
���������
	�	��
�����������	��������������� "!$#%�%&('*)+�,���-&('+�/.

02143�3�563�798;:=<->?56@�3
A�B�CEDGFHDGI=DKJ-LI=MKA�B�J6NOMGP$Q"DGFSR�TVU;B�FHW"XYMGCGFSDZLQ4D\[�NODGCG]�QOP

^ I�_OI`CED�acb
Xed�Xgf a�hiDEM-Q4jOX2kOliTVm\aonqp"pik"rs[tN"DGCG]`Q"PuT�v�XeM-P$Q"Bxw
yVzZ{i{�|g{�}=~��=�����i{�|O�Z�V�"���4���Y�\�,�iz

�*�t�:=<o7 �9�\�i�q� 56�
� NOPs�VI=DGXeM\Q"B`] ^ I=DGNOP$Q4D-FSNOB��KXgC�XgQ4M-�o�uA,B`CEDGFSD-I=DGX

�;I`B=_xQ4M-FHQOB ^ �eQ"]�XYP+w�N"J�h=�eFHXYB��eXYC
��XYB`]=X2I=D-�eQ�nY�Za-ng�iT/nOn"nOn�b
I�]`Q4��XYCEDeTV�;I�B�_OQ"MEw

 �=�4¡`|O¢x~`�4¡O�`�4£�|t��yi�

¤�¥�¦-§-¨e©xªY§
«t¬O�®i¯e®=G°�G±Z²�-³x´Oµ?²,¬x�³O¶Y²,· ¶g³�¶Y¸V¹G¶Y³Z²�E±4²,º6¸6°c-¼»/»¾½À¿OÁ?ÂY°�¯eÃ�Ã�¯e°�µ?²,¶�ÄÆÅÇÂY°�¯eÃ;ºÃ�¯Y°�µcÈ"µÉ²,-Ã�µtÊ�¶g°cË4· ³OÂ�· ³+²,¬x(µc¶eº�¹-¯YÌ Ì o´�½�Í�ÎsÁ�Ã�¶"´"(¶e¸/´"-°c· Ïe¯e²,· ¶g³`Ð/«t¬OK´"GÑx³O· ²,· ¶g³¶Y¸K²�¬O�G±4²,-³x´"o´Ò»Æ»�½Ó¿OÁ2¹G¶Y³i´"· ²,· ¶g³Ò·Sµ2¸Ô¶gÌ Ì ¶qÊ�o´ÖÕ4ÈÖ¯9µÉ¬x¶Y°c²*G±O¯eÃ�· ³x¯q²�· ¶Y³Ò¶Y¸\²,¬OÕx¯gµc·S¹¼®O°,¶Y®=-°É²�· oµt¶e¸?»Æ»�½Ó¿OÁ×Ä�ÅØÂg°,¯YÃ�Ã�¯Y°�µcÈ"µ�²�-Ã�µGÙx¯Y³x´2²,¬O-³s¯e³s¯eÌ Âg¶Y°,· ²,¬OÃÚ·Sµ×®O°cGºµc-³Z²,o´+Ê×¬O·S¹�¬*®x¯Y°,µcoµ×ÌS¯Y³OÂYÛx¯YÂYoµ×Âg-³O-°,¯e²,o´+Õ4ÈsÄ�ÅÜÂY°�¯eÃ�Ã�¯e°¾µÉÈ"µÉ²,-Ã�µ×¶Y¸�²�¬O·Sµt²ÉÈ4®i· ³$Ý�½ÔÞ+ß-Ì ¶YÂ"à=ÞVÁÆ²,· Ã�YÐ

á â`ã;ä�å?æ�ç$è*éÆä/êGæ;ã
ë �=X¼PsNxCED�FHBxWOXYCEDGFS_xQ4DGXY]2JÀQOP$FHfHFSXgCÆN"J`fHQ"B�_OI`Q4_OXYC�Q4MGX¾D-�=X¼MEXY_OI`fHQ4MtQ"B`]�DG��X¼�eNOBxDGXqì=D�acJ6MGXeX¼NOB�XYCeí
b
I�DeTOJÀN"M�PsQOBxw+Q4�`�`fHFÔ�eQ"DGFSNxB�CtN"JVJÀN"M-P$Q"f=fÔQ"B�_OI`Q4_"XgCeTOB�NOB=ac�qNxBxDEXeì=D�aÉJÀMGXeX(QOCE��XY�eDGC×Q4MGX(B�XeXg]=XY]?í
^ fHf���MGN"_OMGQOPsP$FHB�_�fÔQ"B�_OI`Q4_OXYCeTOJÀN"M�Xqì�QOP*�VfSXOTxFHB*î\�`FH�o�*W4Q"MGFHQ"d`fHXYC�P+I`C�D�d�XK]�XY�efÔQ4MGXY]sd�XeJÀN"MGX
DG��Xewï�eQOBïd�X�I`CEXY]uFHBïD-�=X�P$Q"FHBï�`MGN"_"M-QOPïT`FHBxWONOfHW"X�DG��X�CEDEMGI`�qD-I=MGX�N"JÆD-�=X�fHQOB=_xI�Q"_"X*ðÆñ\ñóò
ñõô9ö
÷ÆøOT`î\�=XeMGX*ö%FHCKCENOPsX2Q"fH�`�`Q4d�XYDeí

A�BØù úgûcT?CEXeWOXYBü�eFHMG�YI�P$CEDGQOB��qXgC;î\�=XYMEXs�qNxBxDEXeì=D�aÉJÀMGXeXsfHQ"B�_OI`Q4_OXYC;D-I=M-B9NOI�D;DGN�d�XsFHB`CGI=ýsa
�eFHXYBxD¼Q4MGX\]`FHCG�eI`CGCEXY]?TxXYPsXeMG_xFHB=_+FHB$DG��X\þ�XYfÔ]sNOJ���MGNO_"M-Q"PPFHB=_+fHQOB=_xI�Q"_"XgCqTiDG��X\fÔQ"B�_OI�Q"_"X\N"J
fSNO_OFH�"T�_OMGQ"�`�ÿD-�=XYN"MGw"T�]�XeWOXYfHN"�`PsXgBxD;d`FSNxfSN"_Ow"T�XY�eNOB�NOP$FH�+PsN=]=XgfHFHB�_�T�JÀNxfSR=fSNOMEXOT�Q"B`]9B`Q4DGI�MGQOf
fHQOB=_xI�Q"_"XYCeí ë ��X�JÓQ"�qD(D-��Q"D
D-�=XYMEX�Q"MEX�B�NOB=ac�qNxBxDEXeì=D�aÉJÀMGXeX�Q"CE��Xg�qDGCKFHBïDG��X�CEw=BxDGQZìïN"JtC���NOR"XgB
fHQOB=_xI�Q"_"XYCKFHC(Xqì���QOI�CED-FSW"XgfSw Xeì=�`fHN"MGXY]uFHBïD-�=X�fHFHDEXeM-Q"DGI=MGX�N"JtfHFHB�_OI`FHCEDGFH�YCeT�X"í _`íHT`CEXeX ù � TVliT/n��4ûÉí
ë ��FHCïfSXY] DENÇDG��Xü�qNxB��qXY��D�NOJ����	��
�� �������������������� �!� �����	"#�%$#&�'����('�& �Øù lgû��`MENZW=FH]`FHB�_ CENOPsX
fSNZî¼XYM\QOB`]�I�����XYMKd�NxI�B`]ÿ�qNOB`]`FSDGFSNxB�CKJÀNOMKJÓQOPsFÔfHFSXgCKN"J×fHQOB=_xI�Q"_"XYC\îK�`FH�o�ÿPsQgwïd�X+I`C�XYJÓI�f/FÔB
fHFÔB=_OI`FHCEDGFÔ�eCeí ^ _OMGQOPsP$Q"M(JÀNOMGP$QOfHFHCGP$CKFHCKCGQOFH]uDEN$d�X2PsFÔfH]�fHwï�qNxBxDEXqì=DEacCEXYB`CGFSDGFHW"X2FSJ

)+*-,/.0,21�3�4�56.079898#:�30;�,2<>= ?68�1�30;-@BAC;�59,EDF?�;�,+3�G :�H ,+3�?9IJ,/?�;�1�KML�NPORQS:�:B8#,+3�1�;�= :B?UT�3�:BG�3�1 IV: WM;�5�,YX-Z[4/,
:�W*],/.�,21�3�4�5(1�?�<�^P,/H ,2K : 89IJ,/?�;_^P= H`= .�= : ?a:�W];�59,>b-79?9GB1�3�= 1�?dc6= ?�= .�;030A�:�WPef<�7�421�;�= : ?(1�?�<�= ;�.[g\,+3�I[1 ?
8�1�30;�?9,+32h�;�5�,ji9,2<�,+3�1�KMcU= ?9= .�;030A>: W!ef<�7�421�;�= : ?k1�?�<>*-,/.0,21�3�4�5mlonpcUnpi!q�h97�?�<�,+3-G�3�1�?�;]?9:�rf^\sFt�u v w x xBx`r

ypz+{�|�}�} ~#� ���9�P{`�]�_z/���U����zY���#���+}��k�E�d}�}��m�`�`�`����} ~#� �/}�~m���m�E�M�\�������������]�`zF������`��~��_���p�]������� ���
�a �¡¢��£M �¡Y¤J¥2��¦-��~���§M} �0�B�#§��`�`} �j¨�©C�Yª`ªB�����`�`�`���

«�¬

1. it contains (besides the context-free languages1)

L1 = { anbncn | n ≥ 1 },

L2 = {wcw | w ∈ {a, b}∗ },

L3 = { ambncmdn | m,n ≥ 1 },

2. its generated languages can be parsed in polynomial time, and

3. it can generate only semilinear languages.

The next level in the Chomsky hierarchy, namely the context-sensitive grammars,
are also not used in most applications since they are too powerful. For example, the
fixed membership problem (i.e., the parsing problem) is PSPACE-complete and
many other relevant decision problems are proved to be undecidable for context-
sensitive grammars.

Therefore, a series of grammar formalisms has been introduced which are able
to cover all the desired non-context-free aspects but maintain the nice properties
of context-free grammars. Besides tree-adjoining grammars introduced in [9] and
equivalent mildly context-sensitive grammars [16], the three most important sources
of such language describing devices are grammars with parallel derivations (mainly
Lindenmayer systems), grammars with regulated rewriting, and grammar systems;
for a survey about these topics, see [14].

Unfortunately, most of those mechanisms lose too many positive properties of the
context-free grammars, in particular the fixed membership problem becomes NP-
complete in many cases. Even the known deterministic polynomial-time parsing
algorithms for tree-adjoining and the other mildly context-sensitive grammars are
of complexity O(n6), see, e.g., [10].

The aim of the present paper is to select one representative of those non-context-
free devices and restrict it in a such a way that (1) at least the lower bound of
mildly context-sensitive languages is met, that is, all the aforementioned languages
L1, L2 and L3 can be described, and (2) a parsing algorithm can be provided the
computational complexity of which is as close to linear time as possible.

To this end, cooperating distributed grammar systems (CD grammar systems,
for short) are considered here. The concept has its root in [11] aiming to generalize
the notion of two-level substitution grammars to a multi-level concept, but the
theory started with [3] introducing cooperating distributed grammar systems for
describing, in terms of formal grammars and languages, communities of cooperating
autonomous problem solving agents which use the blackboard model of problem
solving. Later on, they were also considered as sequential counterparts of tabled
Lindenmayer systems [1].

A cooperating distributed grammar system (CDGS, for short) consists of a finite
set of (context-free) grammars, called components, performing derivation steps on
a common sentential form in turns, according to some cooperation protocol. One
natural cooperation protocol is the so-called = m-mode, for some m ≥ 1, where a

1This requirement to cover all context-free languages has been weakened in more recent articles.

���������
	�������������������������

 �!

component, once started, has to perform exactly m derivation steps. The next com-
ponent is nondeterministically chosen. In terms of distributed problem solving, the
components correspond to the independent problem solving agents, the sentential
form to the current state of the problem solving, and the generated language repre-
sents the set of problem solutions. For more on CD grammar systems see [4, 7]. It
is known that this type of CD grammar systems generates all context-free languages
and that it can describe matrix languages (without appearance checking).

One natural approach to fast parsers is to restrict the CD grammar systems to
unambiguity. The present paper aims to do so by means of an LL(k) condition for
CD grammar systems. This yields a class of grammars which describe all context-
free LL(k)-languages, the languages L1, L2, and L3 above, and their languages can
be parsed in time O(n · log2 n) time. Without further restriction, however, they do
not define a new class of mildly context-sensitive languages since also non-semilinear
languages can be generated.

It is worth mentioning here, that the logarithm in the time bound of the algo-
rithm is squared only because we carefully count bit operations in which reading
and writing a search index n takes O(log n) time. A uniform measurement of our
algorithm would yield a time complexity of O(n · log n).

2 Definitions

We assume the reader to be familiar with the basic notions of formal languages, as
contained in [15]. In general, we have the following conventions: ⊆ denotes inclusion,
while ⊂ denotes strict inclusion. The set of positive integers is denoted by N and
the cardinality of a set M is denoted by #M . By V + we denote the set of nonempty
words over alphabet V ; if the empty word ε is included, the we use the notation V ∗.
Set union and substraction is denoted by ∪ and −, respectively.

A context-free grammar is a four tuple G = (N,T, P, S), where N and T are
disjoint alphabets of nonterminals and terminals, respectively, S ∈ N is the axiom,
and P is a finite set of productions of the form A→ u, where A ∈ N and u ∈ (N∪T)∗.

Let V be some alphabet and w ∈ V ∗. By Firstk(w) we denote the prefix of
length k of w if |w| ≥ k or, otherwise, the string w itself.

Now we repeat the definition of a cooperating distributed grammar system, where
we restrict ourselves (without further mentioning) to the case of context-free com-
ponents.

A cooperating distributed grammar system (CDGS for short) of degree n is an
n + 3-tuple

G = (N,T, S, P1, P2, . . . , Pn) ,

where N and T are two disjoint alphabets, the alphabet of nonterminals and the
alphabet of terminals, respectively, S ∈ N is the axiom, and for 1 ≤ i ≤ n, Pi is a
finite set of context-free productions, i.e., productions of the form A → α, A ∈ N ,
α ∈ (N ∪ T)∗. The sets Pi are called components of the system G. For 1 ≤ i ≤ n,
we set Ni = {A ∈ N | A→ α ∈ Pi} and Ti = (N ∪ T) \Ni.

In the following, let x and y be sentential forms over N ∪ T . A direct derivation

according to some component Pi, 1 ≤ i ≤ n, is defined as usual by x =⇒i y if and

����������	
	
�������������	���������������� �"!�#%$'&"()������$'&"�

*,+

only if x = zAz′, y = zαz′, for some z, z′ ∈ (N ∪T)∗ and A→ α ∈ Pi. This relation
is extended to an m-step derivation according to Pi, in symbols x

m=⇒i y, in the
natural way: x

m=⇒i y if and only if there are strings x0, x1, . . . , xm over N ∪ T such
that

x = x0, y = xm, and xj−1 =⇒i xj for 1 ≤ j ≤ m .

Let prod(x
m=⇒i y) denote the set of production sequences which can be used in the

m-step derivation x
m=⇒i y. More precisely,

(A0 → α0, A1 → α1, . . . , Am−1 → αm−1) ∈ prod(x
m=⇒i y)

if and only if there are strings x0, x1, . . . , xm with xj−1 = zj−1Aj−1z
′

j−1 and xj =
zj−1αj−1z

′

j−1, and Aj−1 → αj−1 ∈ Pi, for 1 ≤ j ≤ m.

We write x
m=⇒

∗

y if and only if x = y, or there are strings x0, x1, . . . , xr over
N ∪ T , r ≥ 1, such that

x = x0, y = xr, and xj−1
m=⇒ij xj ,

for 1 ≤ ij ≤ n for 1 ≤ j ≤ r.
The language generated by G in the (=m)-mode of derivation is defined to be

the set

L=m(G) = {w ∈ T ∗ | S
m=⇒

∗

w } .

An m-step derivation x
m=⇒i y is referred to as leftmost, in symbols x

m=⇒
l i y, if and

only if the following condition is satisfied: If x
m=⇒i y is the derivation

x = x0 =⇒i x1 =⇒i x2 =⇒i . . . =⇒i xm = y

for strings x0, x1, x2, . . . , xm ∈ (N ∪ T)∗, then we have

x0 = u0A0z0, x1 = u0α0z0,

u0 ∈ T ∗, z0 ∈ (N ∪ T)∗, A0 → α0 ∈ Pi,

and, for 2 ≤ j ≤ m,

xj−1 = uj−1Aj−1zj−1, xj = uj−1αj−1zj−1,

uj−1 ∈ T ∗

i , zj−1 ∈ (N ∪ T)∗, Aj−1 → αj−1 ∈ Pi.

That is, in the first step the leftmost occurrence of a symbol in N is replaced and
in each of the following steps the leftmost occurrence of a symbol in Ni is replaced,
each by some production in component Pi. This notion of leftmost derivation is the
same as in [12] or as the notion of a weakly leftmost derivation in [8].

The relation
m=⇒
l i over (N ∪T)∗ is extended to

m=⇒
l

∗

analogously to the extension
of

m=⇒i to
m=⇒

∗

. The language generated by a CD grammar system G in the (=m)-
mode of derivation working in this leftmost manner is defined by

L=m(G-left) = {w ∈ T ∗ | S
m=⇒
l

∗

w } .

Next, we present the definition of an LL(k) condition appropriate for CD grammar
systems (in m-mode of derivation). It is adopted from the context-free case, for a
definition see, e.g., [13, 15].

���������
	�������������������������

 �!

Definition 1 Let G = (N,T, S, P1, P2, . . . Pn), n ≥ 1, be a CDGS and let k ≥ 1
and m ≥ 1. We say G satisfies the LL(k) condition in the (=m)-mode of derivation
if the following holds: Let

S
m=⇒
l

∗

uXy
m=⇒
l i uz

m=⇒
l

∗

uv and

S
m=⇒
l

∗

uXy′
m=⇒
l i′ uz′

m=⇒
l

∗

uv′

be two derivations in G, where u, v, v′ ∈ T ∗, X ∈ N , y, y′, z, z′ ∈ (N ∪ T)∗, and
Firstk(v) = Firstk(v

′). Then i = i′ and prod(uXy
m=⇒
l i uz) = prod(uXy′

m=⇒
l i′ uz′)

is a singleton set.

The idea behind this concept is the following: Given a terminal word uv and a
sentential form uXy, X ∈ N and y ∈ (N ∪ T)∗, which has been obtained from S by
iterated leftmost m-step derivations, the first k letters of v allow to determine the
next component and the sequence of rules of that component which is to be applied
to uXy in order to derive uv by leftmost m-step derivations.

By CDn(=m) with m, n ≥ 1 the family of languages which can be generated by
a CD grammar system of degree n working in the m-mode of derivation is denoted.
If we restrict the CD grammar systems of degree n to satisfy the LL(k)-condition
in the (=m)-mode of derivation, then the families of languages obtained by left-
most derivations are denoted by CDnLL(k)(=m) with k,m ≥ 1. If the number of
components is not restricted, we write CD∗(=m) and CD∗LL(k)(=m), respectively.
Finally, let LL(k) denote the family of all context-free LL(k) languages [15].

Example 1 Consider the CD grammar system

Γ = ({S, S′, S′′, A, B,C,A′, B′, C ′}, {a, b, c}, S, P1, P2, P3, P4)

with

P1 = {S → S′, S′ → S′′, S′′ → ABC},

P2 = {A→ aA′, B → bB′, C → cC ′},

P3 = {A′ → A,B′ → B,C ′ → C},

P4 = {A→ a,B → b, C → c}.

This system generates (by leftmost derivations) in the (= 3) mode the language

L1 = { anbncn | n ≥ 1 },

and as seen below, satisfies the LL(2) condition, thus, { anbncn | n ≥ 1 } ∈ CD4LL(2)(=
3).

Considering a derivation

S
m=⇒
l

∗

uXy
m=⇒
l i uz

m=⇒
l

∗

uv,

the pair X ∈ N and First2(v) determines the component Pi and the unique pro-
duction sequence in prod(uXy

m=⇒
l i uz) which are used, as indicated in the following

table.

����������	
	
�������������	���������������� �"!�#%$'&"()������$'&"�

'

aa ab

S
P1:
(S → S′, S′ → S′′, S′′ → ABC)

P1:
(S → S′, S′ → S′′, S′′ → ABC)

A
P2:
(A→ aA′, B → bB′, C → cC ′)

P4:
(A→ a,B → b, C → c)

A′
P3:
(A′ → A,B′ → B,C ′ → C)

P3:
(A′ → A,B′ → B,C ′ → C)

It is an easy exercise to prove that { anbncn | n ≥ 1 } ∈ CD4LL(2)(= 2) also holds.
(Let A produce an a and b simultaneously.)

Example 2 Analogously, one can see that the CD grammar systems

Γ = ({S, S′, A, B,A′, B′}, {a, b, c}, S, P1, P2, . . . , P7)

with

P1 = {S → S′, S′ → c},

P2 = {S → S′, S′ → AcB},

P3 = {A→ aA′, B → aB′},

P4 = {A→ bA′, B → bB′},

P5 = {A′ → A,B′ → B},

P6 = {A→ a,B → a},

P7 = {A→ b, B → b}.

and
Γ = ({S, S′, A, B,A′, B′}, {a, b, c, d}, S, P1, P2, . . . , P5)

with

P1 = {S → S′, S′ → AB},

P2 = {A→ aA′, B → cB′},

P3 = {A→ A′b, B → B′d},

P4 = {A′ → A,B′ → B},

P5 = {A→ ab,B → cd}.

obey the LL(2) condition in the =2-mode, generating (by leftmost derivations) the
languages

L2 = {wcw | w ∈ {a, b}∗ }

and
L3 = { ambncmdn | m,n ≥ 1 } ,

respectively.

Hence, L1, L2, and L3 from the definition of mild context-sensitivity are contained
in CD∗LL(2)(=2).

���������
	�������������������������

 �!�!

3 Properties of CD∗LL(k)(=m)

First, we present the following trivial hierarchies.

Lemma 1 For any integers k ≥ 1, m ≥ 1, and n ≥ 1, we have

1. CDnLL(k)(= m) ⊆ CDnLL(k + 1)(= m),

2. CD∗LL(k)(= m) ⊆ CD∗LL(k + 1)(= m),

3. CDnLL(k)(= m) ⊆ CDn+1LL(k)(= m).

Concerning the parameter m, one only knows from the non-restricted case that
there exists a prime lattice structure-like hierarchy [4].

Next, we show that all context-free LL(k) languages are in CDnLL(k)(=m) for
some n, m ≥ 1.

Theorem 2 For all k ≥ 1 and m ≥ 1, LL(k) ⊆ CD∗LL(k)(=m).

Proof. Let L ∈ LL(k) for some k ≥ 1, and let G = (N,T, P, S) be a context-
free LL(k) grammar with L = L(G). Let the rules r ∈ P be labelled by 1 ≤
lab(r) ≤ |P |. For any integer m ≥ 1, we construct a CD grammar system Γ =
(N ′, T, S, P1, P2, . . . , Pn) satisfying the LL(k) condition and generating L in the =m

mode of derivation as follows. The number of components of Γ is going to be n = |P |.
Let

N ′ = N ∪ {Xi | 1 ≤ i ≤ m− 1, X ∈ N },

and for 1 ≤ i ≤ |P |, let

Pi = {X → X1, X1 → X2, . . . , Xm−1 → α | i = lab(X → α) }.

It is easy to see that a rewriting step x
m=⇒
l i y in Γ is possible if and only if x⇒l

i y is
possible in G, where ⇒l

i denotes a rewriting step on the leftmost nonterminal using
rule r with lab(r) = i. 2

Lemma 3 There are non-semilinear languages in CD∗LL(1)(= 2).

Proof. Consider the CD grammar system

G = (N, {a, b, c, d, e, f}, P1, P2, . . . , P13, S)

with N = {S, S′, A, A′, B, B′, C, C ′, D, E, F, T,X} and

P1 = {S → S′, S′ → AET},
P2 = {A→ dA′, E → DD}, P7 = {B → dB′, D → EE},
P3 = {A′ → X, X → A}, P8 = {B′ → X, X → B},
P4 = {A→ aX, X → B}, P9 = {B → aX, X → A},
P5 = {A→ X, X → C}, P10 = {B → X, X → C},
P6 = {C → eC ′, D → b}, P11 = {C → fC ′, E → b},

P12 = {C ′ → X, X → C},
P13 = {C ′ → c, D → F, E → F, T → c} .

����������	
	
�������������	���������������� �"!�#%$'&"()������$'&"�

,+)

We are going to determine the language L=2(G-left). Any leftmost derivation of G

in the = 2-mode starting off with the axiom must initially use component P1 leading
to AET . Then, the components P2, P3, P4, P7, P8, and P9 can be used in turns.
In this phase, the number of occurrences of D’s and E’s can be increased. Note
that this number can at most be doubled until a new symbol a will be introduced
before a further increase is possible. Moreover, whenever one more D or E is in-
troduced, then simultaneously a terminal d must emerge. This phase is finished by
one application of either P5 or P10 turning the leftmost nonterminal (A or B) to C.
Now, all occurrences of nonterminals D and E can be terminated with the help of
P6, P11, and P12. Finally, the leftmost and the rightmost nonterminals, that is C ′

and T at this stage of the derivation, can be terminated by using P13. Since also
this terminating component must be applied in the leftmost way and F is a trap
symbol, it is guaranteed that all occurrences of D and E have vanished before P13

can successfully be applied in the = 2-mode. Therefore, in every non-terminal sen-
tential form, either A, B, C (or its primed versions or X) is the leftmost occurring
nonterminal, steering the selection of the components. Thus, the different phases of
the derivation cannot be mixed.

Consequently, the non-semilinear language L is generated, where

L ⊆ K = {fcbc} ∪ { di1adi2a . . . dinvcbmc | n ≥ 1, 0 ≤ ij ≤ 2j ,

for 1 ≤ j ≤ n, m = 1 +
∑n

j=1 ij , v ∈ {e, f}m } .

Here, L is not equal to K only because the portion v has to obey some additional
combinatorial properties which do not affect the non-semilinearity of the language.
Since writing down these properties would decrease readability, they are omitted.
On the other hand, the e’s and f ’s are needed in order to make sure that G is LL(k)
in the = 2-mode.

In fact, one can readily prove that G satisfies the LL(1) condition. 2

According to Lemma 1, we know that there exist non semilinear languages in
CDnLL(k)(= 2) for all k ≥ 1 and all n ≥ 13. By a simple prolongation tech-
nique, this is also true for any = m-mode of derivation, m ≥ 2. One has to split the
productions replacing the leftmost nonterminal to m−1 productions via new nonter-
minal symbols in each component. The restriction to leftmost derivations guarantees
that these productions are consequently used such that the other production can be
applied only once in any = m-step.

Corollary 4 For any integers k ≥ 1, m ≥ 2, and n ≥ 13, there are non-semilinear

languages in CDnLL(k)(= m).

4 Syntactic analysis of CD∗LL(k)(=m)

In this section we present a parser that is able to parse languages generated by CD
grammar systems satisfying the LL(k) condition in an efficient way. As we shall
later see, its running time is O(n · log2 n) where n is the length of the input word.

Let G be a CD grammar system given as G = (N,T, S, P1, . . . , Pn) satisfying
the LL(k) condition in the (=m)-mode of derivation for some m, k ≥ 1. First we
present the notions we will use.

���������
	�������������������������

 �!�"

• A production is p = X → α ∈ N × (N ∪ T)∗ with left(p) = X, right(p) = α.

• A stack over N is st = xj]xj−1] . . .]x1], xi ∈ N, 1 ≤ i ≤ j, with top(st) = xj ,
pop(st) = xj−1] . . .]x1], and for some y ∈ N, push(y, st) = y]xj]xj−1] . . .]x1].
The empty stack, pop(x]) for some x ∈ N, is denoted by ε].

• A stack over N ∪ T is st = xj]xj−1] . . .]x1], xi ∈ N ∪ T, 1 ≤ i ≤ j, with
top(st) = xj , pop(st) = xj−1] . . .]x1] and for some y = y1 . . . ym ∈ (N ∪ T)∗,
yi ∈ N ∪ T, 1 ≤ i ≤ m, push(y, st) = y1] . . .]ym]xj]xj−1] . . .]x1]. The empty
stack, pop(x]) for some x ∈ N ∪ T , is denoted by ε].

• A production queue is pq = (p1, p2, . . . , pj), pi ∈ Pl, 1 ≤ l ≤ n, 1 ≤ i ≤ j,
with first(pq) = p1, butfirst(pq) = (p2, . . . , pj).

The lookup table for the LL(k) CD grammar system is given as lookupTable ⊆
N × T k × PQ where PQ denotes the set of all production queues consisting of m

productions; it is a function which for a nonterminal X ∈ N and a terminal word of
length k, y ∈ T k, returns a production queue pq = lookupTable(X, y).

The parsing algorithm is given in Figure 1. It uses the variables

• step, stepOfTopmost ∈ N, natural numbers,

• mainStack, a stack over N ∪ T , the “main” stack of the parser,

• stacksForN , an l-tuple of stacks for natural numbers where l = |N |; it pro-
vides a stack over N for each nonterminal of the grammar system,

• input ∈ T ∗, the string to be analyzed,

• topmost ∈ N , a nonterminal symbol,

• pQueue, a production queue as above,

• pQueuesLeft ⊆ N × PQ, where PQ denotes the set of all production queues
of length at most m, that is, pQueuesLeft is a set of pairs of the form (i; pq)
where i is an integer and pq is a production queue as above,

• pToUse ∈ N × (N ∪ T)∗, a production as above.

Example 3 In the following we demonstrate the work of the algorithm through an
example.

Consider the CD grammar system

Γ = ({S, A1, A2, A3, A4, A5}, {a, b}, S, P1, P2, P3)

with

P1 = {S → A1A2A1A3, S → bA1A2A1A3, A2 → b, A3 → A4},

P2 = {A1 → aA2, A4 → A5},

P3 = {A2 → a,A5 → b},

����������	
	
�������������	���������������� �"!�#%$'&"()������$'&"�

*,+'-

1 step ← 0
2 mainStack ← push(mainSt, S)
3 stacksForN(S) ← push(stacksForN(S), 0)
4 while mainStack is not empty and there is no ERROR do

5 if top(mainStack) is a terminal symbol then

6 if top(mainStack) coincides with the first symbol of input then

7 mainStack ← pop(mainStack)
8 input ← input without its first symbol
9 else ERROR
10 else topmost ← top(mainStack)
11 stepOfTopmost← top(stacksForN(topmost))
12 stacksForN(topmost) ← pop(stacksForN(topmost))
13 if there exist (i; pQueue) ∈ pQueuesLeft such that

i ≥ stepOfTopmost, left(first(pQueue)) = topmost,
and furthermore, if (i′; pQueue′) ∈ pQueuesLeft

with left(first(pQueue′)) = topmost, then i < i′, then

14 pQueuesLeft ← pQueuesLeft− {(i; pQueue)}
15 pToUse ← first(pQueue)
16 pQueue ← butfirst(pQueue)
17 if pQueue is not empty then

18 pQueuesLeft ← pQueuesLeft ∪ {(i; pQueue)}
19 mainStack ← pop(mainStack)
20 mainStack ← push(mainStack, right(pToUse))
21 for each symbol X from right(pToUse) do

22 if X ∈ N then

23 stacksForN(X) ← push(stacksForN(X), step)
24 else step ← step + 1
25 lookahead ← the next k symbols of input

26 pQueue ← lookupTable(topmost, lookahead)
27 if pQueue is empty then

28 ERROR
29 else pToUSe ← first(pQueue)
30 pQueue ← butfirst(pQueue)
31 if pQueue is not empty then

32 pQueuesLeft ← pQueuesLeft ∪ {(step, pQueue)}
33 mainStack ← pop(mainStack)
34 mainStack ← push(mainStack, right(pToUse)
35 for each symbol X from right(pToUse) do

36 if X ∈ N then

37 stacksForN(X) ← push(stacksForN(X), step)
38 if there is no ERROR then successful termination

Figure 1: The parsing algorithm.

���������
	�������������������������

 �!#"

a b

S

P1:
(S → A1A2A1A3, A2 → b,
A3 → A4)

P1:
(S → bA1A2A1A3, A2 → b,
A3 → A4)

A1

P2:
(A1 → aA2, A1 → aA2,
A4 → A5)

—

A2
P3:
(A2 → a,A2 → a,A5 → b)

—

Figure 2: The lookup table for the grammar system of Example 3.

This system generates, in the (= 3) mode, the finite language

L = {aabaab, baabaab},

and satisfies the LL(1) condition. The lookup table for the parser is seen on Figure
2.

Let us see how the parser analyzes the string aabaab ∈ L=3(G-left). This string
is generated in three steps in the (= 3)-mode as follows.

S
3=⇒
l 1 A1bA1A4

3=⇒
l 2 aA2baA2A5

3=⇒
l 3 aabaab.

Now we will follow the work of the parser step-by-step, and describe its configuration
by

(input, mainStack, step, stacksForN, pQueuesLeft)

where the variables are as described above. The value of stacksForN will be denoted
as (α0, α1, α2, α3, α4, α5) where α0 is the contents of stacksForN(S), and for i ∈
{1, 2, 3, 4, 5}, xi is the contents of stacksForN(Ai).

The initial configuration of the parser is

(aabaab, S], 0, (0], ε], . . . , ε]), ∅),

meaning that nothing is read from the input, the initial symbol, S, is placed in the
main stack, the step counter is set to zero, the integer zero is placed in the stack
stacksForN(S) associated to the nonterminal S which indicates that it appeared
in the main stack when the counter step had value zero, and the set of production
queues waiting to be applied, pQueuesLeft, is empty.

The main stack is not empty, so the parser starts the execution of the while loop
of the algorithm at line 4. The symbol on the top of the main stack is a nonterminal,
so it jumps to line 10. Since pQueuesLeft, the set of production queues waiting
for execution is empty, after popping the stack stacksForN(S) associated to the
symbol in the main stack, the parser proceeds with the instruction on line 24 by
increasing the counter step and identifying the production queue to be applied with
the help of the lookup table. At this point

lookahead = a,

����������	
	
�������������	���������������� �"!�#%$'&"()������$'&"�

*,+'-

topmost = S,
pQueue = (S → A1A2A1A3, A2 → b, A3 → A4).

The production to be used is the first production of pQueue,

pToUse = S → A1A2A1A3.

Now the remaining part of pQueue is stored in pQueuesLeft indexed with one, the
current value of the step counter, as a pair (1; A2 → b, A3 → A4). This indicates
that the rules of this queue can be used on nonterminals that appeared in the main
stack when the step counter had value one or less. Now the top of the main stack
is replaced with the word on the right side of pToUse, the stack associated to S is
emptied, and the value of step is placed into the stacks associated to the nonterminals
appearing on the right side of the rule, stacksForN(X), X ∈ {A1, A2, A3}. The
configuration of the parser is

(aabaab,A1]A2]A1]A3], 1, (ε], 1]1], 1], 1], ε], ε]), {(1;A2 → b, A3 → A4)}).

Now the parser starts the execution of the while loop on line 4 again. Since the
top of the main stack is a nonterminal, A1, and since there is no production queue
in pQueuesLeft having A1 on the left-hand side of its first rule, after popping
stacksForN(A1), the stack associated with the topmost nonterminal, the parser
continues with line 24 of the algorithm by increasing the counter step, and deter-
mining the production queue and the production to be used with the help of the
lookup table, obtaining

pQueue = (A1 → aA2, A1 → aA2, A4 → A5),
pToUse = A1 → aA2.

After the application of the production A1 → aA2 to the topmost nonterminal of
the main stack, the parser is in the configuration

(aabaab, a]A2]A2]A1]A3], 2, (ε], 1], 2]1], 1], ε], ε]),

{(1;A2 → b, A3 → A4), (2;A1 → aA2, A4 → A5)}),

and then the execution of the algorithm continues at line 4 again.
Since the top of the main stack is the same terminal as the first symbol of the

input, the parser enters

(abaab, A2]A2]A1]A3], 2, (ε], 1], 2]1], 1], ε], ε]),

{(1;A2 → b, A3 → A4), (2;A1 → aA2, A4 → A5)})

by popping the main stack and reading one letter of the input, then continues with
line 4, and jumps to line 10 again.

Now the topmost nonterminal is A2, and by popping two from the stack stacksForN(A2),
it is clear that the production queue (A2 → b, A3 → A4) from pQueuesLeft can
not be used since it has index one. This means that the parser needs to turn to the
lookup table again, obtaining

pQueue = (A2 → a,A2 → a,A5 → b),

���������
	�������������������������

 �!�"

pToUSe = A2 → a.

After the necessary replacements in the stacks and after updating the value of other
variables, the parser enters

(abaab, a]A2]A1]A3], 3, (ε], 1], 1], 1], ε], ε]),

{(1;A2 → b, A3 → A4), (2;A1 → aA2, A4 → A5), (3;A2 → a,A5 → b)}).

Now after popping the main stack and reading one more symbol of the input, the
parser continues at line 10 again. This time, the topmost nonterminal is A2, and the
integer popped from the corresponding stack, stacksForN(A2) is one, so the first
production of the production queue (A2 → b, A3 → A4) stored in pQueuesLeft with
the same index can be used. Thus, the parser continues at line 14 of the algorithm
setting

pToUse = A2 → b,
pQueuesLeft =

{(1;A3 → A4), (2;A1 → aA2, A4 → A5), (3;A2 → a,A5 → b)}.

After replacing the topmost nonterminal of the main stack with the right side of
pToUse, the parser enters

(baab, b]A1]A3], 3, (ε], 1], ε], 1], ε], ε]),

{(1;A3 → A4), (2;A1 → aA2, A4 → A5), (3;A2 → a,A5 → b)}).

After popping the main stack and reading one more symbol of the input, the condi-
tion on line 13 is satisfied again, so the parser sets

pToUse = A1 → aA2,
pQueuesLeft = {(1;A3 → A4), (2;A4 → A5), (3;A2 → a,A5 → b)},

and then uses them, entering

(aab, a]A2]A3], 3, (ε], ε], 3], 1], ε], ε]),

{(1;A3 → A4), (2;A4 → A5), (3;A2 → a,A5 → b)}).

Popping and reading again, then

pToUse = A2 → a,
pQueuesLeft = {(1;A3 → A4), (2;A4 → A5), (3;A5 → b)},

since the queue (A2 → a,A5 → b) stored in pQueuesLeft has index three, the same
as the value obtained from the stack stacksForN(A2), so it can be used, producing

(ab, a]A3], 3, (ε], ε], ε], 1], ε], ε]), {(1;A3 → A4), (2;A4 → A5), (3;A5 → b)}).

After the main stack is popped again and one more input symbol is read, the parser
sets

pToUse = A3 → A4,
pQueuesLeft = {(2;A4 → A5), (3;A5 → b)},

����������	
	
�������������	���������������� �"!�#%$'&"()������$'&"�

*,+.-

and enters

(b, A4], 3, (ε], ε], ε], ε], 1], ε]), {(2;A4 → A5), (3;A5 → b)}).

The value one is placed in the stack stacksForN(A4) because the queue index of
the rule A3 → A4 was one which means that the application of the rule happens in
step one, that is, A4 appears in the first (= 3)-mode step of the generation of the
input string.

The next configuration is

(b, A5], 3, (ε], ε], ε], ε], ε], 2]), {(3;A5 → b)}),

and then
(b, b], 3, (ε], ε], ε], ε], ε], ε]), ∅),

after which the last input symbol is read and the main stack is once again popped,
so the parser enters

(ε, ε], 3, (ε], ε], ε], ε], ε], ε]), ∅),

and since the main stack is empty, finishes its work at line 38 of the algorithm.

Theorem 5 If a parser is constructed as above, based on a given CD grammar

system satisfying the LL(k) condition working in the (=m) derivation mode, then it

halts on every input word w over the terminal alphabet of the grammar system after

a running time of O(n · log2 n) where n is the length of w.

Proof. Let G = (N,T, S, P1, . . . , Ps) be a CD grammar system satisfying the LL(k)
condition in the (=m)-mode of derivation. First we show that the parser constructed
according to G halts on every input.

Assume that the parser does not halt on an input word w ∈ T ∗. This means
that it loops infinitely, and it can only do that if the instructions on the lines 10 –
37 are executed infinitely many times. To see this, notice that the body of the main
while loop contains one if-then-else statement. Instructions of the then part read
an input symbol, so they can not be repeated infinitely many times. This implies
that the else part on lines 10 – 37 is repeated infinitely many times.

This part of the algorithm contains an if-then-else statement starting with line
13, the execution of the instructions of this part mean either the execution of the
then part on lines 14 – 23, or the else part on lines 24 – 37. If lines 10 – 37 are
executed infinitely many times, then there must be infinitely many such executions
when no terminal symbol is written on the top of the main stack in line 20 or in
line 34, which means that there is an infinite sequence of consecutive executions of
lines 10 – 37 during which no terminal symbol is ever written on the top of the main
stack.

Since each execution of the instructions of lines 14 – 23 removes one production
from the production queues stored in pQueuesLeft, the instructions on lines 24 –
37 must be executed infinitely many times, or the parser cannot loop infinitely.

Because the lookahead never changes and because the number of nonterminal
symbols is finite, there must be a sequence of instructions starting with lines 24 –

���������
	�������������������������

 �!�"

37, continuing with possibly several executions of lines 10 – 23 or lines 24 – 37, and
then ending with lines 24 – 37 again, in such a way that the value of topmost, that
is, the topmost nonterminal of the main stack, is the same at the first and at the
last execution of lines 24 – 37.

Since the choice of the productions to be applied is based on the lookup table
(line 26), the situation outlined above can only happen if the lookup table have
certain properties which we describe below.

Let X ∈ N and y ∈ T k be a row and a column index of the lookup table, and
let maxchain(X, y) denote the production queue with the following properties:

• maxchain(X, y) is a prefix (p1, . . . , pl) of the corresponding entry of the lookup
table, lookupTable(X, y) = (p1, . . . , pl, pl+1, . . . , pm).

• If maxchain(X, y) and lookupTable(X, y) are as above, then X ⇒p1
X1w1 and

Xiwi ⇒pi+1
Xi+1wi+1, Xi ∈ N , wi ∈ (N ∪T)∗, for each 1 ≤ i ≤ l−1, and each

pi rewrites the leftmost nonterminal, that is, it is of the form p1 = X → α1,
and pi = Xi−1 → αi, 2 ≤ i ≤ l, and furthermore,

• maxchain(X, y) contains the maximal number of productions with the prop-
erties above, that is, pl+1 = Z → w where Z 6= Xl.

The parser may enter an infinite loop, if there exist a column of the lookup table,
labelled with y ∈ V k, such that

X ⇒maxchain(X,y) X1w1 ⇒maxchain(X1,y) X2w2 ⇒maxchain(X2,y) . . .

. . . ⇒maxchain(Xl,y) Xl+1wl+1 = Xwl+1

where X, Xi ∈ N, wi ∈ (N∪T)∗, 1 ≤ i ≤ l+1, and⇒maxchain(X,y) denotes a leftmost
derivation sequence using the rules of the production queue maxchain(X, y).

Now we show that such a column cannot exist in the lookup table. If during
a leftmost (=m)-mode derivation we encounter the nonterminal X as the leftmost
nonterminal, and the production queue identified by X and the lookahead would
be the queue in lookupTable(X, y), then a successful application of the rules would
lead to the choice of the queue lookupTable(X1, y), lookupTable(X2, y), and so on,
until we would obtain X again as the leftmost nonterminal with the same lookahead,
thus, the production queues identified by the leftmost nonterminal and the lookahead
would never lead to a successful derivation which is a contradiction.

Now we show that given the input word w ∈ T ∗, the parser halts after O(n·log2 n)
number of steps where n = |w|. With similar arguments as above, we can show that
the number of instructions executed without reading any input symbol is O(1) which
means that the running time of the parser is the length of the input multiplied by the
time necessary to execute an instruction. All the instructions used in the algorithm
can be executed in constant time, except the evaluation of the condition on line 13
and the assignments on line 14, 18, and 32 because they require the manipulation of
the data stored in the set structure pQueuesLeft. The evaluation of line 13 requires
a search, the assignments require the addition and the deletion of an element using
a set where the number of stored elements can be as many as O(n).

����������	
	
�������������	���������������� �"!�#%$'&"()������$'&"�

*,+'-

All of these operations, however, can be executed in O(log2 n) time if we use
balanced search trees, such as red-black trees for example, to store the elements of
the set pQueuesLeft. (For more on balanced search trees and red-black trees in
particular, see [2].) The implementation of the set pQueuesLeft must consist of
a red-black tree for each nonterminal X ∈ N which stores the indexed production
queues (i; pq) ∈ pQueuesLeft with X = left(first(pq)) ordered by the index i ∈ N.
Having such a structure, the evaluation of the condition on line 13 can be realized
by turning to the search tree associated to the nonterminal topmost to obtain the
pair (i; pQueue) where either i = stepOfTopmost, or if such index is not present,
then i is the smallest available index with i ≥ stepOfTopmost. To perform this
search takes O(log n) comparisons since even in the worst case when the index is
not present, it is enough to explore one path of the red-black tree leading from the
root to one of the leaves, and the length of these paths, that is, the height of the
tree is O(log n). To execute lines 14, 18, and 32, that is, to add or remove elements
from the structure first requires a search to determine the appropriate tree and the
location of the element in the tree, and then a constant number of elements need to
be manipulated to insert or to remove the data. Since the number of trees used are
finite, the number of necessary comparisons and data manipulations are O(log n).
One comparison or one data manipulating step, however, also requires O(log n) time,
since the integers used to index the production queues, that is, the keys used to index
the nodes of the search tree, might be as large as n, so their representation can be as
long as log n which means that comparing, reading or writing them requires O(log n)
elementary computation steps. This gives a total running time of O(n · log2 n) where
n = |w|, the length of the input word. 2

5 Conclusion

Cooperating distributed grammar systems working in = m-mode of derivation have
been restricted in a way such that, on the one hand, they maintain enough power
in order to generate all context-free LL(k) languages, the languages L1, L2 and L3

of the concept of mildly context-sensitive grammars and even some non-semilinear
language, but, on the other hand, there is an efficient parsing algorithm of O(n ·
log2 n) time complexity. The focus in this paper was on the development of the
concept of an LL(k) condition which is appropriate for those systems, and of the
parsing algorithm. The corresponding families of languages (CDnLL(k)(= m)) need
further investigations. The future research should investigate, among others, the
following problems:

• Which of the inclusions given in Lemma 1 are strict?

• Is it decidable whether a given CD grammar system is LL(k), for a given k or
for any k?

Moreover, one could extend the research to other derivation modes. Finally, other
restrictions like an appropriate LR(k) condition can be taken into consideration.

���������
	�������������������������

 � "!

References

[1] Bordihn, H., Csuhaj-Varjú, E., Dassow, J.: CD grammar systems versus L sys-
tems, in: Gh. Păun, A. Salomaa, (eds.), Grammatical Models of Multi-Agent

Systems, Gordon and Breach, 1999, 18–32.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, MIT
Press and McGraw-Hill Book Company, 1990.

[3] Csuhaj-Varjú, E., Dassow, J.: On cooperating/distributed grammar systems,
Journal of Information Processing and Cybernetics EIK, 26 (1990), 49–63.

[4] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Păun, Grammar Systems. A

Grammatical Approach to Distribution and Cooperation, Gordon and Breach,
London, 1994.

[5] Ch. Culy, The complexity of the vocabulary of Bambara. Ling. and Philosophy

8 (1985), 345–351.

[6] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory.
Springer, 1989.

[7] J. Dassow, Gh. Păun, G. Rozenberg, Grammar Systems. Chapter 4. Handbook

of Formal Languages, in: G. Rozenberg and A. Salomaa (eds.), Springer, Berlin,
1997, 155-213.

[8] J. Dassow, V. Mitrana, On the leftmost derivation in cooperating grammar
systems. Rev. Roumaine Math. Pures Appl., 43 (1998), 361-374.

[9] A. K. Joshi, How much context-sensitivity is necessary for characterizing struc-
tural descriptions: Tree adjoining grammars, in: D. Dowty, L. Karttunen, and
A. Zwicky (eds.), Natural Language Parsing: Psychological, Computational and

Theoretical Perspectives, Cambridge University Press, New York, 1985.

[10] A. K. Joshi, Y. Schabes, Tree-adjoining grammars, in: G. Rozenberg, A. Sa-
lomaa (eds.), Handbook of Formal Languages, vol. 3, Springer, Berlin, 1997,
69–123.

[11] R. Meersman and G. Rozenberg, Cooperating grammar systems, in Proceed-

ings of Mathematical Foundations of Computer Science MFCS’78, volume 64
of LNCS, Springer, Berlin, 1978, 364–374.

[12] V. Mitrana, Parsability approaches in CD grammar systems, in: R. Freund and
A. Kelemenová (eds.), Proceedings of the International Workshop Grammar

Systems 2000, Silesian University at Opava, 2000, 165–185.

[13] D. J. Rosenkrantz, R. E. Stearns, Properties of deterministic top-down gram-
mars, Information and Control, 17 (1970), 226–256.

[14] G. Rozenberg, A. Salomaa, Handbook of Formal Languages, Springer, Berlin,
1997.

����������	
	
�������������	���������������� �"!�#%$'&"()������$'&"�

'�*

[15] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

[16] K. Vijay-Shanker, D. J. Weir, The equivalence of four extensions of context-free
grammars. Mathematical Systems Theory 87 (1994), 511–546.

���������
	�������������������������

 � �!

