Proceedings of Grammar Systems Week 2004, edited by E. Csuhaj-Varji and Gy. Vaszil,
MTA SZTAKI, Budapest, pages 255 - 275, 2004.

Grammar Systems vs. Membrane Computing:
A Preliminary Approach

Gheorghe Paun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucuresti, Romania
george.paun@imar.ro
and
Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
gpaunQus.es

Abstract

Grammar systems and membrane computing are two well developed
branches of (theoretical) computer science, having many things in common,
but whose relationships and cross-fertilization possibilities were not yet sys-
tematically investigated. This paper starts such a systematic study, trying to
import features of (mathematical or computational) interest from one area to
another one. We consider in some detail the case of cooperating distributed
(CD) and parallel communicating (PC) grammar systems: the t-mode of coop-
eration from CD grammar systems can be used instead of the target indications
from cell-like P systems, while the use of multisets of strings in PC grammar
systems leads to a sort of tissue-like P systems (able to solve SAT in linear time).
The paper has a preliminary character; many open problems and research topics
are formulated.

1 Introduction

Grammar systems and membrane computing are two active areas of theoretical
computer science, with different starting points and motivations, but with several
similarities (both areas deal with distributed computing devices, where such notions
as parallelism, cooperation, communication, decentralization are crucial).

The basic idea of grammar systems is to have several grammars cooperating to-
gether according to a specified protocol in generating a unique language. The initial
motivations were related to two-level grammars and artificial intelligence issues (we
refer to [1] for details), but ideas from robotics, eco-systems, internet, distributed
and parallel computing were later incorporated. Two main classes of systems were
initially considered: cooperating distributed (CD) grammar systems, with the com-
ponent grammars working sequentially, in turns, on a common sentential form, and

255

Gh. Paun

parallel communicating (PC) grammar systems, where each component grammar
works on its own sentential form, and communicates on request with other com-
ponents. In the case of CD grammar systems, five basic cooperation protocols are
investigated, stating when a component can/must leave the sentential form to be
processed by the other components: at any time (the mode %), after at most, at
least, or a specified number of steps (the modes < k, > k,= k, respectively, for a
specified k), when no further rule can be used (the mode t). This latest mode will
be considered here, using it in order to control the communication among regions of
cell-like membrane systems.

In its turn, membrane computing starts from the goal of defining a computing
model inspired from the structure and the functioning of the living cell, hence it
is a branch of natural computing, a powerful trend now in computer science. In
short, in the compartments of a hierarchical arrangement of membranes one places
objects which evolve (in a maximally parallel manner) by means of rules which are
also localized in regions. In the basic variant of such systems (called P systems) one
works with symbol-objects, hence the evolution rules are multiset-processing rules,
but here we consider the case where the objects are structured and can be described
by strings over a given alphabet. Such P systems, with the objects processed by
usual context-free rewriting rules, were already considered in the literature (we refer

o [11] for details). In these systems, the string-objects are passed from a com-
partment to another one according to target commands associated with rewriting
rules; specifically, the rules are of the form X — wu(tar), where X — w is a usual
context-free rule and tar is one of the indications here, in, out, with the meaning
that the string obtained after the use of the rule X — « remains in the same region,
goes into a directly lower region, or exits the membrane, going to the surrounding
region, respectively.

Comparing the CD grammar systems and P systems, one can easily see the
similarities and the differences. It is also obvious that ideas from one type of systems
can be used in the functioning of the other type. Actually, the question of defining
the communication of strings among the regions of a P system based on principles as
used in CD grammar systems was formulated several times. In a different context,
P systems (with symbol-objects) with limited parallelism, reminding the modes < k
and = k, were already investigated in [5], [7]. The case = 1 corresponds to P systems
with immediate communication (see [11]). In what follows, we investigate the case
of mode ¢ (and we leave as a topic of research for the reader to consider the modes
x, < k,= k,> k for the case of string-objects P systems).

More exactly, we replace the target indication in, or the target indication out, or
both, by ¢: a string is processed in a given region until no further rule can be applied
to it in that region; then, it will go to an inner region, to the surrounding region,
or to any of these regions. We identify these cases with tin, tout, tgo, respectively.
(In the first two cases, the commands out, in, respectively, remain to be introduced
by rules, as usual in string-object P systems.) The power of P systems with these
types of communication commands is investigated, in comparison with the power of
CD grammar systems, of Chomsky grammars, and of Lindenmayer systems. The
results are as expected: universality for a small number of membranes, covering C'F
and ETOL families at certain levels of the obtained hierarchies — without however

256

Grammar systems vs. membrane computing: A preliminary approach

knowing whether or not these results are optimal.

In what concerns the PC grammar systems, their natural membrane computing
counterpart are the tissue-like P systems, where the membranes are placed in the
nodes of a graph, and they communicate along a given set of channels (edges in
the graph). A P system uses however multisets of strings and communicates them
by means of target indications associated with the rewriting rules. In PC gram-
mar systems, one communicates on request, by means of query symbols. Thus,
an immediate idea is to consider PC grammar systems with multisets of strings
in each component, processed simultaneously; this can be also interpreted as a P
system with the communication done on request: when a component introduces
one or more query symbols in a string, then the rewriting of that string stops and
the queries are satisfied by replacing the query symbols by all strings which do not
contain query symbols (if no such a string exists in the queried component, then
the string containing a query symbol which cannot be satisfied disappears — it is
like replacing this query symbol by elements of an empty set) from the component
indicated by the query symbol, in all possible combinations (if, for instance, in a
string one introduces two query symbols, pointing to two components with two avail-
able strings each, then we get in total four strings in the receiving component). In
this way, the strings can be replicated, which suggests that such systems can solve
computationally hard problems in an efficient way. We confirm this expectation by
proving that SAT can be solved in this framework in a polynomial time.

We do not investigate here the power of multiset PC grammar systems but we
only show that systems with one component can already generate non-context-free
languages. It is highly probable that these systems are computationally universal,
they can characterize the family of recursively enumerable languages. Finding how
many components would be sufficient to this aim remains as an open problem.

Actually, several open problems and research topics are formulated below, and,
in some sense, this should be considered the main contribution of this preliminary
version of the paper: calling the attention to the fruitfulness of bridging grammar
systems area with membrane computing area.

2 Prerequisites

We introduce here some notation and terminology, but the reader is assumed to have
some familiarity with basic elements of formal language theory (regulated rewriting
included), grammar systems, and membrane computing, e.g., from the monographs
mentioned in the bibliography.

Our notations are as follows: V* is the free monoid generated by the alphabet
V' with respect to the operation of concatenation; A is the empty string; the length
of z € V* is denoted by |z|, and |z|y is the number of occurrences in = of symbols
from U C V; a Chomsky grammar is presented in the form G = (N, T, S, P), where
N is the non-terminal alphabet, T' is the terminal alphabet, S is the axiom, and P is
the set of rewriting rules; LIN,CF,CS, RE are the families of linear, context-free,
context-sensitive, recursively enumerable languages, respectively; ET0L is the fam-
ily of languages generated by extended tabled interactionless Lindenmayer (ETOL)

257

Gh. Paun

systems.

In the universality proofs we will use the notion of a matrix grammar (with
appearance checking) in the strong binary normal form. Such a grammar will be
given as a tuple G = (N, T, S, M, F), where N = N; UNyU{S, #}, with these three
sets mutually disjoint, and with the matrices in M in one of the following forms:

1. (S— XA), with X € N;, A € Ny,

2. (X =Y, A—x), with X,)Y € N\,A€ No,x € (NoUT)*,

-
3. (X 5 Y,A— #), with X,Y € Ny, A € N,
4. (

X > MNA— 1), with X € Ny, A€ Ny, and z € T*.

Moreover, there is only one matrix of type 1 (that is why one uses to write it in the
form (S — X(Ag), in order to fix the symbols X, A present in it), and F consists
exactly of all rules A — # appearing in matrices of type 3; there are at most
two symbols A € Ny which appear in rules of the form A — # (we identify these
symbols with BW and B(Q)); # is a trap-symbol, because once introduced, it is
never removed. A matrix of type 4 is used only once, in the last step of a derivation.

For each matrix grammar there is an equivalent matrix grammar in the strong
binary normal form, hence such grammars characterize RE.

For the sake of completeness, we give here some basic definitions from grammar
systems area.

A CD grammar system is a construct of the form I' = (N, T, S, Py,..., Pp),
where N, T are disjoint alphabets, S € N, and Py, ..., P, are finite sets of context-
free rules over N UT (with N interpreted as the non-terminal alphabet and 7' the
terminal alphabet of the system). The sets P; are called components of I, and their
number — m above — is the degree of the system.

The derivation relation according to a set P; is defined as usual in the context-free
grammar G; = (N, T, S, P;) and denoted by =;, 1 <14 < n. Then, for z,y € (NUT)*
we define

z=ly iff z =%y and thereis no z € (N UT)* such that y =; z.
The language generated by I' in the t-mode of cooperation is

Ly(T) = {wET*|S=>§1w1:>§2...:>§kwk:w,
for some 1 < iy,49,...,9k <m, k> 1}.

That is, the sentential form is processed by a component until no rule of that compo-
nent can be applied; then, another component, non-deterministically chosen, takes
the string and rewrites it; we start from the axiom S and we collect in the generated
language all strings over T'.

The family of languages generated by CD grammar systems of degree at most
m > 1 in the t-mode of cooperation is denoted by C'D,,(¢); if the number of compo-
nents is not restricted, then the corresponding family (hence the union of all families
CDy,(t),m > 1) is denoted by CD,(t). The following relations are know:

OF = OD\(t) = CDs(t) C CDs(t) = CD,(t) = ETOL.

258

Grammar systems vs. membrane computing: A preliminary approach

That is, systems with one or two components characterize the context-free languages,
while three components already give the maximal power of such systems, namely, a
characterization of ETOL languages.

It is interesting to note that if the order of enabling the components of a CD
grammar system is controlled by a graph, then the power is not increased, still we
characterize ETOL (by systems with three components).

We introduce now the standard PC grammar systems (with one string in
each component), which are constructs of the form I' = (N, K, T, (S1,P1), ...,
(Sm, Pm)), m > 1, where N, T, and K are pairwise disjoint alphabets (of non-
terminal symbols, terminal symbols, and query symbols, respectively), and for all
1 <i<m,S; €N (axioms) and P; are finite sets of context-free rewriting rules of
the form A — u, with A € Nyu € (NUT UK)*. Each (S;, P;),1 <1 < m, is called
a component of I'. One of the components is said to be the master of I'. Without
any loss of generality, this can be the first one, (S1, Py).

For a system as above, an m-tuple (z1,...,zy) with z; € (NUTUK)*, 1<

i < m, is called a configuration of T'. (Si,...,Sy;,) is the initial configuration.
PC grammar systems change their configurations by performing direct derivation
steps, in the following way. Let (z1,...,%,) and (y1,...,ym) be two configurations

of a system I'. We say that (z1,...,zy) directly derives (y1,...,ym) (in modea, to
be specified below), denoted by (z1,...,Zm) =a (Y1,---,Ym), if one of the following
two cases holds:

1. There is no z; which contains any query symbol, that is, z; € (N UT)* for all
1 < i < m. Then, for each i, 1 <14 < m, z; =; y; (y; is obtained from z; by a direct
derivation step in component i) for z; ¢ T*, and z; = y; for z; € T*.

2. There is some z;, 1 < ¢ < m, which contains at least one occurrence of
a query symbol. Then, for each z;, 1 < i < m, with |z;|xg # 0 we write z; =
21Qi,22Qiy - - - 2tQi 2141, where zj € (NUT)*, 1 <j <t+1,and Q;, € K, 1 <[<t.
If |z;|k = 0 for each I, 1 < I < t, then y; = z12;, 2024, . .. 24Tj, 2141 and (a) in
returning systems we have y;, = S;,, while (b) in non-returning systems we have
v, =z, 1 <1 <t If |zg;|g # 0 for some I, 1 <[< ¢, then y; = z;. For all
J» 1 < j < m, for which y; is not specified above, y; = ;.

In the returning mode, a = R, while in the non-returning mode we write a = nR.

Let = denote the reflexive and transitive closure of =,,a € {R,nR}. Then,
the language generated by the system I' (with the master component (Sy, Py)) in the
mode a is Lo(I') = {z € T* | (S1,...,5m) =5 (z1,...,zm), for some z1,...,2, €
(NUTUK)* such that z = z1 }.

Let the class of languages generated by returning PC grammar systems having
at most m context-free components be denoted by RPC,,,C'F and the corresponding
family of languages generated in the non-returning mode be denoted by nRPC,,CF'.
When the number of components is not limited, we replace the subscript m with x*.

The following relations are know (see [11], [3], [9]):

1. CF = RPC,CF =nRPC,CF C (RPCoCF NnRPCyCF).
2. RE = RPCsCF =nRPC,CF.

That is, systems with one component generate only context-free languages, two com-
ponents suffice for generating non-context-free languages, while returning systems

259

Gh. Paun

with 5 components and non-returning systems (with no bound on the number of
components) characterize the recursively enumerable languages.

3 From CD to P: P Systems Using the --Communication

We pass now to exploring the possibility to use features of grammar systems in P
systems, and conversely. In this section we consider the way from CD to P, namely,
we use the t~-mode of cooperating in a CD grammar system as a substitute for target
indications in, out in a P system.

We introduce the classes of P systems we are going to investigate, for all cases
where the t-mode can be used as a communication mode, then we illustrate the
definition with some examples; results about the power of the obtained systems are
given (in most cases, without a proof) in a diagrammatic form (it is highly possible
that several of these results can be improved).

An extended P system (of degree m > 1) with string-objects and t-com-
munication is a construct

= (‘/a Ta/% (’U),'L.O),Rl, v 7Rm)a
where:
1. V, T are alphabets such that T' C V;

2. p is a membrane structure (of degree m, with the membranes labeled in a
one-to-one manner with elements of a set H; in this definition we use H =

{1,2,...,m});
3. w is a non-empty string over V', present in region ig of u, for some 1 < 75 < m;

4. Ry,...,R,, are finite sets of evolution rules associated with the m regions
(membranes) of u; in what follows, the rules are of the forms a — u or a —
u(tar), where a € V, u € V* and tar € {in,out}. In a given system at most
one of the target indications in, out may be present in the rules.

We note the difference between the definition above and that of usual P systems with
string-objects, where several axiom-strings are present in the system at the beginning
of any computation. Because we do not consider here halting computations, the
evolution of each string is independent from the evolution of other strings; also in
order to be closer to the form of a CD grammar system, we consider here only
one string initially present in the system. This means that in any moment of a
computation there is only one string in the system, which is either eventually sent
into the environment, or remains forever inside. This string is rewritten by the rules
from the region where it is placed; in each step, only one rule is applied (hence the
rewriting is performed in a sequential manner); if a string cannot be rewritten, then
it remains unchanged.

New here is also the way the strings are communicated among regions. If a
string is rewritten by a rule a — wu(in), then the string obtained after rewriting is
immediately moved to one of the directly inner regions, non-deterministically chosen;

260

Grammar systems vs. membrane computing: A preliminary approach

if no inner membrane exists, then such a rule cannot be applied. If the used rule
was a — u(out), then the resulting string is immediately sent out of the membrane
where it was produced. If we use a rule without any target indication, then the
resulting string remains in the same region if it can be further rewritten there, or it
exits if no local rule can be applied to it, being communicated to one of the adjacent
regions as specified below.

Three cases (three types of systems) are distinguished:

1. A system which uses rules of the form a — wu(in) (hence not also of type
a — wu(out)) is said to be of tout type; a string which cannot be further
rewritten in a given region is communicated to the upper region, that is, the
t-mode from CD grammar systems enforces the out target command.

2. A system which uses rules of the form a — wu(out) (hence not also of type
a — u(in) is said to be of tin type; a string which cannot be further rewritten
in a given region is communicated to one of the directly lower regions, that is,
the t-mode from CD grammar systems enforces the in target command; if the
membrane is elementary, then the string remains forever in that region.

3. A system which uses only rules of the form a — u (hence without any target
command) is said to be of tgo type; a string which cannot be further rewritten
in a given region is communicated either to the upper region or to one of the
directly lower regions, non-deterministically choosing the direction and the
region.

In all cases, if a string arrives in a region where no rule can be applied to it, then
this is interpreted as a maximal derivation in that region and the string is moved
immediately up or down in the membrane structure, according to the type of the
system.

By using the rules and moving the strings as specified above, we get a compu-
tation. The language generated by the system consists of all strings over T which
are sent out of the system during any possible computation. We note again that we
do not work here with halting computations — a string sent into the environment
cannot be further processed, hence its evolution is finished.

The language generated by a system II is denoted by L(II). The family of all
languages generated by systems of degrees at most m > 1 of type a € {tout, tin, tgo}
is denoted by ELSP,,(«); if we use systems of an arbitrary degree, then we replace
the subscript m with *%; when we use non-extended systems, that is with 7" =V, the
front letter E is removed.

We illustrate the previous definitions with two simple examples. Consider the
system — of type tout:

= (‘/aTalua (waio)aRlaRQ)a where
= {a’ b7 C7 C”d’ dl}’
{a,b},

= [1[2]2]17
= Cd, iUZI,

E = 8N < 4
I

261

Gh. Paun

Ry = {c—adb(in), d— ad'b, d — d',
¢ — ab, d — ab},
Ry = {d —¢ d—d}.

Assume that we have a string a"cb"a™db™ in region 1, with some n > m > 0;
initially, n = m = 0. If we apply the rule ¢ — ac’b(in), then the string goes
immediately to region 2; if we apply first the rule d — ad'b, then the string remains
in region 1, where it can evolve forever by means of rule d’ — d’, hence, in order
to proceed further, we have to also use the rule ¢ — ac’b(in). Thus, we send to
region 2 a string of the form a™*'c/b"Ha™db™ a1/ bnHa™ T d' B! In region
2 we have to perform a maximal derivation, hence we return to region 1 a string
a™tlebtamtidpmte for ¢ € {0,1}. The process is iterated. If we use the rules
¢ — ab, d — ab from region 1, then we send out a terminal string. If only the first
of these rules is used, then the computation will produce no result, because we obtain
a string of the form a™cb™a™d'b™ which cannot leave region 1. If we use only the rule
d — ab, then the computation will continue by increasing the number of occurrences
of a and b in the prefix a"b" of the string. Therefore, L(II) = {a"b"a™b™ | n > m >
1}. Note that this is not a context-free language and that the generated language
is the same if we consider T' = V (the non-extended counterpart of the system):
as long as any symbol from V — T is present, the string can be rewritten, hence it
cannot leave the system.

A system which generates a non-context-free language can be easily constructed
also for the tin case. We consider the system

o = ({a,bt,c '}, {a,b,cl, (1[5]olqs (bc, 1), Ry, Ry), where
Ry = {b—aba, c—aca, " — aca(out)},
Ry = {b/ —=b, d — clout), ' — " (out)}.

The string is again repeatedly moved across membrane 2, increasing either both
“blocks” a™b™ or only the second one (this latter case happens when in region 2 we
do not use the rule ¥ — b but only the rule ¢ — c(out)). When sent out, because
¢’ is not a terminal symbol, the use of the rule ¢’ — aca(out) ensures the increase
of the second “block”, hence the generated language is L(IT) = {a"ba™a™ca™ | m >
n > 1}.

Thus, the families LSP;(tout), LSP,(tin) contain non-context-free languages
(passing from the language generated by the non-extended version of a system to
the extended one corresponds to an intersection with 7%, and C'F is closed under
intersection with regular languages). This result can be strengthened: these fami-
lies also contain languages which are not semilinear, but we omit the proof of this
assertion.

4 The Power of P Systems of tout and tin Types

The relationships from the diagram from Figure 1 hold (the arrows indicate inclu-
sions which are not known to be proper, while the arrows marked with a dot indicate
strict inclusions; the unrelated families are not necessarily incomparable).

262

Grammar systems vs. membrane computing: A preliminary approach

ELSPs(tout) = LSPs(tout) = RE = ELSPy(tin) = LSPi;(tin)

A y \
LSPy(tin)
ELSPs(tin) T
ELSP;(ti
[]
cs I LSP;(tin)
] ELSPs(tin T
LSPs(tout) = ELSP;(tout) I
A LSPg(tin)
ELS Ps(tin I
LSPy(tout) = ELSPy(tout) T LS Ps(tin)
A ELS Py(tin, T
T LSPy(tin)
LSPs(tout) = ELSPs(tout) ® ELSPs(tin T
‘ CDs(t) = CD,(t) = ETOL I T
ELSPs(tin) T
LSP;(tout) = ELSPs(tout) —
\- / LS Py(tin)
I T LSP(tin)
LIN e /
Figure 1.

263

Gh. Paun

We give here the proofs for two of the relations from this diagram, namely, for
the universality results.

Lemma 4.1 ELSPs(tout) = RE.

Proof. We start from a matrix grammar in the strong binary normal form, G =
(N,T,S, M, F), with £ matrices of the form m; : (X — Y, A — u) and hj matrices of
the form m; : (X — Y, BU) — #),4 = 1,2. In all terminal matrices (X — \, A — u)
we replace the first rule with X — f, where f is a new symbol.

We construct the P system of degree 6

I = (V,V,M,(X(]A(],l),Rl,...,RG), where

vV = {X,X',X”,X”’|X€N1U{f}}UT
U {Az,jaA;,jaA;,,JaA;I,’j | m; : (X - YaA - U),l <i<k0<5< k}
U {XD |m s (X 5 Y,BD 5 #),1<i<kjj=1,2},

no= [1[2[3[4]4]3]2[5]5[6]6]1’

and with the sets of rules given in Table 1 (in all cases, 1 < j < i and s =1, 2):
We also add the following rules to set Rj:

X > X, X € Ny,
A— A A€ Ny,
f’”_>>\

Membranes 5 and 6 are used for simulating the matrices m; : (X — Y, B() — #),
for s = 1,2, respectively, while membranes 2, 3, 4, together with the skin region,
simulate the matrices of the form m; : (X - Y, A —u), 1 <i<k.

Specifically, the string Xw from the skin region is sent to one of the directly
inner membranes by using one of the rules A — A;(in), X — Xi(s) (in). If the
string is sent to a “wrong” membrane, then it never leaves that membrane, because
of the rules of the form a — a.

If we want to simulate a matrix m; : (X — Y, A — u), hence the string has the
form XwiA;pwe and it has arrived in membrane 2, then we continue by using a
rule X — X}’g(in) and the string XT,owlAi,owg is sent to membrane 3. From here,
it is sent (with the bar of X removed) to membrane 4, where the second subscript
of symbols X and A is increased by one. Assume that we are in a stage when a
string X;’T,wlAgﬂ-, wg is sent from region 4 to region 3. The string can exit only after
having both X and A double primed, then from membrane 2 it is sent to the skin
region, with A being triple primed. Now, in the skin region we can use either the
rule X', — X", (in), and this is the correct continuation, or a rule of the form
B — Byg(in). In the latter case, the string will arrive in region 2 and will remain
forever here, rewritten by the rule B; o — B; . In the former case, the string is sent
to region 3 by means of the rule X"/, — Xj ;(in) from Ry, and then to region 4 by
means of the rule A] — A;;(in) from Rs. In this way, the process of increasing

the second subscript of the two symbols X and A is iterated.

264

Grammar systems vs. membrane computing: A preliminary approach

Table 1: The rules of the system from the proof of Lemma 4.1

mi: (X =Y, A—u) | mi: (X = Y,B) = #)

Ry | A— Agg(in) X = X (in)

Xij — Xij(in)

Y" 5 Y

Ry | X — Xi’o(’i’n) Xi(s) — Xi(s)

AL A

Ao — A

Y'ZI;U_> YII,LI’O

Rg X@() — Xi,o(’l"n)

X, - X

Aol

Ay = A j(in)

Y5y

Ry | Xij— Xijj

Aij = Aijn

Xz'ﬂ' — Y’

Aii = u

Xio— X;

A

irj irj

Rs | Xio— Xip X
Ajo— Aip X

Xty o X B

Re | X;0— Xip X
Aio — Aip X

Xty o X B

If both the symbols X and A get a subscript 4,4, then the matrix m; is simulated.

Assume that only X gets identical subscripts, hence we send from membrane 4
to membrane 3 a string Y'w; A} ,,ws; we pass to Y"wi A” ;wo, which is sent to region
2, where we produce Y"'w A! ;,’171)2 which is sent to the skin region. The string cannot
exit the system, because of the rules Y — Y, Y — Y, hence in order to continue
we have to apply a rule B — By g(in). If Y is present (hence the rule Y — Y was
used), then we can move the string to membrane 3, otherwise we get stuck, the rule
Byo — By can be used forever. If the string Ys,(]wlA;'I”i/ w9 is present in membrane
3, then is will be sent to membrane 4 by using one of the rules Ys,o — Y, 0(in) (and
then A% is still present) and A}, — A;;(in) (and then X0 will be present). In
either case, the string remains forever in membrane 4.

Assume now that we use the rule A4;; — u from R4 without also using the rule
Xii— Y’ hence we send to membrane 3 a string X;’T,w. It will pass to membrane

265

Gh. Paun

2 in the form X ,w and from here it will go unchanged to the skin region. If we
apply here a rule B — B,g(in), then the string will get stuck in region 2. If we
apply the rule X, — X, (in) from R;, then the string returns to region 2, here
the symbol X loses the prfmes and the string is sent to region 3, where nothing can
happen. The string is sent out to region 2, and from here to region 1, unchanged,
but it comes back because of the rule X, ,» — X, . (in). If a rule B — B,(in) is
used, then the string arrives in region 2 and it never exits.

Therefore, the simulation of the matrix m; should be complete, otherwise we get
no result.

If the matrix was terminal, then the string should be terminal, otherwise it is
sent to region 2 and gets stuck there, because of the rules A; 0 — A;p.

If we want to simulate a matrix m; : (X — Y, BY) — #), hence a rule X — XZ.(J)
is used, then either the string gets stuck in membranes 2 or 7 — j, or it arrives in
the right membrane 4 + j. If the symbol BU) is present, then the string remains
forever in this membrane, otherwise it can exit, after using the rule Xi(J N Y, which
correctly simulates the matrix.

Because of the rules A — A, X — X from the skin region, only strings which
are terminal with respect to G can be sent out. Consequently, L(G) = L(II). O

Lemma 4.2 ELSPy(tin) = LSPy1(tin) = RE.

Proof. Consider first the extended case. In order to prove the inclusion RE C

ELSPy(tin), we start again from a matrix grammar in the strong binary normal

form, G = (N,T,S, M, F), with k matrices of the form m; : (X - Y, A — u) and

hj matrices of the form m; : (X =Y, BU) — #).j =1,2. In all terminal matrices

(X — A\, A — u) we replace the first rule with X — f, where f is a new symbol.
We construct the P system of degree 9

I = (V,T,M,(Xvo,l),Rl,...,Rg), where
V o= {X, X, X".X"|XeN U{f}}UT
{Xij, Xi 5, Xi5, X%, X g |mi - (X 2 Y, A—=u),1 <i<k0<j<k}
{Ai,ja Zj,A;’J,A”j|’rTLZ.(AXV—>YA—>’LL)1<'L'<]{:0§j§k‘}

(XD | mi: (X 5V, BY 5 #),1<i<kjj=1,2},
[1[2[3]3[6[7]7]6[8[9]9]8]2[4[5]5]4]1’

and with the sets of rules given in Table 2 (in all cases, 1 < j < i and s = 1, 2):

We also add the rule f” — A(out) to set Ry. (In all rules associated with a
matrix m; : (X — Y, A — u) where Y = f, the corresponding variants of Y are
variants of f — primed, barred, etc.)

CcC C C

I

The work of the system II is similar to the work of the system from the proof of
Lemma 4.1: membranes 6, 7 simulate matrices m; : (X =Y, BY) = #), membranes
8, 9 simulate matrices m; : (X — Y, B® — #); the interplay of regions 1, 2, 3, 4, 5
ensures the correct simulation of matrices without appearance checking rules (with
the same technique of double subscripts, which ensures the simulation of both rules

266

Grammar systems vs. membrane computing: A preliminary approach

Table 2: The rules of the system from the proof of Lemma 4.2

mi: (X =Y, A= u) | mi: (X =Y,B®) = #)
Ry Aij — A;7j+1 YO 5 y®)

/!
Xij = Xijp
Aii — A
Xiﬂ' —Y
Y'Y
Ry X = X X —=5Y®
X, X
X{Z — Xz-,j(out)
A" — A, o(out)
Aty = Aig
ey
Y=Y
R3 X — X (out)
A — A'(out)
Ry | X X
Aij— Ay
Y->Y
Az' — U
Y — Y (out)
R; Y — Y'(out)

R4+23 Xi,O — Xi,(] Y(s) —Y
Ai,j — Ai,j Y(B_s) — Y(B_s)
X — X}, B®) — BG)
Y' — Y (out)
R5+23 Y —» YI(OUt)

of the matrix). The task of checking the details is left to the reader and we only
mention that L(G) = L(II).

For the non-extended case, we consider two additional membranes, with labels
c1,c2, with the following rules:

R, = {A—=A|XeN}IU{f— f"(out)}
Re, = {f' = f(out)},

and the rule f” — A(out) from R; is replaced with f”" — X(out).

All the used symbols are introduced in the alphabet of II; the terminal alphabet
is equal to the total alphabet. A string can exit the system only after passing through
membranes ¢y, ca, which are used to check whether or not the string is terminal —
only in the affirmative case it can be sent out of the system. O

We close this section with the remarks that the P systems of type tgo are particular
cases of graph controlled CD grammar systems: after each maximal rewriting in

267

Gh. Paun

a membrane, the string leave that region, going up or down in the graph which
described the membrane structure; that is, we have a tree controlled CD grammar
system. Because we can generate each ETOL language by such a system with three
components (using extended systems of type tgo), all families obtained in this case
are known: C'F for one or two components, FT0L for at least three components.

5 In Between PC and P: PC Grammar Systems with
Multisets of Strings

We pass now to the bridge between PC grammar systems and P systems. The devices
we define can be considered at the same time as tissue P systems with string-objects
and communication on request, or as PC grammar systems with multisets of strings
present in each component. We use below the second terminology, but the way of
presenting our devices is influenced also by the style used in membrane computing.

A PC grammar system (of degree m > 1) with multisets of strings (in short, an
MPC grammar system) is a construct

M= (N,K,T,My,...,Mp,Ry,...,Rp,io),
where:

1. N, K, T are pairwise disjoint alphabets, with K = {Q1, ..., Qn} (the elements
of K are called query symbols and they are associated with the n components
of T'); we denote V.= NUT UT;

2. My,..., My, are finite multisets of strings over N U T}

3. Ry,...,R,, are finite sets of context-free rules of the form A — u, with A € N
and u € V*;

4. i, € {1,2,...,m} (the master/output component of T").

The work of such a system is a combination of rewriting in a PC grammar system (in
the non-returning mode) and of evolution in a tissue P system with string-objects.
Specifically, we start from the initial configuration (My,..., M,,), and we pass from
a configuration (M7,..., M)), consisting of multisets of strings over N U T placed
in the m components of the system, to another configuration (M7,..., M) in the
following way. Each string from each multiset M; which can be rewritten according
to the rules from R;,1 < i < m, is rewritten. This means the use of one rule
from R;, non-deterministically chosen, for each string (at the level of each string,
the rewriting is sequential). The strings which cannot be rewritten (no rule can be
applied to them) remain unchanged. If no query symbol is introduced (by a given
choice of rules), then the resulting multisets of strings are M/, 1 <i < m.

Note that the rewriting of strings is maximally parallel, in the sense that all
strings which can be rewritten must be rewritten, and that the process is non-
deterministic, the choice of rules and the places where the rules are applied can lead
to several possible new multisets of strings.

268

Grammar systems vs. membrane computing: A preliminary approach

If any query symbol is introduced, then a communication is performed: each
symbol (); introduced in a string from component 4 is immediately replaced by all
strings from the component j which do not contain query symbols. If in component
j there are several strings without query symbols, then each of them is used, hence
the string from component 4 is replicated (with the occurrence of Q; replaced with
strings from component j). If there are several query symbols in the same string
from component 7, then all of them are replaced (we also say that they are satisfied)
at the same time, in all possible combinations.

If a query symbol @); cannot be satisfied (either component j contains no string,
or all strings from component j contain query symbols), then the string containing
(; is removed (it is like replacing it with the strings from an empty language).

In this way, in each step all query symbols introduced by the rewriting rules
disappear, they are either satisfied (replaced by strings without query symbols),
or they disappear together with the string which contain them (in the case when
they cannot be satisfied). The multisets obtained in this way are My, ..., M),
constituting the next configuration of the system.

Note the difference from the way the communication is defined in a standard
PC grammar system and in an MPC grammar system. In our case, a query symbol
cannot wait unsatisfied until the requested component contains a string without
query symbols (hence the configurations are m-tuples of strings over N UT, without
occurrences of query symbols). This detail, rather natural for the case when we work
with multisets of strings, will be crucial for the work of the system from Theorem
6.1, because it entails a nice way of “protecting” a string against communication:
if we introduce a query symbol in a string z from a component j, asking for any
string z which we know to be over N U T, even if that string x is requested by
a component %, it cannot be moved from component j to component 7; the query
symbol from component i is either satisfied by other strings from component j, or
the string containing it disappears.

We also note that the way the system works corresponds to the non-returning
mode from standard PC grammar systems, that is, we do not return to M; after
communicating strings from component j to other components — not even in the
case when the component j will contain the empty multiset — but we continue from
the remaining strings, if any.

We leave the task of formally defining a transition between two configurations in
the system II to the reader. All terminal strings produced in component i, during
any possible computations in II is accepted in the language L(II) generated by the
system II. The family of all languages generated in this way by MPC grammar
systems of degrees at most m > 1 is denoted by M PC,,,CF; if we use systems of
an arbitrary degree, then we replace the subscript m with *. (As for standard PC
grammar systems, we can consider MPC grammar systems with rules which can be
regular, linear, metalinear, etc, that is why we have preserved the indication CF
in the notation; the investigation of such classes of systems remains as a research
topic.)

We close this section with an example, proving the somewhat surprising re-
sult that MPC systems with only one component can generate non-context-free
languages.

269

Gh. Paun

Let us consider the MPC system (of degree 1)

I = ({5 A}, {Qi},{a,0},{(5 1), (4,1), (b, 1)}, Ry, 1), with
R, = {S—>aSa, S — Q1, A—)A, A—)QlQl}

We start with three strings in the system, S, A, and b. From S we can generate
a"Sa", for any n > 0, then we have to replace S with @;. If at the same time
we have produced Q1@ from A, then we simultaneously get a"ba™ and bb, both of
them included in L(II), and the computation stops.

If A is still present, then we get the strings a™ Aa™ and a™ba™, and A and b are
“consumed”. The string a™ Aa™ will eventually lead to a"Q1Q1a™, and hence to
a™a"ba"a"ba™a", which is in L(II).

If from A we produce Q1@ while both a™Sa™ and b are present, then we obtain
four strings: a"Sa"a"Sa™,a"Sa"b,ba"Sa™, bb (and b is no longer present). The first
three strings will be rewritten by the rule S — aSa for a number of steps, and
eventually the rule S — (1 is used. The query symbol will be either replaced by a
string which contains again S, hence the process continues, or by bb. Consequently,
if any terminal string is obtained on this path, then it contains the substring bb.

Consequently, L(IT)Natba™ba™ = {a?"ba*"ba®" | n > 1}, which is not a context-
free language.

It is highly expected that MPC systems with context-free rules can characterize
the recursively enumerable languages, but at this moment we do not have a proof
of this assertion.

6 The Efficiency of MPC Grammar Systems

We show now how the possibility of MPC systems to create exponentially many
strings in a linear time can be used for solving computationally hard problems in
a polynomial time. The framework is that customary in membrane computing (see
[11] and, especially, the formal approaches from [12], [13]). Briefly speaking, we
work with confluent systems, constructed in a semi-uniform manner; starting from
a given instance of a decision problem, we construct in a polynomial time (by a
Turing machine) an MPC system which always stops in a known number of steps,
in spite of a possible non-deterministic behavior, and all computations give the
same result, which is the answer to the problem (that is, the system is also sound
and complete). The result will be obtained in the output component; for decision
problems, the answer will be yes if and only if in a specified step this component
will contain a specified string.

We illustrate this strategy by solving the satisfiability problems for propositional
formulas in the conjunctive normal form, SAT.

Theorem 6.1 SAT can be solved in linear time by MPC grammar systems.
Proof. Let us consider a propositional formula v = C; A ... A Cp,, consisting of

m clauses Cj = y;1 V... Vyjg, 1 < j < m, where y;; € {z;,-z; | 1 <1 < n},
1 < i < kj (there are used n variables).

270

Grammar systems vs. membrane computing: A preliminary approach

For each i, 1 < i < n, let us denote by true(y, t;) the string ¢;, ¢j, . . . ¢j, indicating
the clauses in v which contain z;, and by true(y, f;) the string c¢;,¢;, . .. ¢;, of clauses
in v which contain —z; (therefore, these strings are over the alphabet {c; | 1 <i <

We construct the MPC system (of degree 3n + 3m + 2, with the components
labelled with 0,1.1,1.2,1.3,...,4i.1,4.2,4.3, ..., n.1,n.2,n.3,1, 1", 1", ..., m,m',m",
m+ 1)

In = (N,K,T,Mo,My1,...,Mp», Mp+1,Ro,R11,--., Ry Riny1,m + 1),
N = {a;|1<i<3n+2m+1}

U {ag af |1<i<2n}
U {t; fill<i<n}
U ¢ |1<i<m}
U {o},
K = {Qo, Qms1}
U {Qi1, Qia2, Qiz|1<i<n}
U {Qi, Qi, Qin |1 <i<m},
T = {d},
My = {b},
M;w = Mio=M;=Mjy =My ={a}, forall1 <i<n,1<j<m,
M;5 = {a}, al}, foralll <i<mn,
My = {d}, forall1 <i<m,
Ry = 10,
Ri1 = {a1 — Qo, b— t1b},
Rio = {a1 — Qo, b— fib},
Riz = {d) —ay, af = a3, a5 — Qu1, a3 = Qi2},
Riin = {aj—aj[1<j<26i-1)}
U {agi—1 = Qi—1.3, b— t;b}, foralli =2,3,...,n—1,
Riz = {aj = aj 1<) <26i-1)}
U {a2i-1 — Qi—13, b— fib}, foralli=2,3,...,n—1,
Riz = {aj—=ajy, aj —aj,|1<j<2i—1}
U {dhy — Qi1, ay; — Qia}, foralli=2,3,....n—1,
Rn1 = {aj 2 ajp1|1<5<2(n-1)}
U {azn1— Qn-13, b= ta},
Ruz = {aj—aj 1<) <2n—1)}

U {a2n—1 = Qun-13, b= fn},
Rz = {4 = ajy, of 2 af [1<j<2n—1}
{al2n - Qn-h al2’n — QnZ}
{ti - t,rue(f)/ati)a fz - true('y, fz) | 1<i< n}a

Ry = {aj = aj|1<j<3n)

271

Gh. Paun

U {asznt1 = Qna, c1 = Qin},

Ry = {aj—aj41]1<5<3n+1}
U {asnt2 = @1},
Ri = {aj—=aj+1|1<j<3n+2(:i-1)}
U {agpio@i-1)+1 = Qi-1, ¢i = Qpn}, foralli =2,3,...,m,
Ry = {aj—>aj;1]1<j<3n+2(i-1)+1}
U {asnqo@i—1)+2 = Qi}, foralli =2,3,... ,m,
Ry = 0, foralli=1,2,...,m,
Rypt1 = {aj = ajp1]|1<j<3n+2m}

U {asntom+1 = Qm}-

The system works as follows. All symbols a;, a}, a’ are counters, used for the syn-
chronization of the computation. The components 7.1,7.2,4.3 are used for expanding
the variable z;, so that in component n.3 we get all 2" truth-assignments for the n
variables in the form of strings ajs ... ay, with a; € {t;, f;}, with ¢; indicating the
value true and f; indicating the value false. In the same component n.3 one also
identifies for each truth-assignment the sequence of clauses which are satisfied; this
leads to 2" strings over the alphabet {c; | 1 <4 < m}. These strings are examined in
components %,4,4” in order to see whether at least one string exists which contains
all ¢;, 1 <14 < m. If such a string exists, then a string over {¢; | 1 <1 < m}U{d} will
be present in component m + 1 after step 3n + 2m + 1, indicating that the formula
is satisfiable; if no string of this form will be present in component m + 1 after step
3n 4+ 2m + 1, then +y is not satisfiable.

Let us now examine in a closer manner the computations in II.

In the first step, both components 1.1, 1.2 introduce g, hence b from component
0 is replicated and sent to the two components; here, b is replaced by ¢;b and
f1b, respectively, corresponding to the true and false values for x1. Note that b is
reproduced. In the first step, the component 1.3 increases the counters, while in the
second step one uses the rules a), — @Q1.1,a) — Q1.2. The strings from components
1.1 and 1.2 are moved to component 1.3. From now on, components 1.1 and 1.2 will
be empty.

During the first two steps, components 2.1 and 2.2 (actually, all components of
the system where counters are present) just increase the counters. In step 3, both
components 2.1 and 2.2 ask for the strings of component 1.3, hence these strings are
replicated and sent to components 2.1 and 2.2. We have in each of these components
the strings ¢1b, f1b, hence in the fourth step we use the rule b — t2b in component
2.1 and the rule b — f2b in component 2.2. The strings we obtain are t12b, f1t2b in
component 2.1, and ¢; fob, f1 fob in component 2.2. At the same time (hence in step
4), component 2.3 asks for all these strings, hence component 2.2 will contain now
the strings t1t2b, t1 fob, fiteb, f1 fob, which means that the first two variables were
expanded (in four steps).

In general, in 2; steps, we expand the first ¢ variables z1,...,z;, and this is
true also for i+ = m. After obtaining all 2" truth-assignments ajas...«a,, with
a; € {t;, fi}, in component n.3 we use the rules t; — true(v,t;), fi — true(y, fi).

272

Grammar systems vs. membrane computing: A preliminary approach

Each string has length n, hence we will have n steps to perform in order to replace
each t;, f; by the sequence of satisfied clauses. (Note that it is possible that the same
ti, fi satisfies none, one, or several clauses, hence the strings over {¢; | 1 < j < m} we
obtain now can be of any length between zero — when a truth-assignment satisfies no
clause — to nm — the case of a truth-assignment where each t;, f; satisfies all clauses.)

After these 3n steps, we pass to examining all the obtained strings, checking
whether at least one exists which contains all ¢;,1 < ¢ < m. During the 3n steps,
components j,j', 7 = 1,2,...,m, have just increased the counters. In step 3n+1, in
component 1 we use the rule asp+1 — @Qn.3, which brings all strings from component
n.3 into component 1. In all first 3n + 1 steps, component 1’ has increased the
counters. In step 3n + 2 we can use the rule ¢y — @~ in component 1 (and this
is obligatory for each string which contains the symbol ¢;) and, simultaneously, the
rule az, 2 — Q1 in component 1’. In this way, all strings which contain at least one
occurrence of ¢; will contain now the query symbol @)1, while the strings which do
not contain ¢; remain unchanged (hence they contain no query symbol). Therefore,
all strings which do not contain the query symbol are “cleaned” from component 1,
and moved to component 1’. Simultaneously, all strings which were “protected” by
the symbol Q1 will replace Q1 by d and will remain in component 1.

In the next step, component 2 will request all strings from component 1 (in
the first 3n + 2 steps, this component has only increased the counters — like all
components 4,4" for i = 2,3,...,m,m + 1). The process is iterated, checking in
the same manner whether ¢, c3, ..., ¢y, are present. The checking takes two steps
for each clause. After 2m steps (added to the 3n steps of producing the strings
of satisfied clauses) we have in component m the strings which correspond to the
truth-assignments which have satisfied all clauses — maybe none, if no such a truth-
assignment exists. Therefore, if any string survives the checking phase, then in step
3n + 2m + 1, when component m + 1 uses the rule asyi9m+1 — @m, We can see in
component m+ 1 whether the formula is satisfiable: a string arrives here if and only
if the formula is satisfiable.

We close this discussion by pointing out that the conditions we have stated at
the beginning of this section in order to claim that we have solved the problem are
fulfilled: the system can be constructed in a polynomial time (it has a polynomial
size, in terms of the number of used symbols, number of rules, total length of rules),
it is confluent (some non-determinism is allowed in the place of using the rules
t; — true(y,t;), fi — true(v,f;), and then in the place of using the rules ¢; —
Qir,1 < i < m, but the result is the same in all cases, because there are n steps
of using the first type of rules, rewriting strings of length n, and m steps of using
the second type of rules, which is enough for checking the presence of all clauses,
hence each computation gives the same result), sound and complete (the problem
has a solution if and only if the system indicates that a solution exists). With the
observation that the result is obtained in a linear time, the proof is complete. O

Let us note that the system constructed in the previous proof depends only on n and
m, with one exception, the rules t; — true(y,t;), fi — true(y, f;), for 1 < i < n,
from R, 3, which directly depend on the instance of SAT we are handling. Therefore,
if we consider these rules as an input to the system, then the construction can be

273

Gh. Paun

considered uniform; if this convention is not allowed, then the instance must be
codified by means of strings which have to be introduced in the initial configuration
of the system in a specified component (added to the multiset of that component).
The construction of such a system remains as an open problem.

7 Further Remarks, Further Research Topics

As we have stressed several times in the paper, this is only a first approach towards a
systematic investigation of the possibilities to bridge the grammar systems area and
the membrane computing area. The benefit will be mutual, and this was already
proved by the previous results.

Several open problems and research topics were already mentioned in the paper,
but several others remain to be considered. We only mention a few topics which
seems to be both natural and of interest: Consider classes of MPC grammar systems
like in the case of usual PC grammar systems, that is, centralized or non-centralized,
returning or non-returning. We have considered here strings; what about working
with multisets of symbol-objects (hence having a computing device closer to tissue
P systems, namely, tissue P systems with communication by request)?

And, of course, after investigating the possible relationships between CD or PC
grammar systems and P systems, we can also consider other classes of grammar
systems, such as the colonies [8], eco-grammar systems [2] (problem Q36 from [11]
already asks this), networks of language processors [4]. The case of eco-grammar
systems would mean having evolution rules not only in the components/cells, but
also in the environment, a case not addressed yet in membrane computing, although
it looks rather realistic. In turn, from networks of language processors we can
borrow the idea of filters for the communicated strings (or symbols, when working
with multisets of symbols). This can be of a special interest in the case of multisets
of symbols, because we can request from a component only part of the available
symbols.

Acknowledgements. Work done during a stay of the author as a visiting scientist
at MTA SZTAKI EU Centre of Excellence, Budapest. Part of the results reported
here were obtained in collaboration with E. Csuhaj-Varji and Gy. Vaszil and they
will constitute the starting point of more elaborated papers, now in preparation,
about relationships of CD and PC grammar systems and P systems. It is also worth
mentioning a forthcoming paper by E. Csuhaj-Varji, J. Kelemen, A. Kelemenova,
Gh. Paun, and Gy. Vaszil, about P colonies.

References
[1] E. Csuhaj-Varju, J. Dassow, J. Kelemen, Gh. Paun, Grammar Systems. A

Grammatical Approach to Distribution and Cooperation, Gordon and Breach,
London, 1994.

274

Grammar systems vs. membrane computing: A preliminary approach

2]

3]

[4]

E. Csuhaj-Varji, A. Kelemenovd, J. Kelemen, Gh. Piun, Eco-grammar systems
— A grammatical framework for life-like interactions, Artificial Life, 3 (1997),
1-28.

E. Csuhaj-Varju, Gh. Paun, Gy. Vaszil, PC grammar systems with five compo-
nents can generate all recursively enumerable languages, Theoretical Computer
Sei., 299, 1-3 (2003), 785-794.

E. Csuhaj-Varji, A. Salomaa, Networks of parallel language processors, in New

Trends in Formal Languages (Gh. Paun, A. Salomaa, eds.), Lecture Notes in
Computer Science 1218, Springer-Verlag, Berlin, 1997, 299-318.

Z. Dang, O.H. Ibarra, On P systems operating in sequential and limited parallel
modes, DCFS 2004.

J. Dassow, Gh. Paun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, 1989.

O.H. Ibarra, H.-C. Yen, Z. Dang, The power of maximal parallelism in P sys-
tems, DLT 200,.

J. Kelemen, A. Kelemenova, A grammar-theoretic treatment of multiagent sys-
tems, Cybernetics and Systems, 23 (1992), 621-633.

N. Mandache, On the computational power of context-free PC grammar sys-
tems, Theoretical Computer Science, 237 (2000), 135-148.

Gh. Paun, Computing with membranes, Journal of Computer and System Sci-
ences, 61, 1 (2000), 108-143 (and Turku Center for Computer Science-TUCS
Report 208, November 1998, www.tucs.fi).

Gh. Paun, Computing with Membranes: An Introduction, Springer-Verlag,
Berlin, 2002.

M. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Teoria de la Com-
plejidad en Modelos de Computation Celular con Membranas, Editorial Kronos,
Sevilla, 2002.

M. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Complexity
classes in cellular computation with membranes, Natural Computing, 2, 3
(2003), 265-285.

G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic
Press, New York, 1980.

G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages (3 volumes),
Springer-Verlag, Berlin, 1997.

275

