � i � l; 1 � r � l; r 6= i.
Example : Considering the same example as in = k-mode with l = 2; k = 2; n = 2,in M00 we will have M(11; 12) � M 00(a), M(11; 21) � M 00(a), M(12; 21) � M 00(a),M(21; 22) �M 00(a), M(21; 11) �M 00(a), M(22; 11) �M 00(a).So, for each alphabet symbol a we will now have ll(k � 1) + l(l � 1) matricesin total in M00. Thus the distributed probabilistic automaton M is reduced to amultiple choice probabilistic automaton M00 and we have proved that any multiplechoice probabilistic automaton is equivalent to a probabilistic automaton with singlechoice for each alphabet symbol. Hence the theorem holds for the � k-mode also.Case 4: � = � k.The proof is similar to the � k-mode. Suppose we are given a distributedprobabilistic automaton with l components

M = (S; s0;M1;M2; : : : ;Ml)
We construct M0 from M and M00 from M0 in the same way as in the case of = k-mode. The only di�erence here occurs in the choice of matrices in M00. Since themachine M is working in � k-mode, the machine spends at least k steps in eachcomponent before switching the component. This is simulated in M00 by forcing thetransition from Mij to Mi(j+1), 8i; j; 1 � i � l; j < k or otherwise from Mik to Mikor Mr1, 8i; r; 1 � i � l; 1 � r � l; r 6= i. Also the �nal state con�guration has to bechanged exactly in the same way as in the case of = k-mode.
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Example: Considering the same example as in � k-mode with l = 2; k = 2; n = 2,we will have M(11; 12) �M 00(a), M(12; 12) �M 00(a), M(12; 21) �M 00(a), M(21; 22) �M 00(a), M(22; 22) �M 00(a), M(22; 11) �M 00(a).So, in general for each alphabet symbol a we will have l(k � 1) + l + l(l � 1)matrices inM00. Thus the original distributed probabilistic automaton is reduced toa multiple choice probabilistic automaton M00 and we have shown that any multiplechoice probabilistic automaton is equivalent to a probabilistic automaton with singlechoice for each alphabet symbol. Hence the theorem holds for the case � = � k-modealso.
5 Conclusion
In this paper, we have considered multiple choice probabilistic automaton and wehave shown that it can be simulated by a (single choice) probabilistic automaton.We de�ned distributed probabilistic automaton with four cooperating modes. Wehave shown that in each of the modes, a distributed probabilistic automaton canbe simulated by a multiple choice probabilistic automaton and hence by a (singlechoice) probabilistic automaton. Here we have not considered probability of tran-sition between components, which can also be taken into account and the aboveresults can be established with appropriate modi�cations in the proofs.
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Abstract
Metalinear CD grammar systems are de�ned to be context-free CD gram-

mar systems where each component consists of metalinear productions. The
maximal number of nonterminals in a starting production is the width of a
CD grammar system. It will be shown that the width of metalinear CD gram-
mar systems induces an in�nite hierarchy of language classes. In addition it
is established that metalinear CD grammar systems of a certain width gener-
ate language classes that do not contain all context-free languages but contain
some context-sensitive languages. The resulting language classes are closed
under union, intersection with regular languages, homomorphism and inverse
homomorphism. They are not closed under concatenation, Kleene closure, in-
tersection and complement.

1 Introduction
There are many ways to combine the classical formal language theory with the con-
cept of distribution. Grammar systems are a combination of formal grammars and
distribution. A grammar systems consist of several components where each compo-
nent is a grammar. Cooperating distributed (CD) grammar systems are a sequential
model where at one point of time only one component (the active component) con-
tributes to the derivation. A good overview of the topic can be found in [2] or in [4]
and also a connection to arti�cial intelligence is given in [2].

From the language theoretic point of view it is desirable to �nd grammar models
that combine the simplicity of context-free rules with the power of generating some
context-sensitive languages. Context-free CD grammar systems consist of several
context-free grammars and can be seen as a generalization of context-free grammars.
The derivation mode de�nes how long productions of one component can be used
and when the next component becomes active. Apart from the t-mode where each
component contributes to the derivation as long as possible, we will consider the
(= k)- and (� k)-mode where each component performs exactly k or � k steps,
respectively. In case of the t-mode the class of ET0L languages is generated and
using the (= k) and(� k)-mode we obtain a subclass of the language class generated
by matrix grammars [2]. Thus, the concept of distribution adds generative power to
context-free productions.

Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varjú and Gy. Vaszil,
MTA SZTAKI, Budapest, pages 313 - 327, 2004.
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However, context-free CD grammar systems are not as easy to handle as context-
free grammars. For instance, it is not known whether a tool like a pumping lemma
exists. Hence, it is di�cult to exclude a certain language from a certain language
class generated by CD grammar systems. It is therefore natural to �nd subclasses
which are easier to use but still contain interesting non context-free languages. When
considering context-free languages, the most simple form of a production is a linear
production. But we will show that CD grammar systems with linear productions
only generate linear context-free languages. Metalinear context-free grammars are
only allowed to have more than one nonterminal in a starting production. In this
way the derivation trees stay nearly as simple as linear derivation trees.

We de�ne metalinear CD grammar systems to be CD grammar systems with met-
alinear context-free grammars as components and prove a pumping lemma similar
to that for metalinear context-free languages. Then it is established that the width,
which is the maximal number of nonterminals in a starting production, induces an
in�nite hierarchy of language classes. Also some interesting context-sensitive lan-
guages that can be generated by metalinear CD grammar systems are presented.
However, it is not possible to generate all context-free languages. Furthermore,
some nice closure properties are proven such as closure under homomorphism, in-
verse homomorphism, union and intersection with regular sets. The resulting lan-
guage classes are not closed under under concatenation, Kleene closure intersection
and complement.

2 De�nitions
The basics of formal language theory can be found in [5]. Let A be a �nite alphabet.
We denote the empty string by " and the Kleene closure of A by A�. Let B be a �nite
set. With jBj we refer to the cardinality of B and with B0 we refer to fa0 j a 2 Bg.

A context-free grammar G = (N;T; P; S) is linear, if each rule is of the form
A ! uBv or A ! u where A;B 2 N and u; v 2 T �. A language L is said to be
linear if there exists a linear grammar G such that L(G) = L.

A context-free grammar G = (N;T; P; S) is m-linear, if each rule is of the form
S ! A1 : : : Am0 , A! uBv or A! u where A;A1; : : : ; Am0 ; B 2 (N n fSg), m0 � m
and u; v 2 T �. A language L is m-linear, if there is an m-linear grammar G such
that L(G) = L. If a grammar or language is m-linear for some m � 2, it is also
called metalinear.

We denote the class of regular languages by REG, the class of context-free
languages by CF and the class of linear languages by LIN. For the class of m-linear
languages we will write mLIN and METALIN:= Si�1 iLIN .
De�nition 2.1. A CD grammar system is a k+3 tuple � = (N; T; P1; : : : ; Pk; S),
where N is a �nite set of nonterminals, T is a �nite set of terminals, Pi, 1 � i � k
is a �nite set of rules and S 2 N is the axiom.
In the following, we will write �1X�2 )Pi �1��2 if X ! � is in Pi and �1; �2 are
in (N [ T )�. We say that the production X ! � is applied to the derivation string
�1X�2. We denote reexive and transitive closure of )Pi by )�Pi and we write
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�)kPi �, if � derives � in exactly k steps. We de�ne the domain of a component as
Dom(Pi) := fA j A! � 2 Pig.
De�nition 2.2. Let � be a CD grammar system.

1. For each i, 1 � i � n, a terminating derivation in the i-th component is
x)tPi y i� x)�Pi y and there is no z 2 (N [ T )� with y )Pi z.

2. For each i, 1 � i � n, a k-steps derivation in the i-th component is
x )=kPi y i� there are x1; :::; xk+1 2 (N [ T )� such that x = x1; y = xk+1 and
xj )Pi xj+1; 1 � j � k.

3. For each i, 1 � i � n, an at most k-steps derivation in the i-th component is
x)�kPi y i� x)=k0

Pi y for some k0 � k.
4. For each i, 1 � i � n, an at least k-steps derivation in the i-th component is

x)�kPi y i� x)=k0
Pi y for some k0 � k.

Now we de�ne metalinear CD grammar systems as CD grammar systems that consist
of context-free metalinear grammars as components.
De�nition 2.3. A CD grammar system is called m-linear for a �xed m � 2, if
each production is formed as follows: S ! A1 : : : Am0 , A ! uBv, A ! u with
A;B;A1; : : : ; Am0 2 (N n fSg), m0 � m and u; v 2 T �. If a CD grammar system is
m-linear for some m � 2, it is also called metalinear. We refer to m as the width of
an m-linear CD grammar system.
We denote the class of m-linear CD grammar systems with l components by CDl-
mLIN and the class of metalinear CD grammar systems with l components by CDl-
METALIN. For the class of languages which are generated by grammars in CDl-
mLIN or CDl-METALIN in derivation mode f 2 f�; t;= k;� k;� k j k � 1g we
write Lf (CDl-mLIN) or Lf (CDl-METALIN), respectively. We omit the number of
components, if no restrictions are made.
De�nition 2.4. An ET0L system is a (n+3)-tuple G = (V; T; P1; : : : ; Pn; w) where
V is the total alphabet, T � V is the terminal alphabet, Pi; 1 � i � n are the tables
consisting of context-free rules, w 2 V � is the start string.
Each table is complete, that is for all symbols a 2 V it contains at least one rule
of the form a ! x. In the following rules of the form a ! a are not explicitly
written. A symbol a in an ET0L system is called active if there is a table in G with
a production a! x where a 6= x. The number of active symbols in the string � 2 V
is denoted by #A(G)(�).
De�nition 2.5. An ET0L system G = (V; T; P1; : : : ; Pn; S) is called m-linear if and
only if it has the following properties. S 2 V n T does not appear at the right hand
side of any production. If S )G � then #A(G)(�) � k Every production whose
left-hand side is not S is linear. An ET0L system is called metalinear if and only if
it is m-linear for some m.
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Metalinear ET0L systems are investigated in [6]. We will denote the class of m-
linear ET0L systems with ET0LmLIN , the class of metalinear ET0L systems with
ET0LMETALIN and the corresponding language classes with L(ET0LmLIN ) and
L(ET0LMETALIN ).
De�nition 2.6. A context-free matrix grammar is a 4-Tuple G = (N;T;M; S)
where N is a set of nonterminals, T is a set of terminals, M a �nite set of sequences
s : (r1; r2; : : : ; rns); ns � 1 with ri 2 N � (T [N)� and S is the axiom.
A derivation step of a matrix grammar consists of the sequential application of the
rules r1; : : : ; rnm to the derivation string.
De�nition 2.7. A matrix grammar G = (N;T;M; S) is called m-linear if and only
if each production is formed as follows: S ! A1 : : : Am0 , A ! uBv, A ! u with
A;B;A1; : : : ; Am0 2 (N nfSg), m0 � m and u; v 2 T �. An matrix grammar is called
metalinear if and only if it is m-linear for some m.
De�nition 2.8. Let � be a CD grammar system. A tree is a derivation tree of �
i� the following holds. Every vertex has a label which is a symbol of N [ T [ f"g.
The label of the root is S. If a vertex is interior and has label A, then A must be
in N . If n has label A and vertices n1; n2; : : : ; nk are sons of vertex n, in order from
the left, with labels X1; X2; : : : Xk, respectively, then A! X1X2 : : : Xk must occur
in one of the components of �. If vertex n has label ", then n is a leaf and is the
only son of its father.
The labels of the leaves of a derivation tree read from left to right are called the yield
of the tree. A subtree of a derivation tree is a particular vertex together with all
its descendants. It should be noted that each derivation of a CD grammar system
corresponds to a derivation tree, but there are also derivation trees which do not
correspond to a derivation of the underlying CD grammar system. We call derivation
trees which correspond to a derivation of � valid. If a valid derivation tree has a
yield w 2 T � we call it a valid complete derivation tree.

3 Examples
In this section we will show, that there are interesting non context-free languages
which can be generated bym-linear CD grammar systems. Furthermore there arem-
linear context-free languages which can be generated by (m�1)-linear CD grammar
systems.
Example 3.1. Consider the language L1 = fan1an2bm1 bm2 cl1cl2 j l;m; n � 1g. The
following 2-linear grammar system will generate L1 using the t-mode. L1 is known
to be 3-linear context-free.

�1 = ffS;A;C;B1; B2; B01; B02g; fa; b; cg; P1; P2; P3; P4; Sg;
P1 = fS ! B1B2; B1 ! B01b1; B2 ! b2B02g;
P2 = fB01 ! B1; B02 ! B2g;
P3 = fB1 ! Ab1; B2 ! b2Cg;
P4 = fA! a1Aa2; C ! c1Cc2; A! a1a2; C ! c1c2g:
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With the component P1 the two nonterminals B1 and B2 are inserted. After that,
the numbers of b1s and b2s will be increased with the components P1 and P2. The
derivation of bs is �nished with component P3. Component P4 inserts as and cs like
a context-free grammar and completes the derivation.
S )P1 B01b1b2B02 )P2 B1b1b2B2 )P1 : : : )P2 B1bm�11 bm�12 B2 )P3 Abm1 bm2 C )P4
an1an2bm1 bm2 cl1cl2.
Example 3.2. The language L2 = fww j w 2 fa; bg+g is generated by the following
grammar system using the (= 2)-mode:

�2 = ffS; S0; A;B;A0; B0g; fa; bg; P1; P2; P3; Sg;
P1 = fS ! S0; S0 ! AB;A! aA0; B ! aB0; A! a;B ! ag;
P2 = fA! bA0; B ! bB0; A! b; B ! bg;
P3 = fA0 ! A;B0 ! Bg:

The following derivation shows how �2 works.
S )P1 AB )P1 aA0aB0 )P3 aAaB )P2 abA0abB0 )P3 abAabB )P1 abaaba
Example 3.3. The language L3 = fanbnanbnanbn j n � 0g is generated by the
following grammar system using the (= 2)-mode

�3 = ffS;A;B;C;A0; B0; C 0; B00; B000; B0000g; fa; bg
; P1; P2; P3; P4; P5; P6; P7; Sg

P1 = fS ! S0; S0 ! ABCg;
P2 = fA! aA0b; B ! aB0bg;
P3 = fB0 ! B00; C ! aC 0bg;
P4 = fA0 ! A;B00 ! B000g;
P5 = fB000 ! B;C 0 ! Cg;
P6 = fA! ";B ! B0000g;
P7 = fB0000 ! "; C ! "g:

The derivations of �3 are formed as follows:
S )P1 ABC )P2 aA0baB0bC )P3 aA0baB00baC 0b)P4
aAbaB000baC 0b)P5 aAbaBbaCb()P2 : : :)P3 : : :)P4 : : :)P5)n�1
anAbnanBbnanCbn )P6 anbnanB0000bnanCbn )P7 anbnanbnanbn

4 Generative Capacity
4.1 Pumping Lemma

Considering the generative capacity of languages we need the possibility to decide,
if certain languages are included in a language class. For metalinear CD grammar
systems it will be possible to obtain a pumping lemma. This will help us to establish
a hierarchy of language classes consisting of languages generated by metalinear CD
grammar systems.
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Lemma 4.1. Let f 2 ft;= k;� k j k � 2g and L 2 Lf (CDl-mLIN) be an in�nite
language. Then there is a h 2 N and for all w with jwj � h such that w = c1 : : : cm
and

1. � ci = xiuiyivizi, 1 � i � m,
� u1v1u2v2 : : : umvm 6= ";
� for all i0, 1 � i0 � m with jci0 j > h=m it is ui0vi0 6= " and jxi0ui0vi0zi0 j �
h=m;

� for all j; j � 0 x1uj1y1vj1z1x2uj2y2vj2z2 : : : xmujmymvjmzm 2 L:
2. for all i0, 1 � i0 � m with jci0 j > h=m + s and each substring c0i0 with

jc0i0 j > h=m+ s there is a  with
� c0i0 is a substring of ci0,
� c0i0 = xuyvz and xu is a substring of the �rst h=m + s terminals of c0i0and juj > 0,
� for all j; j � 0 �xujyvjz�0 2 L.

or
� c0i0 is a substring of ci0,
� c0i0 = xuyvz and vz is a substring of the last h=m + s terminals of c0i0and juj > 0,
� for all j; j � 0 �xujyvjz�0 2 L.

Proof. We will �rst prove the claim for the t-mode of derivation.
1. Let L 2 Lt(CDl-mLIN) an in�nite language and G 2 CDl-mLIN be a grammar
system that generates L using the t-mode. Furthermore let s be the maximum
number of terminals in one Production of G, p the maximum number of productions
with terminals in one component and r the number of nonterminals in G. Now,
consider a word w 2 L consisting of n terminals. Then there were at least n=s
productions used in a derivation and the corresponding derivation tree of this word.
Let h = s � (r � l � p+ 1) �m2 and w 2 L with jwj � h. Then w is divided in m parts
w = c1 : : : cm with S ) A1 : : : Am and Ai ) ci and 1 � i � m. There is at least one
ci0 � s � (r � l � p+ 1). Now, consider the subtree with root Ai0 that yields ci0 . Note
that only linear productions are used in this subtree. We analyze the �rst l � r � p+1
productions with terminals.
Case 1: When deriving ci0 one of the components uses more than p productions that
contain terminals. Then there are two vertices vt1 and vt2 satisfying the following
conditions.

� Both vertices have the same label and the same productions applied to them.
� Vertex vt1 is closer to the root than vertex vt2.
� The potion of the path from vt1 to vt2 is of length at most p
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In this case we have xh; uh; vh; zh = "; 1 � h � m; h 6= j and

w = y1 : : : xjujyjvjzj : : : ym
= x1u1y1v1z1 : : : xjujyjvjzj : : : xmumymvmzm:

When the productions on the path from vt1 to vt2 are applied i times, we obtain
the word

w0 = y1 : : : xjuijyjvijzj : : : ym
= x1ui1y1vi1z1 : : : xjuijyjvijzj : : : xmuimymvimzm:

Furthermore 0 < jxj0uj0vj0zj0 j � l � p+ 1 � h=m.
Case 2: When deriving w none of the components uses more than p productions
that contain terminals. Therefore there have to be at least (r � l+ 1) �m changes of
components in the derivation.

Now, consider the leaves of the derivation tree of w when a component stops
working. The leaves are a sequence of at least m nodes each labelled with a terminal
or a nonterminal. Since terminals in the derivation tree can not be changed, they
are represented as � in the sequence. Hence, there are only (r + 1) � m di�erent
sequences for nonterminals at the leaves of the derivation tree. One of the sequences
has therefore to occur twice while deriving w. Let

(�1; : : : ;�j1�1; B1j1 ;�j1+1; : : : ;�jp�1; B1jp ;�jp+1; : : : ;�m)

and

(�1; : : : ;�j1�1; B2j1 ;�j1+1; : : : ;�jp�1; B2jp ;�jp+1; : : : ;�m)

be these sequences where each position stands for one of the m branches of the
derivation tree and � means that there is a terminal at the end of this branch. In
this case xh; uh; vh; zh = "; 1 � h � m; h 6= j1 : : : jp. We have

w = y1 : : : yj1�1xj1uj1yj1vj1zj1yj1+1 : : : yjp�1xjpujpyjpvjpzjpyjp+1 : : : ym
= x1u1y1v1z1 : : : xj1�1uj1�1yj1�1vj1�1zj1�1xj1uj1yj1vj1zj1

xj1+1uj1+1yj1+1vj1+1zj1+1 : : :
xjp�1ujp�1yjp�1vjp�1zjp�1xjpujpyjpvjpzjp
xjp+1ujp+1yjp+1vjp+1zjp+1 : : : xmumymvmzm:

If the productions used to change the tree from con�guration

(�1; : : : ;�j1�1; B1j1 ;�j1+1; : : : ;�jp�1; B1jp ;�jp+1; : : : ;�m)

to con�guration

(�1; : : : ;�j1�1; B2j1 ;�j1+1; : : : ;�jp�1; B2jp ;�jp+1; : : : ;�m)
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are applied i times one gets the following word
w0 = y1 : : : yj1�1xj1uij1yj1vij1zj1yj1+1 : : : yjp�1xjpuijpyjpvijpzjpyjp+1 : : : ym

= x1ui1y1vi1z1 : : : xj1�1uij1�1yj1�1vij1�1zj1�1xj1uij1yj1vij1zj1
xj1+1uij1+1yj1+1vij1+1zj1+1 : : :
xjp�1uijp�1yjp�1vijp�1zjp�1xjpuijpyjpvijpzjp
xjp+1uijp+1yjp+1vijp+1zjp+1 : : : xmuimymvimzm

with w0 2 L. Furthermore 0 < jxj0uj0vj0zj0 j � l � p+ 1 � h=m.
2. As shown in 1. ci0 is the yield of a linear subtree t of the derivation tree of w.
When we complete c0i0 with the appropriate  we obtain the yield of a subtree t00
of t0. Since jc0i0 j > h=m, t00 consists of at most h=m=s productions with terminals.
We will only consider the case yield(t00) = c0i0 because the other one can be proven
analogously. We have shown in 1. that in a subtree consisting of h=m=s productions
either one component has applied more than p productions (case 1) or there have
been at least (r � l+ 1) �m changes of components (case 2). In both cases there is a
vertex vt1 and a vertex vt2 of t00 labelled with the same nonterminal. The path from
vt1 to vt2 is not longer than p or (r � l + 1) �m, respectively. Hence c0i0 = xuyvz.
When the productions from vt1 to vt2 are applied j times we obtain xujyvjz. Since
c0i0 > h=m + s we have xu is a substring of the �rst h=m + s terminals of c0i0 and
juj > 0. We have shown in 1. that it is possible to apply the productions from vt1
to vt2 j times (possibly together with productions in other subtrees) and obtain a
word in L. Therefore there are � and �0 and for all j; j � 0 �xujyvjz�0 2 L.

Now we consider the = k mode of derivation. Since only k productions are
applied in one component the proof of 1. and 2. is similar to case 2 of the proof of
Lemma 4.1. Case 1 is not applicable, because one component has to use exactly k
components and pumping within these components is not possible.

The proof for the � k mode is similar to the proof for the t mode since here also
both cases of pumping can occur.

4.2 Generative Capacity Results

With the above pumping lemma we �rst show, that there are context-free languages
that can not be generated by metalinear CD grammar systems.
Theorem 4.1. CF 6� Lf (CD-mLIN) for all m � 2 and f 2 ft;= k;� k j k � 2g.
Proof. Consider the language L = fanbn j n � 0g�. This language is context-free.
Now we assume that L is in Lf (CDl-mLIN) for f 2 ft;= k;� k j k � 2g and
an arbitrary m � 2. Consider the word w = (ahbh)3m+1 where h is the constant
from Lemma 4.1. Then w = c1 : : : cm. It follows that there is a ci0 with jci0 j > 6h.
According to Lemma 4.1 we choose a substring c0i0 = ah=m+sbhahbh=m+s of ci0 . Note
that this is possible because of the length of ci0 . Then c0i0 is divided as follows
c0i0 = xuyvz.
Case 1: c0i0 is continued to c0i0. Then jxuvzj < h=m, juj > 0 and therefore only
contains as from the �rst part of c0i0 . It follows that y > 4h and thus contains b2h in
the �rst half of c0i0 . The word w0 = �xujyvjz�0 contains at least one pair a2h+xb2h
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where the number of as is not equal to the number of bs. The word w0 is not in L.
Case 2: c0i0 is continued to c0i0 . A word w0 = �xujyvjz�0 which contains at least
one pair a2hb2h+x where the number of as is not equal to the number of bs can be
constructed similar as in case 1. The word w0 is not in L.
It follows that L is not in Lf (CDmLIN) for f 2 ft;= k;� k j k � 2g and an
arbitrary m � 2.

De�nition 4.1. For all n 2 N let Ln = f(aibi)n j i � 1g.
Theorem 4.2. Let f 2 ft;= k;� k j k � 2g and n � 2. The language Ln is in
Lf (CD-nLIN) but not in Lf (CD-(n� 1)LIN).
Proof. The following grammar system in CD-nLIN can generate Ln in the t-mode:
Let Gn = (fS;A;Bg; fa; bg; P1 : : : P5; S) and

P1 = fS ! Ang;
P2 = fA! aBbg;
P3 = fB ! aAbg;
P4 = fA! abg;
P:5 = fB ! abg

The components P2 or P3 add an equal number of as and bs two the n substrings
derived from the n nonterminals A which are added with the starting production.
Component P4 or P5 terminate a derivation.
We will now give a grammar system in CD-nLIN that generates Ln in the (= 2)- or
(� 2)-mode. Let Gn = (fS;B;A1; A01; A001; A0001 ; A00001 ; : : : ; An; A0n; A00n; A000n ; A0000n g; fa; bg;
P1 : : : P3n�2; S) and

P1 = fS ! BA2 : : : An; B ! A1g;
P2 = fA1 ! aA01b; A2 ! A002g;
P3 = fA002 ! aA02b; A3 ! A003g;

: : :

Pn�1 = fA00n�2 ! aA0n�2b; An�1 ! A00n�1g;
Pn = fA00n�1 ! aA0n�1b; An ! aA0nbg;

Pn+1 = fA0n ! An; A0n�1 ! A000n�1g;
Pn+2 = fA0n�2 ! A000n�2; A000n�1 ! An�1g;

: : :
P2n�1 = fA01 ! A1; A0002 ! A2g;
P2n = fA1 ! ab;A2 ! A00002 g;

P2n+1 = fA00002 ! ab;A3 ! A00003 g;
: : :

P3n�2 = fA0000n�1 ! ab;An ! abg:
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The derivation begins with P1. After that P2 to Pn add one a and one b to the n
substrings derived from A1 to An. Note that these components can only be applied in
the given order. The resulting derivation string contains only primed nonterminals.
Then the components Pn+1 to P2n�1 change the nonterminals in the derivation string
to unprimed nonterminals. These components can also only be applied in the given
order. The derivation is �nished with the components P2n to P3n�1 which can again
be only applied in the given order.
Now we assume that Ln is in Lf (CD-(n�1)LIN). Let h be the constant known from
the pumping lemma. We choose a word w in Ln with jwj > h. Then w = (aibi)n.
But we know from Lemma 4.1 that

w = x1u1y1v1z1x2u2y2v2z2 : : : xnunynvnzn
and the following holds: At least one of the uj or vj is not the empty word. All
uj and vj only consist of as only consist of bs or else we can obtain a word not
in Ln. There are at most 2(n � 1) uj and vj . But if at least one and at most
2(n � 1) of the substrings an or bn are pumped to an0 or bn0 there remain at least
two substrings an or bn and we also obtain a word that is not in Ln. Therefore
Ln 62 Lf (CD-(n� 1)LIN).
Theorem 4.3. Let f 2 f�; t;= k;� k;� k j k � 1g then Lf (CDl-1LIN)=LIN.
Proof. Let L be a language in LIN then there is a linear CD grammar system � with
one component that consists of the productions of the linear context-free grammar
G with L(G) = L and chain productions A ! A for each nonterminal A in G. �
generates L using an arbitrary mode in f .
Now, let � be a linear CD grammar system and L = Lf (�). If f 2 f�;= 1;� 1;�
k j k � 1g we can modify the proof in [2] for unrestricted CD grammar systems and
context-free grammars and obtain a linear context-free grammar that generates L.
Now, let f = t and let � = (N;T; P1; : : : Pl; S) be a linear CD grammar system that
generates L in t-mode. The following linear context-free grammar G generates L:
G = (fNi j 1 � i � lg [ fS0g; T; P 0; S0) and P 0 = fAi ! �Bi� j A! �B� 2 Pi; 1 �
i � lg [ fAi ! Aj j A 62 Dom(Pi); A 2 Dom(Pj)1 � i; j � lg [ fS0 ! Si j S 2
Pi; 1 � i � lg.
Next, let f = (= k) or f = (� k), k � 2 and et � = (N;T; P1; : : : Pl; S) be a linear
CD grammar system that generates L in = k-mode. The following linear context-
free grammar G generates L: G = fNi;j j 1 � i � k; 1 � j � lg; T; P 0; S0) and
P 0 = fAi;j ! �Bi+1;j� j A! �B� 2 Pj ; 1 � j � l; 1 � i � k� 1g [ fAk;j1 ! A1;j2 j
A 2 N; 1 � j1; j2 � lg[fS0 ! S1;j j 1 � j � lg. In a similar way we can construct a
linear context free grammar if f = (� k): G = fNi;j j 1 � i � k; 1 � j � lg; T; P 0; S0)
and P 0 = fAi;j ! �Bi+1;j� j A ! �B� 2 Pj ; 1 � j � l; 1 � i � k � 1g [ fAi;j !
�Bi;j� j A! �B� 2 Pj ; 1 � j � l; 1 � i � kg [ fAk;j1 ! A1;j2 j A 2 N; 1 � j1; j2 �
lg [ fS0 ! S1;j j 1 � j � lg.
Theorem 4.4. Let f 2 f= k;� k j k � 2g then Lf (CD-mLIN)� L(MATmLIN )
Proof. We consider the proof in the general case from [2] theorem 3.13 and 3.14.
When the construction is applied to a metalinear CD grammar system the structure
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of the productions is not changed and the resulting matrix grammar is metalinear
and of the same width.
With a proof related to that for the 2-normal form [3] for matrix grammars it will
be possible to show that for all CD grammar systems of �nite index or metalinear
CD grammar systems there exists an equivalent CD grammar system working in
(= 2)-mode that is of �nite index or metalinear, respectively [1]. Hence it is likely
that there exists a pumping lemma for metalinear CD grammar systems working in
one of the k-modes that is easier than the one shown in this paper.
Theorem 4.5. For the t-mode the following holds:

1. Lt(CD3-mLIN)= Lt(CD-mLIN)
2. Lt(CD1-mLIN)= Lt(CD2-mLIN)

Proof. >From [4] Theorem 3.1 we have the proof for 1. and in [2] Theorem 3.10 is the
proof for 2. in the general case. When we apply the constructions to a metalinear CD
grammar system the structure of the productions is not changed. Thus the resulting
CD grammar system in 1. has only three components and is still metalinear and of
the same width. The resulting context-free grammar in 2. is m-linear.
Since metalinear CD grammar systems working in the t-mode are equivalent to
metalinear ET0L systems the normal form and the pumping lemma from [6] also
holds for metalinear CD grammar systems working in t mode.
Theorem 4.6. Lt(CD-mLIN)= L(ET0LmLIN )
Proof. In [2] theorem 3.10 it is shown that L(ET0L) �Lt(CDCF). When the con-
struction is applied to a metalinear CD grammar system the structure of the pro-
ductions is not changed and we obtain L(ET0LmLIN ) �Lt(CD-mLIN).
Now we consider an m-linear CD grammar system G = (N;T; P1; : : : ; Pn; S). We
construct an m-linear ET0L system G0 that generates Lt(G). G0 = (fAi j 1 � i �
n j A 2 Ng [ fXg [ T; T; fQ1; : : : ; Qng [ fQj;k j 1 � k 6= j � ng; S). The tables are
de�ned as follows

Qi = fAi ! �Bi� j A! �B� 2 Pig [
fS ! Ai1 : : : Aim0 j S ! A1 : : : Am0 2 Pig;
1 � i � n

Qj;k = fAj ! Ak j A 62 Dom(Pj)g [
fAj ! X j A 2 Dom(Pj)g;
1 � k 6= j � n

Note that G0 is metalinear and of the same width as G. A derivation in G with
component Pi is simulated in G0 by applying Qi one ore more times. Note that
a change of superscript i of the nonterminals in G0 is only possible if there is no
nonterminal from Dom(Pi) in the derivation string. In this way the stop conditions
of the t-mode derivations in G are correctly simulated in G0. In summary we have
Lt(CD-mLIN)� L(ET0LmLIN )
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5 Closure Properties
Since metalinear CD grammar systems that are working in t-mode are equivalent to
metalinear ET0L systems, the closure properties for this mode can be found in [6].
The following proofs hold for all the derivation modes considered in this paper.
Theorem 5.1. Let f 2 ft;= k;� k j k � 2g, then Lf (CD-mLIN) is closed with
respect to

1. union
2. intersection with regular languages
3. homomorphism
4. inverse homomorphism.

Proof. 1. Let L1 and L2 be in Lf (CD-mLIN) and G1 = (N1; T1; P1;1; : : : ; P1;n1 ; S1)
and G2 = (N2; T2; P2;1; : : : ; P2;n2 ; S2) two m-linear CD grammar systems where
Lf (G1) = L1 and Lf (G2) = L2. W.l.o.g. let N1 and N2 be disjoint.

Then let S be a new symbol where S 62 (N1 [ N2). Construct P 0i;j from Pi;j
in the following way: For each production Si ! � in Pi;j add a new production
S ! � to P 0i;j . The m-linear CD grammar system G = (N1) [ (N2) [ fSg; T1 [
T2; P 01;1; : : : ; P 01;n1 ; P 02;1; : : : ; P 02;n2 ; S) generates L1 [ L2.
2. Let L be a language in Lf (CD-mLIN) andG = (N;T; P1; : : : ; Pn; S) be a grammar
system with L(G) = L. Furthermore, let R be a regular set which is accepted by
the deterministic �nite automaton M = (�; Q; �; q0; F ). Let S0 be a new symbol
with S0 62 N and de�ne N 0 = f[q; A; p] j q; p 2 Q;A 2 Ng [ fS0g. For all i with
1 � i � n and each production p : A ! A1 : : : Al; A 2 N;A1; : : : ; An 2 N [ T in
Pi we de�ne the productions p0 = f[q; A; p] ! [q; A1; q1][q1; A2; q2] : : : [ql�1; Al; p] j
q; q1; : : : ; ql�1; p 2 Qg. We construct p00 from p0 by replacing all symbols [q; a; p],
q; p 2 Q; a 2 T and �(q; a) = p with a. Furthermore, the productions containing
symbols [q; a; p] with q; p 2 Q; a 2 T and �(q; a) 6= p are deleted from p00. Let
P 0i =

S
p2P p00 for 1 � i � n. If Pi contains a production with S on its left hand

side, then replace in P 0i the nonterminals [q0; S; f ], f 2 F with S0. The m-linear CD
grammar system G0 = (N 0; T; P 01; : : : ; P 0n; S0) generates L \R.
3. Let L be a language in Lf (CD-mLIN) andG = (N;T; P1; : : : ; Pn; S) be a grammar
system with L(G) = L. Furthermore, let h : T ! T 0� be a homomorphism that is
continued on T � as usual. We construct a production set P 0i for 1 � i � n by
replacing each production p : A ! �B� with A;B 2 N and �; � 2 T � in Pi by
p0 : A! h(�)Bh(�). The m-linear CD grammar system G0 = (N;T 0; P 01; : : : ; P 0n; S)
generates h(L).
4. Let L be a language in Lf (CD-mLIN) andG = (N;T; P1; : : : ; Pn; S) be a grammar
system with L(G) = L. Furthermore, let h : T 0 ! T � be a homomorphism. W.l.o.g.
T \ T 0 = ;. The language

K = fy 2 (T [ T 0)� j y = z0x1z1 : : : zl�1xlzl; x1 : : : xl 2 L(G);
z0; : : : ; zl 2 T 02 [ T 0 [ f"gg
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is generated by the m-linear CD grammar system G0 which is constructed from G
as follows. For each a 2 T we de�ne the set La = fxay j x; y 2 T 0 [ f"gg. The sets
La are �nite. Now, if a production p : A ! a1 : : : ar1Bb1 : : : br2 r1 � 0; r2 � 0 B 2
N [f"g; A 2 N; a1; : : : ; ar1 ; b1; : : : ; br2 2 T occurs in a component, it is replaced by
the set of productions Lp = fA ! a01 : : : a0r1Bb01 : : : b0r2 j a0i 2 Lai ; b0j 2 Lbj ; 1 � i �
r1; 1 � j � r2g.

We consider the set

M = fh(y1)y1h(y2)y2 : : : h(yn)yn j n � 1; yi 2 T 0g:

It can be seen thatM is regular. The intersection betweenK andM can be described
as follows:

K \M = fh(y1)y1h(y2)y2 : : : h(yn)yn j h(y1) : : : h(yn) 2 L(G)g:

Now we de�ne the homomorphism j : (T [T 0)! T 0, j(a) = a if a 2 T 0 and j(a) = "
if a 2 T . It is easy to see that j(K \ M) = h�1(L(G)). Since Lf (CD-mLIN)
is closed under intersection with regular sets and homomorphism, it follows that
Lf (CD-mLIN) is closed under inverse homomorphism.
Theorem 5.2. Let f 2 ft;= k;� k j k � 2g, then Lf (CD-mLIN) is not closed with
respect to

1. concatenation,
2. Kleene-closure,
3. intersection,
4. complement.

Proof. 1. With [7] Theorem 4.1 we can show that Lm = fanbn j n � 0g2m�1
is in Lf (CD-mLIN) for f 2 ft;= k;� k j k � 2g. But LmLm contains words
w = (ahbh)4m�2. With the technique from Lemma 4.1 it can be shown that LmLm
is not in Lf (CD-mLIN).
2. follows from 1.
3. Consider the languages L1 = fa�b�(anbn)m j n � 1g and L2 = f(anbn)ma�b� j
n � 1g. L1 can be generated by the grammar system

G1 = ffS;A;B;Cg; fa; bg; P1; P2; P3; P4; P5; Sg
P1 = fS ! CAkg
P2 = fC ! aC;C ! aB;B ! bB;B ! bAg
P3 = fA! aA0bg
P4 = fA0 ! Ag
P5 = fA! abg

using the t-mode. With similar methods as in [7] Theorem 4.1 an m-linear CD
grammar system that accepts L1 in the f= k;� k j k � 2g-modes can be constructed.
Now, we change S ! CAk to S ! AkC and obtain anm-linear CD grammar system
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G2 that generates L2. With similar methods as in [7] Theorem 4.1 an m-linear CD
grammar system that accepts L2 in the f= k;� k j k � 2g-modes can be constructed.
The intersection between the two languages is L1 \ L2 = f(anbn)m+1g. We know
from Theorem 4.2 that this language is not in Lf (CD-mLIN).
4. With De Morgan's Theorem and the fact that Lf (CD-mLIN) is closed under
union but not closed under intersection we obtain that Lf (CD-mLIN) is not closed
with respect to complement.

6 Conclusion
We have de�ned classes of metalinear CD grammar systems and intensely investi-
gated their generative capacity. To obtain the results a pumping lemma was shown.
The following holds

LIN = Lf (CD-LIN) � Lf (CD-2LIN) � : : :
� Lf (CD-mLIN) � Lf (CD-(m+ 1)LIN) � : : : :

Furthermore it is
Lt(CD1-mLIN) = Lt(CD2-mLIN) �

Lt(CD3-mLIN) = Lt(CD-mLIN) = L(ET0LmLIN ):
and

Lf (CD-mLIN) � L(MATmLIN ); f 2 f= k;� k j k � 2g:
We have shown that there is a context-free language that can not be generated with
metalinear CD grammar systems although many context-sensitive languages can
be. At last we have investigated the closure properties of metalinear CD grammar
systems. The researched language classes are closed under union, intersection with
regular languages, homomorphism and inverse homomorphism. They are not closed
under concatenation, Kleene closure intersection and complement.

Metalinear CD grammar systems were de�ned to obtain grammars that are more
powerful than context free grammars but have the simplest possible derivation struc-
ture. We got a deep insight into how the width of a metalinear CD grammar system
inuences its generative capacity. We have also obtained a pumping lemma which
allows us to decide for certain languages if they are not generated by metalinear
CD grammar systems. To complete the research of the generative power it would be
interesting to know how the number of components inuence the generative capacity
of the metalinear CD grammar systems in (= k)-mode and (� k)-mode.
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