
International Workshop

Automata for
Cellular and Molecular

Computing

Budapest, Hungary, August 31, 2007

Edited by Gy. Vaszil

MTA SZTAKI, Budapest, 2007

György Vaszil, editor

International Workshop

Automata for

Cellular and Molecular

Computing

Budapest, Hungary, August, 2007

Proceedings

MTA SZTAKI
Budapest

Foreword

Foreword

The international workshop Automata for Cellular and Molecular Computing was
held on August 31, 2007, in Budapest, Hungary, as a co-located event with the 16th
International Symposium on Fundamentals of Computational Theory, FCT 2007.
It was organized by the Theoretical Computer Science Research Group of MTA SZ-
TAKI, the Computer and Automation Research Institute of the Hungarian Academy
of Sciences.

The aim of the workshop was to present novel ideas connecting cellular and
molecular computing with the more classical areas of automata theory. In this
framework, the extended notion of “automaton” includes interaction with an envi-
ronment or other automata, uses resources represented by multisets, and can have
new features inspired by “natural computing”.

We would like to thank the members of the program committee, Gabriel Ciobanu
(Iasi), Erzsébet Csuhaj-Varjú (Budapest), Rudolf Freund (Vienna), Oscar H. Ibarra
(Santa Barbara), Maurice Margenstern (Metz), Giancarlo Mauri (Milan), Gheorghe
Păun (Bucharest), Mario J. Pérez-Jiménez (Seville), and György Vaszil (Budapest).

We would also like to thank the authors for participating and presenting their
work at the workshop.

Budapest, August 2007 György Vaszil

5

Contents

Contents

Foreword 5

Contributions 9
Francesco Bernardini, Marian Gheorghe, Maurice Margenstern, Sergey

Verlan: How to synchronize the activity of all components of a P sys-
tem? . 11

Rafael Borrego-Ropero, Daniel Dı́az-Pernil, Mario J. Pérez-Jiménez: Tis-
sue Simulator: A graphical tool for tissue P systems 23

Matteo Cavaliere, Radu Mardare, Sean Sedwards: Colonies of synchro-
nizing agents: An abstract model of intracellular and intercellular
processes . 35

Gabriel Ciobanu, Mihai Gontineac: Networks of Mealy multiset automata 52
Rudolf Freund, Mihai Ionescu, Marion Oswald: Extended spiking neural

P systems with decaying spikes and/or total spiking 64
Petros Kefalas, Ioanna Stamatopoulou, Marian Gheorghe: Principles of

transforming communicating X-machines to population P systems . 76
Maurice Margenstern: On a characterization of cellular automata on the

tilings of the hyperbolic plane . 90
M. Sakthi Balan: Non-determinism in peptide computer 108
José Sempere: On local testability in Watson-Crick finite automata 120
Šárka Vavrečková, Alica Kelemenová: Properties of eco-colonies 129
Linmin Yang, Zhe Dang, Oscar H. Ibarra: On stateless Automata and

P systems . 144

Author Index 159

7

Contributions

How to Synchronize the Activity of All Components of a

P System?

Francesco Bernardini1, Marian Gheorghe2, Maurice Margenstern3,

and Sergey Verlan4

1Leiden Institute of Advanced Computer Science, Universiteit Leiden

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

bernardi@liacs.nl

2Department of Computer Science, The University of Sheffield

Regent Court, Portobello Street, Sheffield S1 4DP, UK

M.Gheorghe@dcs.shef.ac.uk

3Université Paul Verlaine - Metz, LITA, EA 3097, IUT de Metz

Ile du Saulcy, 57045 Metz Cédex, France

margens@univ-metz.fr

4LACL, Département Informatique, Université Paris 12

61 av. Général de Gaulle, 94010 Créteil, France

verlan@univ-paris12.fr

Abstract

We consider the problem of synchronizing the activity of all the membranes
of a P system. After pointing at the connection with a similar problem dealt
with in the field of cellular automata where the problem is called the firing squad

synchronization problem, FSSP for short, we provide two algorithms to solve
this problem. One algorithm is non-deterministic, the other is deterministic.
Both work in a time which is 3h, where h is the height of the tree defining the
membrane structure of the considered P system. In the conclusion, we suggest
various directions to continue this work.

1 Introduction

The synchronization problem can be formulated in general terms with a wide scope
of application. We consider a system constituted of explicitly identified elements
and we require that starting from an initial configuration where one element is
distinguished, after a finite time, all the elements which constitute the system reach
a common feature, which we call state, all at the same time and the state was never
reached before by any element.

This problem is well known for cellular automata, where it was intensively studied
under the name of the firing squad synchronization problem (FSSP): a line of soldiers
have to fire at the same time after the appropriate order of a general which stands

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 11 - 22, 2007.

11

at one end of the line, see [2, 7, 6, 11, 12, 13]. The first solution of the problem was
found out by Goto, see [2]. It works on any cellular automaton on the line with n

cells in the minimal time, 2n−2 steps, and requiring several thousands of states. A
bit later, Minsky found his famous solution which works in 3n, see [7] with a much
smaller number of states, 13 states. Then, a race to a cellular automaton with the
smallest number of states which synchronizes in 3n started. See the above papers
for references and for the best results and for generalizations to the planar case, see
[11] for results and references.

The synchronization problem appears in many different contexts, in particular
in biology. As P systems modelize the working of a living cell constituted of many
micro-organisms, represented by its membranes, it is a natural question to raise
the same issue in this context. Take as an example the meiosis phenomenon, it
probably starts with a synchronizing process which initiates the division process.
Many studies have been dedicated to general synchronization principles occurring in
cell cycle; although some results are still controversial, it is widely recognised that
these aspects might lead to an understanding of general biological principles used
to study the normal cell cycle, see [10].

Apparently, this problem was never studied in the framework of P systems.

Our first idea was to implement the well known solutions for cellular automata
on the line. This idea was used in [3, 5] in the context of cellular automata in the
hyperbolic plane in order to synchronize sets of cells which are more complex than
a line. However, in this context, the sets of cells are trees in which all branches have
the same length which allows to immediately implement the algorithms for cellular
automata on the line, thanks to the parallelism of computation of the cells of a cel-
lular automaton. It is not that difficult, although not immediately straightforward,
to implement an algorithm for linear cellular automata into the membrane structure
of a P system, even in the easy case when the tree of the membrane structure is
complete, i.e. all its branches have the same length. To extend this to any P system,
we devised two solutions. The first idea was to complete the tree. The second idea
was to use various delay strategies considered in generalized firing squad problems
for cellular automaton when the general is at an arbitrary position in the line of
soldiers, see [12]. In any case, a direct transcription of a CA solution might use
a kind of boundary rules, see [1]. This might be slightly combined with sending
appropriate symbols, current states to neighbours such as to make use of them in
each cell component, but this will double the synchronization time.

Then, we had a second thought. Why not trying to find a solution, more specific
to P systems? In the paper, we give two algorithms to solve the synchronization
problem for P systems. One algorithm is non-deterministic while the other is deter-
ministic. However, the working of our deterministic algorithm raises an interesting
discussion motivated by the implementation of the solution into a computer pro-
gram. It is also interesting to notice that both our algorithms work in 3n.

Before, turning to the algorithms, let us discuss again the setting of the problem
in the frame of P systems and how we can recognize the configuration when all the
membranes are synchronized.

We shall implement the “fire” state of cellular automaton, traditionally denoted
by F as an object which will appear at the time of synchronization, but never before

F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

12

this time. Of course, such an object must occur in at least one rule. But still, this
condition is a good implementation of the cellular automaton process. Moreover, if
the objects of the membranes are strings, it will not be difficult to adapt the rules
of the two algorithms into rules in which F never occurs. We simply decide that
F is also a string and it is obtained through the rules by a computing process. This
latter process is a complication which we considered as not very informative. This
is why we restrict ourselves to the situation where F is an object.

2 Definitions

In the following we briefly recall the basic notions concerning P systems. For more
details on these systems and on P systems in general, we refer to [8].

An evolution-communication P system of degree n is a construct

Π = (O,E, µ,w1, . . . , wn, R1, . . . , Rn, i0),

where:

1. O is a finite alphabet of symbols called objects,

2. µ is a membrane structure consisting of n membranes that are labelled in a
one-to-one manner by 1, 2, . . . , n,

3. wi ∈ O∗, for each 1 ≤ i ≤ n is a multiset of objects associated with the region
i (delimited by membrane i),

4. E ⊆ O is the set of objects called environment; each element appears in an
infinite number of copies,

5. Ri, for each 1 ≤ i ≤ n, is a finite set of rules associated with the region i

and which have the following form u → v1, tar1; v2, tar2; . . . ; vm, tarm, where
u ∈ O+, vi ∈ O and tari ∈ {in, out, here, in!},

6. i0 is the label of an elementary membrane of µ that identifies the corresponding
output region.

An evolution-communication P system is defined as a computational device con-
sisting of a set of n hierarchically nested membranes that identify n distinct regions
(the membrane structure µ), where to each region i there are assigned a multiset of
objects wi and a finite set of evolution rules Ri, 1 ≤ i ≤ n.

An evolution rule u → v1, tar1; v2, tar2; . . . ; vm, tarm rewrites u by v1, . . . , vm

and moves each vj accordingly to the target tarj. If the tarj target is here, then
vj remains in membrane i. If the target tarj is out, then vj is sent to the parent
membrane of i. If the target tarj is in, then vj is sent to any inner membrane of i

chosen non-deterministically. If the target tarj is equal to in!, then vj is sent to all
inner membranes of i (a necessary number of copies is made).

A computation of the system is obtained by applying the rules in a non-determin-
istic maximally parallel manner. Initially, each region i contains the corresponding

How to synchronize the activity of all components of a P system?

13

finite multiset wi; whereas the environment contains only objects from E that appear
in infinitely many copies.

A computation is successful if starting from the initial configuration it reaches a
configuration where no rule can be applied. The result of a successful computation
is the natural number that is obtained by counting the objects that are presented
in region i0. Given a P system Π, the set of natural numbers computed in this way
by Π is denoted by N(Π).

An evolution-communication P system with polarizations and priorities of degree
n is a construct

Π = (O,E, µ,w1, . . . , wn, R1, . . . , Rn, i0),

defined as in the previous definition. However, in addition to that definition each
membrane has a label from the set {0,+,−} called polarization. Initially, all mem-
branes have the polarization 0.

Moreover, the set of rules may contain rules of the form

u → v1, tar1; v2, tar2; . . . ; vm, tarm,

where u ∈ O+, vi ∈ O and tari ∈ {in+,mark+, out, here, in!}.
As above, the here target means that the object remains in the current membrane

and the in! target sends the corresponding object to all inner membranes at the same
time (making the right number of copies). The out target sends the object to the
outer membrane and changes at the same time the polarization of membrane to −.
The in+ target sends the object to an inner membrane having a + polarization. The
mark+ target leaves the objects in the same membrane and, at the same time, it
takes one inner membrane having a 0 polarization and changes its polarization to
+.

Each rule has also a priority which is a natural number. A computational step
is obtained by applying the rules in a non-deterministic maximally parallel manner
where a rule with a lower priority cannot be applied if a rule of a higher priority is
applicable.

In the following we shall restrict our systems to systems where there are at least
2 membranes and all membranes contain the same set of rules and the same set of
objects, except the skin. The skin may contain a different set of objects.

We shall also try to satisfy the following goal: starting from the initial configu-
ration where only the skin has some differentiated objects the system halt at some
moment. In the halting configuration all membranes contain the same symbol(s)
which should not appear before.

3 Non-Deterministic Solution

In this section we discuss a non-deterministic solution to the FSSP using evolution-
communication P systems. We shall use the following algorithm (consider the P
system as a tree):

Algorithm 1

1. Starting from the root find an arbitrary leaf.

F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

14

2. Compute the depth of this leaf. Let n be this number.

3. For any node (initially the root) do the following steps:

4. Decrement the counter b (initially equal to n).

5. Make a local copy of b (and call it b′).

6. If the current node is not a leaf then send counter b to all inner nodes.

7. At each following step decrement the local copy of b (b′).

8. If the local copy of b is equal to zero, then introduce the final symbol F .

9. If at some moment b is equal to zero, while there are inner nodes, then do not
stop (perform an infinite computation).

The idea of the algorithm is to guess the longest branch (having the length equal
to the height of the tree, i.e. to the length of the longest path from the root to a leaf)
and after that to propagate this height from the root to the leaves decreasing it at
each level. For the synchronization a copy of this height is kept at each visited node
and decreased at each step. When all these counters are zero, we may synchronize
by introducing the symbol F . If the guess was wrong, then the system will never
halt because the symbol # will be introduced.

Now let us present the system in details.

Let Π = (O,E, µ,w1, . . . , wn, R1, . . . , Rn) the P system to be synchronized, where
i0 is not mentioned as it is not relevant for the synchronization. To solve the syn-
chronization problem, we make the following assumptions on the objects, the envi-
ronment, the membranes and the rules. We considerthat:

O = {L, Y,R, S1, S2, S
′

2, S3, S4, S5, S6, S7, F, a, b, b′,#}, E = ∅,

and that µ is an arbitrary membrane structure, with w1 as the skin membrane.
We also assume that w1 = {L, Y,R, S1, S

′

2} and that all other membranes satisfy
wi = {Y,L}. The sets of rules, R1, . . ., Rn are all equal and they are described
below.

The rules:

Finding a leaf:

S1 → S1, in S′

2 → S2, here

S2 → S2, in S2 → #, here
(1)

Computing the depth of the leaf:

S1S2 → S3, out; a, out S3 → S3, out; a, out a → a, out (2)

S3R → S5, here a → b, here (3)

Propagation of the signal:

How to synchronize the activity of all components of a P system?

15

LY S5b → S5, in!;S6, here b → b, in!; b′, here S5 → #, here (4)

LY S5b → S7, here (5)

Counting back:

S6b
′ → S6, here S6 → F, here Fb′ → #, here (6)

S7b → S7, here S7 → F, here Fb → #, here (7)

Traps:

bY → #, here b′Y → #, here # → #, here (8)

Infinite loop:

L → L, here (9)

Rules (1) permit to find an arbitrary leaf. Indeed, two signals S1 and S2 descend
the tree, but signal S2 has a one-step delay with respect to S1. They may meet only
at a leaf, where the in target is not applicable. If this does not happen because of
the non-deterministic descent, then S2 will be transformed to the trap symbol #.
When signals S1 and S2 meet, a new signal S3 is produced. This signal moves up
until the root node, where the out target is not applicable. When moving up, at
each step, a new symbol a is produced. Hence, when S3 reaches the root, n copies
of a will be present, n being the height of the leaf reached by S1. Rules (2) permit
to do this. In this way steps 1 and 2 of the algorithm are implemented.

At the root node, the symbol S3 is transformed to S5 and all symbols a are
transformed to b by rules (3). If this last transformation happens before the root
node, then symbols b or b′ which are obtained from them will be trapped by rules (8).
The steps 4-6 of the algorithm are implemented by rules (4) and (5). Indeed, symbols
b are replicated and sent to all inner membranes and the same number of symbols
b′ is created. At the same time, one symbol b is used together with S5, L and Y . In
this way the number of b’s is decreased at each step. Symbol S5 is transformed to
S6 or S7 (if we reached a leaf).

Steps 7 and 8 of the algorithm are implemented by rules (6) and (7) (for the
leaf). The number of symbols b′ (b for the leaf) is decreased and when it reaches
zero, symbol S6 (S7 for the leaf) is transformed to F . If this rule is applied before
all symbols b′ (resp. b) are consumed then the trap symbol # is introduced.

Now we shall present some assertions that guarantee the correctness of the proof,
keeping in mind that a correct computation always halts.

• If symbol S3 does not appear, then the computation never halts.

Indeed, in this case, symbol S2 will reach a leaf different from the one reached
by S1 and it will be transformed to the trap symbol.

F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

16

• Rules (3) may be applied only at the root node and the number of symbols b

which is obtained is equal to n, where n is the depth of the leaf visited by S1.

Indeed, the first rule uses the symbol R which is present only at the root node.
If the second rule is applied at a non-root node, then at least one symbol b is
introduced. By the second rule from (4) at least one copy of symbol b′ will
appear in the same node. Now it suffices to remark that this transformation
takes two steps and it is clear that symbol S5 cannot appear in the meanwhile
because if the current node is not the root node, then at least 3 steps are needed
to transform symbol S3 into S5 and propagate it down. Hence, the symbol
Y will be present and the trap symbol will be introduced by the second rule
from (8).

Since at each step the number of a’s is increased, at the root node it will be
equal to the depth of the starting leaf, i.e. the one visited by S1.

• The first rule from (4) must be applied when at least one b occurs in this node.

Indeed, otherwise S5 will be left alone either in the current node, or in the inner
nodes. In this case, the third rule from (4) will introduce the trap symbol.

• Rule (5) may be applied only at the leaf.

Indeed, if it is applied at a node which is not a leaf, then symbols L situated
in membranes below cannot be eliminated and the system will always perform
an infinite computation because of the rule (9).

• The second rule from (6) (resp. (7)) may be applied if and only if the number
of b′ (resp. b) at that node is zero.

It is clear that if these rules are applied before, then the third rule from (6)
(resp. (7)) will introduce the trap symbol.

• After the introduction of the symbol S5, at each step k, 0 ≤ k ≤ n the config-
uration of nodes having the depth h < k is {S6, b

′n−k} ({S7, b
n−k} if the node

is a leaf) and the configuration of nodes having the depth k is {L, Y, S5, b
n−k},

where n is the depth of the leaf visited by S1.

This assertion may be easily verified by induction. Initially, at the step 0, the
root node contains {S5, b

n}. Suppose that the assertion holds for k < n. Con-
sider all nodes of depth k that are not leaves. In this case rules (4) are appli-
cable and the configuration of these nodes becomes {S6, b

′n−k−1}. The config-
uration of the inner nodes, having the depth k+1, becomes {L, Y, S5, b

n−k−1}.
Consider now all leaves of depth smaller or equal than k. By the first rule
from (7) their configuration becomes {S7, b

n−k−1}. Now consider all non-leave
nodes of depth smaller than k. By the first rule from (6) their configuration
becomes {S6, b

′n−k−1}.

From the above assertions it is clear that if a leaf not corresponding to the longest
branch of the tree is reached by S1, then the system will never halt (because some
symbols L will be present). If the initial guess corresponds to the longest branch,
then it is clear that all nodes will reach the same configuration {F} at the same

How to synchronize the activity of all components of a P system?

17

time (because they contain the same number of symbols b or b′). This concludes the
proof.

Theorem 1. The time complexity of the just considered algorithm is 3h, where h is

the height of the tree of µ, the membrane structure.

Proof. The detection of the longest branch takes 2h steps: h steps to go to the
farthest leaf and h ones to get the feed back. Then, the synchronizing process takes
h steps.

We recall that the time complexity taken into consideration is the number of steps
of the computation. Now, note that h = log n for a complete tree and that h = n in
the worst case.

4 Deterministic Solution

In this section we show a deterministic solution to FSSP. We shall use a different
class of P systems, namely evolution-communication P systems with polarizations
and priorities.

We use the following algorithm to solve the problem.

1. Find the height of the tree.

2. Descend and distribute symbols like in the non-deterministic case.

In order to find the height of the tree we use the following algorithm:

Algorithm 2

1. Start at the root node. Counting = false, height=0.

2. If there are non-marked inner nodes then go to any of them. If counting= true
and height>0, then height=height-1;

3. If at leaf and counting = false, then counting = true.

4. If all inner nodes are marked, then mark the current node, and if the current
node is not root go up and height=height+1.

5. If the root is marked then stop.

Theorem 2. The above algorithm correctly computes the height of a tree.

Proof. The proof will be done by induction on the height of the tree. Consider a
tree of height 1. Obviously, the first chosen node is a leaf and the counting starts.
It is easy to see that the value of height will oscillate between 0 and 1, the value 1
appears when we are at the root node.

Now let us suppose that the algorithm returns the height of a tree for any tree
having the height <= n. Now suppose that we have a tree of height n + 1. Let R

be the root node and F1, . . . , Fk be the children of R. Clearly, each Ft, 1 ≤ t ≤ k

F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

18

is a root node for a tree At of height, for instance, ht. Now let Fi be the first node
chosen at step 2 of the algorithm. By induction the algorithm reaches the step 4 with
counting=true and height=hi. After that we move up to the root R and the value
of height is hi +1. Now let Fj be another node chosen at step 2 of the algorithm and
h be the current value of height. If hj ≤ h − 1 then at the deepest node of Aj the
value of height is equal to h − 1 − hj and when we return to R the value of height
is equal to h. If hj > h − 1 then at the deepest node of Aj the value of height will
be 0 and when we return to R the value of height will become equal to hj .

Hence, at the last visit of R (we remark that we do not return to Am that were
already visited) the value of height is 1 + max(h1, . . . , hk) which is the height of the
initial tree. This concludes the proof.

Before going into the precise description of the P system, we have to focus on what
we mean by deterministic. In fact, the algorithm which we shall use to determine
the height of the tree to be synchronized contains the possibility of an arbitrary
choice at some steps of its execution. What happens is, whatever the choice, the
result is always the same. Now, if we wish to implement this algorithm in a computer
program in order to use it, the implementation must define a rule to fix the choice.
Accordingly, the execution of the algorithm by a simulating device is deterministic.
This is why we consider the algorithm as deterministic, although its presentation is
not.

Let us describe the algorithm to compute the height of the tree in an informal
way.

At the beginning, all membranes have the polarity 0. The algorithm repeatedly
performs the following sequence of actions:

When the control arrives at a membrane M , it looks whether there is at least
one child-membrane with polarity 0. If there is at least one such membrane, the
algorithm selects one of them, N , and it changes the polarity of N to +. Then, it
decreases the height by 1, unless it is already 0, in which case the height remains
unchanged. If all child-membrane are with the polarity −, the control goes back to
the parent membrane of M , changes the polarity to − and the height is increased
by 1.

The loop is stopped when the control arrives at the skin membrane and all
child-membranes are with the polarity −.

The choice of the child-membrane whose polarity is turned from 0 to + is the
non-deterministic operation. However, the result of the algorithm does not depend
on which membrane has been chosen. It is enough to select one of them, whatever
the membrane. Now, in the context of a biological environment where some protein
would choose a membrane M to perform some operation on M , there are probably
additional factors which determine the choice performed by the protein. And so, the
choice may be considered as deterministic. This corresponds to the implementation
which we above invoked.

This choice is formalized by an operator mark+ which selects one child-mem-
brane with polarity 0 if any, and changes its polarity to +. The operator mark+

has the highest priority. Now, note that when the control leaves the membrane M

where mark+ was invoked, it changes the polarity + to −. Accordingly, when mark+

How to synchronize the activity of all components of a P system?

19

successfully performed the change on one child-membrane of M , a single membrane
has the polarity + among the child-membranes of M .

This can be implemented by the following rules (all nodes are initially empty,
except the root containing symbol S1). The number at the left indicates the priority
of the rule (a higher number means a higher priority).

Finding the first leaf:

2 S1 → S′

1,mark+ S′

1 → S1, in+ (10)

1 S1 → S2 (11)

Counting algorithm:

5 S2 → S′

2,mark+ S′

2a → S2, in+ (12)

4 a → a, in+ (13)

3 S′

2 → S2, in+ (14)

2 S2 → S2, out; a, out a → a, out (15)

1 S2 → S3, here a → b, here (16)

Distribution:

2 S3b → S3, in!;S4, here b → b, in!; b′, here (17)

1 S3b → S5, here (18)

Counting down:

2 S4b
′ → S4, here S5b → S5, here (19)

1 S4 → F, here S5 → F, here (20)

Let us discuss the functioning of the above system. Rules (10) permit to move
the symbol S1 down until it reaches a leaf. This corresponds to the step 2 of
Algorithm 2. When the leaf is reached, the rule (11) becomes applicable and S1 is
transformed to S2. This corresponds to the step 3 of Algorithm 2. Rules (12)-(15)
permit to implement the steps 2-4 of Algorithm 2 when counting is equal to true.
Indeed, a membrane having polarization 0 (not yet visited) is chosen and height
is decreased (the value of height is represented by the number of symbols a) by
rules (12) and (13). If height is equal to zero, then rule (14) is applicable which
simply moves symbol S2 down. Rules (15) are applicable only if we are at a leaf or
all inner membranes have the polarization −. In this case S2 is moved up and the
number of a’s is increased by one. This corresponds to the step 4 of the algorithm.
Rules (16) are applicable only at the root node when all children were visited. This
corresponds to rule 5 of the algorithm 2 and the number of a’s corresponds to the
height of the tree. So, rules(16) rename a to b and change S2 to S3.

F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

20

Now a propagation phase, similar to the non-deterministic solution, starts. Rules
(17) propagate down the counter b and decrease it at the same time, while rules (19)
decrement the local copy of b (consisting of symbols b′). Like in the non-deterministic
case, rules (20) will be applicable after h steps from the beginning of the propagation
phase, where h is the height of the tree of the P system, and the final symbol F will
be synchronously introduced in all membranes.

Theorem 3. The time complexity of the just considered algorithm is 3h, where h is

the height of the tree of µ, the membrane structure.

Proof. It is exactly the same as for the non-deterministic algorithm. To detect the
longest branch, we have at most to go down to the farthest leaf and then to go back
to the root.

We have the same remarks on the time complexity and on h as for theorem 3.1.

5 Conclusions

In this paper, we indicated two algorithms to perform the synchronization of all the
membranes of a given P system. It is also interesting to notice that the algorithms
are not only linear, they are in 3h, h being the height of the tree defined by the
membrane structure of the P system. In the case of a linear structure, h = n. Now,
the time of 3n is the time of many algorithms for the FSSP in the case of cellular
automata on the line with n cells. In this domain, the optimal time is 2n. And so,
a natural question is: why not trying to do reach 2h for a P system?

Other directions are in a possible reduction in the number of rules used by the
algorithms. Another direction is to look at the possibility to define a deterministic
synchronization algorithm without using priority rules. As an example, it would be
interesting to see whether there is specific solution with symport/antiport P systems
which are considered as very close to the real activity of the cell membranes. Another
direction is the extension of the result to tissue P systems. It is not difficult to adapt
our algorithms to the case a convex graph in which it is possible to implement a tree
structure. Taking an exploring algorithm, it is possible to cut the possible cycles
in order to get a covering tree of the graph which would be in bijection with the
vertices of the graph, see [4, 9], and then we can apply the algorithms described in
the previous sections to solve the synchronization problem.

For sure, new results in any of the above mentioned direction would have direct
consequences of the scope of application of the problem. It seems to us that the
possibility to synchronize the membranes of a P system in a rather reasonable time
is a serious argument in favour of the suitability of the model for biology.

We would not be surprised to see the possibility to closer mimic real biological
phenomena at the level of a cell with P systems in a near future.

Acknowledgements

The research of Francesco Bernardini is supported by NWO, Organization for Sci-
entific Research of the Netherlands, project 635.100.006 VIEWS.

How to synchronize the activity of all components of a P system?

21

References

[1] F. Bernardini, V. Manca. P systems with boundary rules. In Gh. Păun, G.
Rozenberg, A. Salomaa, C. Zandron, editors, Membrane Computing, Interna-

tional Workshop, WMC-CdeA 02, Curteă de Arge s, Romania, August, 19-23,

2002, Revised Papers, volume 2597 of Lecture Notes in Computer Science, pages
107-118. 2003.

[2] E. Goto. A Minimum Time Solution of the Firing Squad Problem. Course Notes

for Applied Mathematics, 298. Harvard University, 1962.

[3] Ch. Iwamoto, M. Margenstern. Time and Space Complexity Classes of Hy-
perbolic Cellular Automata. IEICE Transactions on Information and Systems,
387-D(3):700–707, 2004.

[4] J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7:48-50,
1956.

[5] M. Margenstern. An algorithm for building intrinsically universal cellular au-
tomata in hyperbolic spaces. FCS 2006, Las Vegas, June, 2006.

[6] J. Mazoyer. A Six-State Minimal Time Solution to the Firing Squad Synchro-
nization Problem. Theoretical Computer Science, 50:183-238, 1987.

[7] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.

[8] Gh. Păun. Membrane Computing. An Introduction. Springer-Verlag, 2002.

[9] R.C. Prim. Shortest connection networks and some generalizations. Bell System

Technical Journal, 36:1389-1401, 1957.

[10] P.T. Spellman, G. Sherlock. Reply: whole-cell synchronization - effective tools
for cell cycle studies. Trends in Biotechnology, 22(6):270-273, 2004.

[11] H. Umeo, M. Maeda, N. Fujiwara. An Efficient Mapping Scheme for Embed-
ding Any One-Dimensional Firing Squad Synchronization Algorithm onto Two-
Dimensional Arrays. In ACRI 2002, volume 2493 of Lecture Notes in Computer

Science, pages 69-81. 2002.

[12] H. Schmid, T. Worsch. The Firing Squad Synchronization Problem with Many
Generals For One-Dimensional CA. In IFIP TCS 2004, pages 111-124. 2004.

[13] J.-B. Yunès. Seven-state solution to the firing squad synchronization problem.
Theoretical Computer Science, 127(2):313-332, 1994.

[14] The P systems web page. http://psystems.disco.unimib.it.

F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan

22

Tissue Simulator: A Graphical Tool for Tissue P Systems

Rafael Borrego–Ropero, Daniel Dı́az–Pernil,
and Mario J. Pérez–Jiménez

Research Group on Natural Computing
Dpt. of Computer Science and Artificial Intelligence. University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
{rborrego,sbdani,marper}@us.es

Abstract

Recently, different new models of tissue-like P systems have received im-
portant attention from the scientific community. This paper is focused in a
concrete model: recognizing tissue P system with cell division. A software ap-
plication allowing to understand better this model is presented. A linear-time
solution to an NP-complete problem from graph theory, the 3–coloring problem
is considered as a case study with this tool.

1 Introduction

Membrane Computing is an emergent branch of Natural Computing introduced by
Păun in [10], which, considering as computer process the process that takes place
into living cells, constructs a new non-deterministic model of computation. In mem-
brane computing, basically, there are two types of framework: P systems with the
membranes structure described by a tree, inspired from the cell, and tissue P sys-
tems with the membranes placed in the nodes of an arbitrary graph, inspired in the
cellular tissue and in the neuron. The second one corresponds to the idea of form-
ing a network of membranes linked in a specific manner and working together, [11].
In both types, the main idea is having multisets of objects placed in compartments
evolving according to given rules in a synchronous non-deterministic maximally par-
allel manner.

It shall be focused here on tissue P systems. This variant has two biolog-
ical inspirations (see [8]): intercellular communication and cooperation between
cells/neurons. The common mathematical model of these two mechanisms is a net
of processors dealing with symbols and communicating these symbols along channels
specified in advance. The communication among cells is based on symport/antiport
rules (this way of communication for P systems was introduced in [12]). Symport
rules move objects across a membrane together in one direction, whereas antiport
rules move objects across a membrane in opposite directions.

From the definition of tissue P systems [7, 8], several research lines have been
developed and new variants have arisen (see, for example, [1, 2, 6, 17]). One of the
most interesting variants of tissue P systems was presented in [13]. In that paper,

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 23 - 34, 2007.

23

the definition of tissue P systems is combined with the one of P systems with active
membranes, yielding tissue P systems with cell division.

One of the main features of such tissue P systems with cell division is related
to their computational efficiency. Several solutions for NP-complete problems have
been published recently. In [13] a polynomial-time solution for the SAT problem is
presented, and in [4, 5] lineal-time solutions for 3-coloring problem and Subset Sum
problem, respectively, are presented. Polynomial-time solutions to NP-complete
problems in Membrane Computing framework are done by trading time by space,
in a theoretical way by constructing an exponential workspace in polynomial time.
Although real implementations of this systems are no possible to be made, because
it should be necessary to implement the maximal parallelism in some way, they
are very interesting problems to treat in order to study some complexity aspects of
Theoretical Computer Science, as for example P 6= NP conjecture [14].

In recent years, this new field has been addressed in different ways: the study of
computational properties such as computational power or complexity classes, defi-
nition of new variants of membrane systems closer to biological inspiration, working
as a new framework of making biological simulations, etc. In P system web page
[19] several software applications can be found. Most of them are thought in order
to run an experiment which is built using some kind of membrane system as simula-
tion framework; for example, in order to work with P system as a way of simulating
biological system ([15]). In another hand, other group of software applications are
thought as an easy way of visualize the computations of a P system ([9]) or spiking
neural P system ([18]). Finally, in [3] a visual software application to understand
the design of solutions for 3-coloring problem in the framework of recognizing tissue
P system with cell division, is described.

In this paper a new visual tool called Tissue Simulator is presented. It is an
application with a friendly graphical user interface that helps to work and understand
tissue P systems with cell division.

The tool allows the user to write in an easy way the rules and the elements of
a concrete tissue, run the execution of the system, and shows graphically a trace of
the simulation with the rules applied in each computation step.

This paper is organized as follows: in Section 2 tissue P systems with cell division
are defined and a solution of 3-coloring problem is described. Section 3 is devoted
to describe tissue simulator application software is presented and some of the most
important implementations aspects are commented. Finally, conclusions and future
works are formulated.

2 Preliminaries

In this section, we briefly recall some concepts used in the paper.
An alphabet, Σ, is a non empty set, whose elements are called symbols. An

ordered sequence of symbols is a string. The number of symbols in a string u is
the length of the string, and it is denoted by |u|. As usual, the empty string (with
length 0) will be denoted by λ. The set of strings of length n built with symbols
from the alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σn. A language over Σ is a

R. Borrego-Ropero, D. Dı́az-Pernil, M. J. Pérez-Jiménez

24

subset from Σ∗.
A multiset m over a set A is a pair (A, f) where f : A → IN is a mapping. If

m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) > 0}
and its size is defined as

∑
x∈A f(x). A multiset is empty (resp. finite) if its support

is the empty set (resp. finite).
If m = (A, f) is a finite multiset over A = {a1, . . . , an}, then it will be denoted as

m = af
1(a1) . . . af

n(an).
An undirected graph G is a pair G = (V,E) where V is the set of vertices and E

is the set of edges, each one of which is a (unordered) pair of (different) vertices. If
{u, v} ∈ E, we say that u is adjacent to v (and also v is adjacent to u). The degree
of v ∈ V is the number of adjacent vertices to v.

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems. For details, see [11].

3 Tissue P Systems with Cell Division

Gh. Păun et al. presented in [13] a new model of tissue P systems with cell division.
The biological inspiration is clear: alive tissues are not static network of cells, since
cells are duplicated via mitotic in a natural way.

The cells obtained by division have the same labels as the original cell and if a
cell is divided, its interaction with other cells or with the environment is blocked
during the mitotic process. In some sense, this means that while a cell is dividing it
closes the communication channels with other cells and with the environment.

Formally, a tissue P system with cell division of degree q ≥ 1 is a tuple of the
form

Π = (Γ, w1, . . . , wq, E ,R, io),

where:

1. Γ is a finite alphabet, whose symbols will be called objects.

2. w1, . . . , wq are strings over Γ.

3. E ⊆ Γ.

4. R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ∗.

(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ.

5. io ∈ {0, 1, 2, . . . , q}.

A tissue P system with cell division of degree q ≥ 1 can be seen as a set of q cells
(each one consisting of an elementary membrane) labelled by 1, 2, . . . , q. We use 0
to refer to the label of the environment, and i0 denotes the output region (which
can be the region inside a membrane or the environment).

The communication rules determine a virtual graph, where the nodes are the cells
and the edges indicated if it is possible for pairs of cells to communicate directly.

Tissue Simulator: A graphical tool for tissue P systems

25

This is a dynamical graph, as new nodes can appear produced by the application of
division rules.

The strings w1, . . . , wq describe the multisets of objects placed in the q cells of
the system. We consider that E ⊆ Γ is the set of objects placed in the environment,
each one of them in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells i and j such
that u is contained in cell i and v is contained in cell j. The application of this rule
means that the objects of the multisets represented by u and v are interchanged
between the two cells.

The division rule [a]i → [b]i[c]i can be applied over a cell i containing object a.
The application of this rule divides this cell into two new cells with the same label.
All the objects in the original cell are replicated and copied in each of the new cells,
with the exception of the object a, which is replaced by the object b in the first new
cell and by c in the second one.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way. In one step, each object in a membrane can only be used
for one rule (non-deterministically chosen when there are several possibilities), but
any object which can participate in a rule of any form must do it, i.e, in each step
we apply a maximal set of rules. This way of applying rules has only one restriction
when a cell is divided, the division rule is the only one which is applied for that cell
in that step; the objects inside that cell do not evolve in that step.

4 Recognizing Tissue P Systems with Cell Division

NP-completeness has been usually studied in the framework of decision problems.
Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX .

In order to study the computing efficiency for solving NP-complete decision
problems, a special class of tissue P systems with cell division is introduced in [13]:
recognizing tissue P systems. The key idea of such recognizing system is the same
one as from recognizing P systems with cell-like structure.

Recognizing cell-like P systems were introduced in [16] and they are the natural
framework to study and solve decision problems within Membrane Computing, since
deciding whether an instance has an affirmative or negative answer is equivalent to
deciding if a string belongs or not to the language associated with the problem.

In the literature, recognizing cell-like P systems are associated in a natural way
with P systems with input. The data related to an instance of the decision problem
has to be provided to the P system in order to compute the appropriate answer.
This is done by encoding each instance as a multiset placed in an input membrane.
The output of the computation (yes or no) is sent to the environment. In this way,
cell-like P systems with input and external output are devices which can be seen
as black boxes, in the sense that the user provides the data before the computation
starts, and then waits outside the P system until it sends to the environment the
output in the last step of the computation.

R. Borrego-Ropero, D. Dı́az-Pernil, M. J. Pérez-Jiménez

26

A recognizing tissue P system with cell division of degree q ≥ 1 is a tuple

Π = (Γ,Σ, w1, . . . , wq, E ,R, iin, io)

where:

• (Γ, w1, . . . , wq, E ,R, io) is a tissue P system with cell division of degree q ≥ 1
(as defined in the previous section).

• The working alphabet Γ has two distinguished objects yes and no, present in
at least one copy in some initial multisets w1, . . . , wq, but not present in E .

• Σ is an (input) alphabet strictly contained in Γ.

• iin ∈ {1, . . . , q} is the input cell.

• The output region io is the environment.

• All computations halt.

• If C is a computation of Π, then either the object yes or the object no (but
not both) must have been released into the environment, and only in the last
step of the computation.

The computations of the system Π with input w ∈ Σ∗ start from a configura-
tion of the form (w1, w2, . . . , wiinw, . . . , wq; E), that is, after adding the multiset w
to the contents of the input cell iin. We say that C is an accepting computation
(respectively, rejecting computation) if the object yes (respectively, no) appears in
the environment associated to the corresponding halting configuration of C.

Definition 4.1 A decision problem X = (IX , θX) is solvable in polynomial time by
a family Π = {Π(n) : n ∈ IN} of recognizing tissue P systems with cell division if
the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ IN.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:

− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input
multiset of the system Π(s(u));

− the family Π is polynomially bounded with regard to (X, cod, s), that is,
there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) performs at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

Tissue Simulator: A graphical tool for tissue P systems

27

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈
IX , if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is
an accepting one.

In the above definition we have imposed to every tissue P system Π(n) to be conflu-
ent, in the following sense: every computation of such system with the same input
multiset must always give the same answer.

It is denoted by PMCTD the set of all decision problems which can be solved
by means of recognizing tissue P systems with cell division in polynomial time.

5 A Solution for the 3–Coloring Problem

A k–coloring (k ≥ 1) of an undirected graph G = (V,E) is a function f : V →
{1, . . . , k}, where the numbers are interpreted as colors. We say that G is k–colorable
if there exists a k–coloring, f , such that f(u) 6= f(v) for every edge {u, v} ∈ E (such
a k–coloring f is said to be valid).

The 3–coloring problem is the following: given an undirected graph G, decide
whether or not G is 3-colorable; that is, if there exists a valid 3–coloring of G.

In [4] it is proved that the 3–coloring problem can be solved in linear time by a
family of recognizing tissue P systems with cell division.

For each n, m ∈ IN, we shall consider the system

Π(g(n, m)) = (Γ(g(n, m)),Σ(n), w1, w2(n),R(g(n, m)), E(g(n, m)), iin, io)

being g(n, m) = ((n + m)(n + m + 1)/2) + n, and where:

• Γ(g(n, m)) is the set

{Ai, Ri, Ti, Bi, Gi, Ri, Bi, Gi : 1 ≤ i ≤ n} ∪
{ai : 1 ≤ i ≤ 2n + m + dlog me+ 11} ∪ {ci : 1 ≤ i ≤ 2n + 1} ∪
{di : 1 ≤ i ≤ dlog me+ 1} ∪ {fi : 2 ≤ i ≤ m + dlog me+ 6} ∪
{Aij , Pij , P ij , Rij , Bij , Gij : 1 ≤ i < j ≤ n} ∪ {b, D, D, e, T, S,N, [, yes, no}

• Σ(n) = {Aij : 1 ≤ i < j ≤ n}

• w1 = {{a1, b, c1, yes, no}}

• w2(n) = {{D,A1, . . . , An}}

• R(g(n, m)) is the set of rules:

1. Division rules:
r1,i ≡ [Ai]2 → [Ri]2[Ti]2 for i = 1, . . . , n
r2,i ≡ [Ti]2 → [Bi]2[Gi]2 for i = 1, . . . , n

2. Communication rules:
r3,i ≡ (1, ai/ai+1, 0) for i = 1, . . . , 2n + m + dlog me+ 10
r4,i ≡ (1, ci/c2

i+1, 0) for i = 1, . . . , 2n
r5 ≡ (1, c2n+1/D, 2)

R. Borrego-Ropero, D. Dı́az-Pernil, M. J. Pérez-Jiménez

28

r6 ≡ (2, c2n+1/d1D, 0)
r7,i ≡ (2, di/d2

i+1, 0) for i = 1, . . . , dlog me
r8 ≡ (2, D/e f2, 0)
r9,i ≡ (2, fi/fi+1, 0) for i = 2, . . . ,m + dlog me+ 5
r10,ij ≡ (2, ddlog me+1Aij/Pij , 0) for 1 ≤ i < j ≤ n

r11,ij ≡ (2, Pij/RijP ij , 0) for 1 ≤ i < j ≤ n
r12,ij ≡ (2, P ij/BijGij , 0) for 1 ≤ i < j ≤ n
r13,ij ≡ (2, RiRij/RiRj , 0) for 1 ≤ i < j ≤ n
r14,ij ≡ (2, BiBij/BiBj , 0) for 1 ≤ i < j ≤ n
r15,ij ≡ (2, GiGij/GiGj , 0) for 1 ≤ i < j ≤ n
r16,j ≡ (2, RjRj/[, 0) for 1 ≤ j ≤ n
r17,j ≡ (2, BjBj/[, 0) for 1 ≤ j ≤ n
r18,j ≡ (2, GjGj/[, 0) for 1 ≤ j ≤ n
r19 ≡ (2, e [/λ, 0)
r20 ≡ (2, e fm+dlog me+6/T, 0)
r21 ≡ (2, T/λ, 1)
r22 ≡ (1, b T/S, 0)
r23 ≡ (1, S yes/λ, 0)
r24 ≡ (1, b a2n+m+dlog me+11/N, 0)
r25 ≡ (1, N no/λ, 0)

• E(g(n, m)) = Γ(g(n, m))− {yes, no}

• iin = 2 is the input cell.

• io = 0 is the output region.

Given an undirected graph G = (V,E) with V = {A1, . . . An} and |E| = m, we
consider s(u) = g(n, m) and cod(u) = {Aij : {Ai, Aj} ∈ E ∧ 1 ≤ i < j ≤ n}. Then,
the recognizing tissue P system Π(s(u) = Π(g(n, m)) with input cod(u) processes
the instance G via a brute force algorithm, which consists in the following stages:

• Generation Stage: The initial cell labelled by 2 is divided into two new cells;
and the divisions are iterated until a cell has been produced for each possible
candidate solution. Simultaneously, in the cell labelled by 1 there is a counter
that will determine the moment in which the checking stage starts.

• Pre–checking Stage: After obtaining all possible 3–colorings encoded in cells
labelled by 2, this stage provides objects Rij , Gij , Bij in such cells, for every
edge Aij .

• Checking Stage: Objects Rij , Gij , Bij will be used in cells labelled by 2 to
check if there exists a pair of adjacent vertices with the same color in the
corresponding candidate solution.

• Output Stage: The system sends to the environment the right answer according
to the results of the previous stage.

Tissue Simulator: A graphical tool for tissue P systems

29

6 A Look Inside Tissue Simulator

The application has been developed using Java and C], which are portable and
powerful object-oriented languages. Java has been used to parse the data introduced
using a grammar generated with ANTLR (one of the most known tools for this
purpose, [20]). C] has been used to develop the kernel of the application and the
graphical interface. The interconnection between both languages is transparent to
the user, that just have to move between windows by clicking on buttons. The data
are stored in a XML format after serializing the objects that contain the information

The rules of the tissue P system can be rewritten in a way that is very similar
to the one used in papers from computational theory. Because computers can not
understand directly those kinds of expressions, it has been necessary to develop
a code generator that writes and compiles during runtime the source code in C]
simulating the behavior of the rules of the system.

The software follows the Model-View-Controller (MVC) [21], an architecture
model of software development used in interactive systems. Three different parts or
layers can be distinguished: data handling layer, algorithmic or business logic layer,
and user interface or graphical layer. With this, it is easier to do maintenance of
the code.

Figure 1: Model-View-Controller architecture software

Algorithmic layer implements a recognizing tissue P system with cell division.
All rules are applied in a non deterministic and maximal parallel way. The design
of the tissue P system machine for solving the problem is non deterministic until
2n step. Every computation ways reach the same configuration in 2n step. From
this moment, the machine is deterministic. By this way, we have chosen only a
computation way in order to implement the tissue P system in the software. The
computation selected to make the software simulation is the one determined by the
lexicographical order of the rule. Other solutions can be easily added. Graphical
layer allows the user a visual and friendly interaction with the application. At the
end of the simulation, the result of the problem and the trace of the execution is
displayed, and for each step the rules applied and the configurations of the tissue
are shown.

R. Borrego-Ropero, D. Dı́az-Pernil, M. J. Pérez-Jiménez

30

7 A User Overview of the Application

This software tool allows to follow step by step the performance of tissue P system
with cell division solutions of several problems. The pictures presented in this pa-
per have been captured when a solution of the 3-coloring problem (whose files of
codification can be found in the folder of application) is provided to the tool.

7.1 Running a simulation

When it is wanted to introduce a concrete tissue P system it has to be selected
in tissue menu. Several options are presented and it must be selected new system
button. The corresponding window can be depicted in Figure 2.

Figure 2: Definition of system window

Then the rules (Figure 3) and the initial multisets can be incorporated in the
window.

Figure 3: The set of rules for a solution of 3-coloring problem

Next, a concrete input multiset, that depends on the specific instance of the

Tissue Simulator: A graphical tool for tissue P systems

31

3-coloring problem, is supplied. For this, the new instance option in tissue menu is
selected.

If the user needs run a simulation, it is just needed to select the option Run in
tissue menu. Then the system ask the path of two .xml files, one for the model of
the system, and another one for a concrete instance of the problem. After that, it
calculates all the steps of the computation, shows the answer, and open the trace
window of the system, as can be depicted in Figure 4.

Figure 4: Trace window for a solution of 3-coloring problem

For each step, a situation can be seen in a graphical way, and at the bottom
of the screen appear the different rules applied in that step. The picture can be
easily handled at any moment, and can be saved in different images format. Moving
between the steps can be done in two ways: first, by pressing the buttons with
arrows to move from the i-th step to the (i − 1)-th or the (i + 1)-th one. Second,
choosing the ”GO TO” option to go directly to one step of the system.

Software, manuals, examples, a mailing list, useful links, and other resources of
tissue simulator can be found at: http://www.tissuesimulator.es.kz.

8 Future Work

In this paper, a simulator of recognizing tissue P systems has been presented. The
simulator has been developed using Java and C], which are portable and powerful
object-oriented languages. Future works will be focused on different improvements
of this software application like introducing a semantic parser, contemplating others
kind of rules, such as membrane creation, etc.

One interesting future tasks would be to expand the tool so it can works with
others systems like spiking neural P systems.

R. Borrego-Ropero, D. Dı́az-Pernil, M. J. Pérez-Jiménez

32

Acknowledgement

The authors wish to acknowledge the support of the project TIN2006–13425 of the
Ministerio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the
support of the project of excellence TIC-581 of the Junta de Andaluca.

References

[1] A. Alhazov, R. Freund, M. Oswald. Tissue P Systems with Antiport Rules
ans Small Numbers of Symbols and Cells. In volume 3572 of Lecture Notes in
Computer Science, pages 100–111. 2005.

[2] F. Bernardini, M. Gheorghe. Cell Communication in Tissue P Systems and Cell
Division in Population P Systems. Soft Computing, 9(9):640–649, 2005.

[3] R. Borrego–Ropero, D. Dı́az–Pernil, J.A. Nepomuceno–Chamorro. Visu-
alTissue: a friendly tool to study tissue P systems solutions for graph problems.
In M.A. Gutiérrez Naranjo, Gh. Paun, A. Romero–Jiménez, A. Riscos–Núñez,
editors, Proceedings of the Fifth Brainstorming Week on Membrane Computing,
pages 87–96. Fénix Editora, 2007.

[4] D. Dı́az–Pernil, M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–
Núñez. A uniform family of tissue P system with cell division solving 3-COL in
a linear time. Theoretical Computer Science, in press.

[5] D. Dı́az–Pernil, M.A. Gutiérrez–Naranjo, M.J. Pérez Jiménez M.J., A. Riscos–
Núñez. A Linear Solution for Subset Sum Problem with Tissue P Systems with
Cell Division. In M.A. Gutiérrez Naranjo, Gh. Paun, A. Romero–Jiménez, A.
Riscos–Núñez, editors, Proceedings of the Fifth Brainstorming Week on Mem-
brane Computing, pages 113–130. Fénix Editora, 2007.

[6] R. Freund, Gh. Păun, M.J. Pérez-Jiménez. Tissue P Systems with channel
states. Theoretical Computer Science, 330:101–116, 2005.

[7] C. Mart́ın–Vide, J. Pazos, Gh. Păun, A. Rodŕıguez–Patón. A New Class of
Symbolic Abstract Neural Nets: Tissue P Systems. In volume 2387 of Lecture
Notes in Computer Science, pages 290–299, 2002.

[8] C. Mart́ın–Vide, J. Pazos, Gh. Păun, A. Rodŕıguez–Patón. Tissue P systems.
Theoretical Computer Science, 296:295–326, 2003.

[9] I.A. Nepomuceno–Chamorro. A Java Simulator for Membrane Computing.
Journal of Universal Computer Science, 10(5):620–629, 2004.

[10] Gh. Păun. Computing with membranes. Journal of Computer and System Sci-
ences, 61(1):108–143, 2000.

[11] Gh. Păun. Membrane Computing. An Introduction. Springer–Verlag, Berlin,
2002.

Tissue Simulator: A graphical tool for tissue P systems

33

[12] A. Păun, Gh. Păun. The power of communication: P systems with sym-
port/antiport. New Generation Computing, 20(3):295–305, 2002.

[13] Gh. Păun, M.J. Pérez–Jiménez, A. Riscos-Núñez, A. Tissue P System with
cell division. In Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho–
Caparrini, editors, Second Brainstorming Week on Membrane Computing, pages
380–386. Sevilla, Report RGNC 01/2004, 2004.

[14] M.J. Pérez–Jiménez. An approach to computational complexity in Membrane
Computing. In volume 3365 of Lecture Notes in Computer Science, pages 85–
109. 2005.

[15] M.J. Pérez–Jiménez, F.J. Romero. P systems, a new computational modelling
tool for Systems Biology. In Transactions on Computational Systems Biology
VI., volume 4220 of Lecture Notes in Bioinformatics, pages 176–197, 2006.

[16] M.J. Pérez–Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, F. A polyno-
mial complexity class in P systems using membrane division. In E. Csuhaj-
Varjú, C. Kintala, D. Wotschke and Gy. Vaszil, editors, Proceedings of the 5th
Workshop on Descriptional Complexity of Formal Systems, DCFS 2003, pages
284–294. 2003.

[17] V.J. Prakash. On the Power of Tissue P Systems Working in the Maximal-One
Mode. In A. Alhazov, C. Mart́ın-Vide and Gh. Păun, editors, Preproceedings of
the Workshop on Membrane Computing, pages 356–364. Report RGML 28/03,
Tarragona, 2003.

[18] D. Ramı́rez–Mart́ınez,M.A. Gutiérrez–Naranjo. A Software Tool for Deal-
ing with Spiking Neural P Systems. In M.A. Gutiérrez Naranjo, Gh. Paun,
A. Romero–Jiménez, A. Riscos–Núñez, editors, Proceedings of the Fifth Brain-
storming Week on Membrane Computing, pages 299–313. Fénix Editora, 2007.

[19] P systems web page http://psystems.disco.unimib.it/

[20] web site http://www.antlr.org

[21] web site http://en.wikipedia.org/wiki/Model-view-controller

R. Borrego-Ropero, D. Dı́az-Pernil, M. J. Pérez-Jiménez

34

Colonies of Synchronizing Agents:

An Abstract Model of Intracellular and Intercellular

Processes

Matteo Cavaliere, Radu Mardare, and Sean Sedwards

Microsoft Research – University of Trento
Centre for Computational & Systems Biology
{cavaliere, mardare, sedwards}@cosbi.eu

Abstract

We present a modelling framework and computational paradigm called Col-
onies of Synchronizing Agents (CSAs), which abstracts intracellular and inter-
cellular mechanisms of biological tissues. The model is based on a multiset
of agents (cells) in a common environment. Each agent has a local contents,
stored in the form of a multiset of atomic objects, updated by multiset rewriting
rules which may act on individual agents (intracellular action) or synchronize
the contents of pairs of agents (intercellular action). Using tools from formal
language and temporal logic we investigate dynamic properties of CSAs, includ-
ing robustness and safety of synchronization. We also identify classes of CSAs
where such dynamic properties can be algorithmically decided.

1 Motivations

Inspired by biological tissues and populations of cells, we present and investigate an
abstract distributed model of computation which we call Colonies of Synchronizing
Agents (in short, CSAs). Our intention is to create a framework to model, analyse
and simulate complex biological systems in the context of formal language theory
and multiset rewriting.

The model is based on a population of agents (e.g., corresponding to cells or
molecules) in a common environment, able to modify their contents and to synchro-
nize with other agents in the same environment. Each agent has a contents repre-
sented by a multiset of atomic objects (e.g., corresponding to chemical compounds
or the characteristics of individual molecules) with some of the objects classified
as terminals (e.g., corresponding to properties or chemicals visible to an external
observer). An agent’s contents may be modified independently of other agents by
means of multiset rewriting rules (called internal rules)1 which can mimic chemistry
or other types of intracellular mechanisms. Moreover, the agents can influence each
other by synchronously changing their contents using pairwise synchronization rules.

1In [5] internal rules are called evolution rules, adopting a standard terminology from the P
systems area. We prefer here a more general term.

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 35 - 51, 2007.

35

This models, in a deliberately abstract way, the various signalling mechanisms and
intercellular mechanisms present in biological systems. The rules are global, so all
agents obey the same rules: the only feature which may distinguish the agents is
their contents. Evolutions of CSAs are defined as sequences of transitions obtained
by applying the rules to the agents. These transitions thus mark the passage of the
system from one configuration to another.

In this paper we search for classes of CSAs where relevant dynamic properties
can be algorithmically checked. We interpret CSAs as computational devices and
can thus study CSAs by applying tools from classical fields of computer science,
such as formal language, automata theory and temporal logic. For this reason we
define as computations of CSAs the evolutions that reach halting configurations, i.e.
configurations where the contents of the agents can no longer be changed because
no rules may be applied. This situation can be interpreted as a particular kind of
steady state of the system. We are interested in the configuration of the colony when
a halting condition is reached and we may take the precise contents of the agents
as the output (the result) produced by the CSA. Alternatively, we can use the
magnitude of the agents (the total amount of contents irrespective of composition)
in the halting configuration as the result produced by a CSA.

We can then investigate the robustness of CSAs by considering the ability of a
CSA to generate a particular core result despite the failure (i.e., removal) of some of
the agents or rules. The core result can be seen as a specific configuration in which
the colony must be when the system halts. We show that for an arbitrary CSA,
robustness cannot be algorithmically decided when the core result is represented by
specific contents of agents, while it can be algorithmically decided in an efficient way
when the core result is represented by agents’ magnitudes.

In Section 4 we are interested in dynamic properties concerning the application
of the rules. To check these properties we propose a decidable temporal logic. We
show that the proposed logic can be used to specify and check whether or not, during
any evolution of a CSA, an agent can apply a synchronization whenever it needs (if
it can we say that the agent is safe on synchronization). We conclude the present
section by comparing our model with other models based on abstractions of cell
tissues which use rewriting and multisets.

The introduced model of Colonies of Synchronizing Agents has similarities and
significant differences with other models inspired by cell tissues investigated, for in-
stance, in the area of membrane computing (a.k.a. P systems, [15]). Specifically, it
can be considered a generalization of P colonies [11], which is also based on inter-
acting agents but has agents with limited contents (two objects) which change by
means of restricted rewriting rules. Moreover, in P colonies no direct communication
between agents is allowed.

Our model also has similarities with population P systems [3], which is a class
of tissue P systems [13] where links may exist between agents and these can be
modified by means of a set of bond making rules.

The main differences with population P systems is that in our case agents do not
have types; rules are global and only the agents’ contents differentiate them. This
latter characteristic makes CSAs similar to the model of self-assembly of graphs
presented in [2], however in that case; (i) a graph is constructed from an initial

M. Cavaliere, R. Mardare, S. Sedwards

36

seed using multiset-based aggregation rules to enlarge the structure, (ii) there is
no internal rewriting of the agent’s contents and (iii) there is no synchronization
between the agents.

Another computational formalism widely used to simulate and model biological
tissues is cellular automata (CAs, e.g., see [19]). In particular, CAs have been used
to model the immune systems (e.g., [14]). In CAs, cells exist on a regular grid,
where each cell has a finite number of possible states and where cells react to or
with a defined neighbourhood. In our model, because of the multiset-based contents
and because of the arbitrary multiset rewriting rules, the possible different states
of a cell may be infinite. Although the initial definition of CSAs does not include
an explicit description of space, the extensions we propose include agents located at
arbitrary positions and with the potential to interact with any other agent in the
colony.

A specific limitation of cellular automata that use synchronous update is that
many such models are computational complete (i.e., equivalent to Turing machines
[19]), even when employing simple rules (e.g., rule 110, [19]). This makes it impos-
sible to algorithmically analyse such systems. Precisely, non-trivial problems are
undecidable for Turing machines.

2 Formal Language Preliminaries

This Section is a brief introduction to some basic notions of formal language theory
needed in the paper. Further information regarding formal language and automata
theory is available from the many monographs in this area, starting with [10, 4] and
ending with the handbook [17].

Given the set A we denote by |A| its cardinality and by ∅ the empty set. We
denote by N the set of natural numbers.

An alphabet V is a finite set of symbols. By V ∗ we denote the set of all strings
over V . By V + we denote the set of all strings over V excluding the empty string.
The empty string is denoted by λ. The length of a string v is denoted by |v|. The
concatenation of two strings u, v ∈ V ∗ is written uv. The number of occurrences of
the symbol a in the string w is denoted by |w|a.

Each subset of V ∗ is called a language.
The boolean operations (with languages) of union and intersection are denoted

∪ and ∩, respectively. Concatenation of the languages L1, L2 is L1L2 = {xy | x ∈
L1, y ∈ L2}.

A generative grammar is a finite device generating in a well-specified sense the
strings of a language. Chomsky grammars are particular cases of rewriting systems
where the operation used in processing the strings is the rewriting (replacement of
a substring of the processed string by another substring). A (Chomsky) grammar
is a quadruple G = (N,T, S, P) where N and T are disjoint alphabets, N being a
set of non-terminals and T a set of terminals, S is the axiom and P is a finite set of
productions (rewriting rules). A production is usually written in the form r : u→ v
with u ∈ (N ∪ T)∗ with u containing at least a non-terminal (so, it cannot be the
empty string).

Colonies of synchronizing agents

37

For x, y ∈ (N ∪ T)∗ we write x =⇒ y iff x = x1ux2, y = x1vx2 for some x1, x2 ∈
(N ∪ T)∗ and u → v ∈ P . One says that x directly derives y. The language
generated by G denoted by L(G) is defined by L(G) = {x ∈ T ∗ | S =⇒∗ x}, where
=⇒∗ denotes the reflexive and transitive closure of =⇒. So the language L(G)
consists of all terminal strings that can be obtained starting from S by applying
iteratively the productions in P .

A grammar is called regular if each production is of the form a→ v with a ∈ N
and v ∈ T ∪TN ∪{λ}. A grammar is called context-free if each production is of the
form a→ v with a ∈ N .

Languages generated by context-free and regular grammars are called context-
free and regular languages, respectively. We denote by CF and REG the families
of context-free and regular languages, respectively. Regular languages are those
accepted by finite state automata.

In general, when we want to specify a terminal alphabet we add a subscript to
the name of the family; e.g., REGA is the family of all regular languages over the
alphabet A.

A matrix grammar without appearance checking is a devices with matrices of
context-free productions and where productions are applied according to the order
given in the chosen matrix (for details see [6]).

Formally, a matrix grammar without appearance checking (in short, without a.c.)
is a construct G = (N,T, S,M), where N and T are disjoint alphabets of non-
terminal and terminal symbols, S ∈ N is the axiom, M is a finite set of matrices
which are sequences of context-free productions of the form (A1 → x1, . . . , An → xn),
n ≥ 1 (with Ai ∈ N,xi ∈ (N ∪ T)∗ in all cases).

For w, z ∈ (N ∪T)∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . An → xn)
in M and strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1, such that w = w1, z = wn + 1
and, for all 1 ≤ i ≤ n, wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i , for some w′

i, w
′′
i ∈ (N ∪ T)∗.

The reflexive and transitive closure of =⇒ is denoted by =⇒∗. Then the language
generated by G is L(G) = {w ∈ T ∗ | S =⇒∗ w}.

In other words, the language L(G) is composed of all the strings of terminal
symbols that can be obtained starting from S and applying iteratively the matrices
in M .

For a language L ⊆ V ∗, the set length(L) = {|x| |x ∈ L}} is called the length
set of L, denoted by NL.

If FL is an arbitrary family of languages then we denote by NFL the family of
length sets of languages in FL (i.e., it is a family of sets of natural numbers). For
instance, NREG is the family of length sets of regular languages.

The Parikh vector associated with a string x ∈ V ∗ with respect to the alphabet
V = {a1, a2, . . . , an} is PsV (x) = (|x|a1 , |x|a2 , . . . , |x|an). For L ⊆ V ∗ we define
PsV (L) = {PsV (x)|x ∈ L}. This is called the Parikh image of the language L. The
null vector is denoted by 0.

If FL is an arbitrary family of languages then we denote by PsFL the family
of Parikh images of languages in FL (i.e., it is a family of sets of vectors of natural
numbers).

For instance, PsREG is the family of Parikh images of regular languages in
REG.

M. Cavaliere, R. Mardare, S. Sedwards

38

For instance, V = {a, b, c} is an alphabet, x = aaabbbcaa = a3b3ca2 is a string
over V , L = {anbn | n ≥ 1} is a language over V . We have |x| = 9, |x|a = 5,
length(L) = {2n | n ≥ 1}. The Parikh vector of x with respect to V is PsV (x) =
(5, 3, 1) and for the language L we have PsV (L) = {(n, n, 0) | n ≥ 1}.

A multiset is a set where each element may have a multiplicity. Formally, a
multiset over a set V is a map M : V → N, where M(a) denotes the multiplicity
(i.e., number of occurrences) of the symbol a ∈ V in the multiset M . Note that the
set V can be infinite.

For instance M = {a, b, b, b}, also written as {(a, 1), (b, 3)}, is a multiset with
M(a) = 1 and M(b) = 3.

For multisets M and M ′ over V , we say that M is included in M ′ (M ⊆ M ′) if
M(a) ≤M ′(a) for all a ∈ V . Every multiset includes the empty multiset, defined as
M where M(a) = 0 for all a ∈ V .

The sum of multisets M and M ′ over V is written as the multiset (M + M ′),
defined by (M +M ′)(a) = M(a) +M ′(a) for all a ∈ V . The difference between M
and M ′ is written as (M−M ′) and defined by (M−M ′)(a) = max{0,M(a)−M ′(a)}
for all a ∈ V . We also say that (M +M ′) is obtained by adding M to M ′ (or vice
versa) while (M −M ′) is obtained by removing M ′ from M .

For example, given the multisetsM = {a, b, b, b} andM ′ = {b, b}, we can say that
M ′ is included in M , that (M +M ′) = {a, b, b, b, b, b} and that (M −M ′) = {a, b}.

The support of a multiset M is defined as the set supp(M) = {a ∈ V |M(a) > 0}.
A multiset with finite support is usually presented as a set of pairs (x,M(x)), for
x ∈ supp(M).

The cardinality of a multiset M is denoted by card(M) and it indicates the num-
ber of objects in the multiset. It is defined in the following way. card(M) is infinite if
M has infinite support. If M has finite support then card(M) =

∑
ai∈supp(M)M(ai),

i.e., all the occurrences of the elements in the support are counted.
We denote by M(V) the set of all possible multisets over V and by Mk(V) the

set of all multisets over V having cardinality k.
For the case that the alphabet V is finite we can use a compact string notation

to denote multisets: if M = {(a1,M(a1)), (a2,M(a2)), . . . , (an,M(an))} then the
string w = a

M(a1)
1 a

M(a2)
2 · · · aM(an)

n (and all its permutations) precisely identify the
symbols in M and their multiplicities. Hence, given a string w ∈ V ∗, we can say that
it identifies the multiset {(a, |w|a) | a ∈ V }. For instance, the string bab represents
the multiset {b, a, b} = {(a, 1), (b, 2)} which has cardinality 3. The empty multiset
is represented by the empty string, λ.

3 Colonies of Synchronizing Agents

In this section we formalize the notions of colonies discussed in the Introduction. A
Colony of Synchronizing Agents (a CSA) of degree m is a construct Π = (A, T,C,R).
• A is a finite alphabet of symbols (its elements are called objects). T ⊆ A is the set
of terminal objects.
• An agent over A is a multiset over the alphabet A (an agent can be represented
by a string w ∈ A∗, since A is finite). C is the initial configuration of Π and it is a

Colonies of synchronizing agents

39

multiset of agents, with card(C) = m. 2

• R is a finite set of rules over A. We have internal rules of type u→ v, with u ∈ A+

and v ∈ A∗, and synchronization rules of the type 〈u, v〉 → 〈u′, v′〉 with uv ∈ A+

and u′, v′ ∈ A∗.

An occurrence γ of an internal rule r : u → v can be applied to an agent w by
taking a multiset u from w (hence, u ⊆ w) and assigning it to γ (i.e., assigning the
occurrences of the objects in u to γ). The application of an occurrence of rule r to
the agent w consists of removing from w the multiset u and then adding the multiset
v to the resulting multiset.

An occurrence γ of a synchronization rule r : 〈u, v〉 → 〈u′, v′〉 can be applied to
the pair of agents w and w′ by: (i) taking from w a multiset u (hence, u ⊆ w) and
assigning it to γ; (ii) taking from w′ a multiset v (hence, v ⊆ w′) and assigning it
to γ. The application of an occurrence of rule r to the agents w and w′ consists of:
(i) removing the multiset u from w and then adding the multiset u′ to the resulting
multiset; (ii) removing the multiset v from w′ and then adding the multiset v′ to
the resulting multiset.

We assume the existence of a global clock which marks the passage of units of
time for all agents present in the colony.

A configuration of a CSA, Π, consists of the agents present in the colony at a
given time. We denote by C(Π) the set of all possible configurations of Π. Therefore,
using the notation introduced in Section 1, C(Π) is exactly Mm(H) with H = M(A).

A single asynchronous transition (in short, asyn-transition) 3 of Π from an arbi-
trary configuration c of Π to the next one lasts exactly one time unit and is obtained
by applying the rules in the set R to the agents present in c in an asynchronous way.
This means that, for each agent w and each pair of agents w′ and w′′ present in
c, the occurrences of the objects of w,w′ and w′′ are either assigned to occurrences
of the rules, with the occurrences of the objects and the occurrences of the rules
chosen in a non-deterministic way, or left unassigned. A single occurrence of an
object may only be assigned to a single occurrence of a rule. In other words, in
an asyn-transition any number of occurrences of rules (zero, one, or more) can be
applied to the agents in the configuration c.

A sequence (possibly infinite) 〈C0, C1, · · · , Ci, Ci+1, · · ·〉 of configurations of Π,
where Ci+1 is obtained from Ci, i ≥ 0, by an asyn-transition is called an asyn-
evolution of Π. An asyn-evolution of Π is said to be halting if it halts, that is if it
is finite and the last configuration of the sequence is a halting configuration, i.e., a
configuration containing only agents for which no occurrences of rules from R can
be applied.

An asyn-evolution of Π that is halting and that starts with the initial config-
uration of Π is called an asyn-computation of Π. The result/output of an asyn-
computation is the set of vectors of natural numbers, one vector for each agent w
present in the halting configuration with the vector describing the multiplicities of
terminal objects present in w. More formally, the result of an asyn-computation

2Formally, C is a multiset of degree m over the set of all possible agents over A. Hence, C ∈
Mm(M(A)).

3We specify asyn-transitions to distinguish them from the synchronous maximal parallel transi-
tions often adopted in models coming from P systems and cellular automata.

M. Cavaliere, R. Mardare, S. Sedwards

40

(a) Internal rule r1 applied to C (b) Synchronization rule r2 applied to C

Figure 1: Alternative application of rules r1 and r2 to configuration C from Exam-
ple 1.

which stops in the halting configuration Ch is the set of vectors of natural numbers
{PsT (w) | w is an agent present in Ch}.

Because of the non-determinism in applying the rules, several possible asyn-
computations of Π may exist. Taking the union of all the results for all possible asyn-
computations of Π, we get the set of vectors generated by Π, denoted by Psasyn

T (Π).
We may also consider the total number of objects comprising the agent (the

agent’s magnitude), without considering the internal composition. In this case the
result of an asyn-computation is the set of natural numbers, one number for each
agent w present in the halting configuration and each number being the length of
w. More formally, in this case the result of an asyn-computation that stops in the
halting configuration Ch is then the set of numbers {|w| | w is an agent present in
Ch}. Again, taking the union of all the results for all possible asyn-computations of
Π, we get the set of numbers generated by Π, denoted by Nasyn(Π).

In what follows we indicate by CΠ the initial configuration of Π.

Example 1 A CSA with degree 3 is defined by the following.
Π = (A, T,C,R) with A = {a, b, c}, T = {a}, C = {(abcba, 1), (abbcc, 1), (bab, 1)}

= {abcba, abbcc, bab}.
The rules R = {r1 : abca→ ba, r2 : 〈abc, cc〉 → 〈aa, cb〉}.
The application of an occurrence of internal rule r1 to the agent abcba in the

configuration C is shown diagrammatically in Figure 1(a).
The application of an occurrence of the synchronization rule r2 to the pair of

agents abcba and abbcc in the configuration C is shown diagrammatically in Fig-
ure 1(b).

A more complex example of part of an asynchronous evolution is presented in
Figure 2(a): Π′ = (A′, T ′, C ′, R′) with the initial configuration C ′ = {(ac, 2), (a, 1)}
and rules R′ = {ac→ aa, a→ b, 〈aa, aa〉 → 〈ab, ab〉, 〈ab, d〉 → 〈bb, d〉, b→ d}.

In the next Example we show how the output/result produced by a CSA is obtained.

Colonies of synchronizing agents

41

Example 2 Consider a CSA Π = (A, T,C,R) with A = {a, b, c, d, e, f}, T = {e, f},
C = {(ab, 1), (bc, 1), (bd, 1), (a, 1)}.

The rules in R are {r1 : 〈ab, bc〉 → 〈eff, eff〉, r2 : 〈ab, bd〉 → 〈eff, eff〉}.

(a) Asynchronous evolutions of Π′ of (b) The two possible asynchronous
Example 1 computations of Π of Example 2

Figure 2: Asynchronous evolutions and computations.

There are only two possible asynchronous computations of Π and these are rep-
resented diagrammatically in Figure 2(b).

We have that Psasyn
T (Π) = {(1, 2), 0}.

In fact, we have two possible halting configurations (for the two computations).
In the first halting configuration we have the agent (in two copies) eff whose as-
sociated Parikh vector (with respect to T) is (1, 2) and the agents bd and a, whose
associated Parikh vectors (with respect to T) are null vectors 0 (these agents do not
contain any terminal object from T). Then the result of this computation is the set
of vectors {(1, 2)} ∪ {(1, 2)} ∪ {0} ∪ {0} = {(1, 2), 0} with each vector describing the
multiplicities of the terminal objects in the agents in the halting configuration.

In the second halting configuration we have the agent (in two copies) eff whose
associated Parikh vector (with respect to T) is (1, 2) and the agents bc and a, whose
associated Parikh vectors (with respect to T) are null vectors. Then, also in this
case, the result of the computation is the set of vectors {(1, 2), 0}

Taking the union of the results for the (two) possible computations we get
Psasyn

T (Π) = {(1, 2), 0} ∪ {(1, 2), 0} = {(1, 2), 0}.
We can also collect the result in terms of magnitude (size) of the agents present

in the halting configurations, thus collecting Nasyn(Π). In this case we obtain

M. Cavaliere, R. Mardare, S. Sedwards

42

Nasyn(Π) = {3, 2, 1}. In fact, in the two halting configurations we have agents
of size 3, 2 and 1 (counting their objects). Then for both computations the result is
the set of numbers {3, 3, 2, 1} = {3, 2, 1} with each number being the magnitude of
an agent in the halting configuration.

Taking the union of the results for the (two) possible computations we obtain
Nasyn(Π) = {3, 2, 1} ∪ {3, 2, 1} = {3, 2, 1}.

4 Dynamic Properties of CSAs

The goal of this Section is to investigate dynamic properties of CSAs, in particular
robustness and safety on synchronization. We try to individuate classes of CSAs
where such properties can be checked with algorithms and for this we employ tools
from formal language theory and from temporal logic. Because of lack of space
we omit the proofs, however complete proofs of all the results can be found in the
technical report [5].

4.1 Robustness of CSAs

Before investigating robustness of CSAs we state the result that CSAs are equivalent
(in terms of Parikh images) to matrix grammars without a.c. (hence to partially
blind counter machines, [9]).

In particular, for an arbitrary CSA, Π = (A, T,C,R), there exists a matrix gram-
mar without a.c., G, with terminal alphabet T , such that Psasyn

T (Π) = PsT (L(G)),
and vice-versa. Matrices can indeed simulate the application of the rules of the CSA
because the rules are applied in an asynchronous manner. On the other hand, a
CSA with a single agent can simulate a matrix grammar. The detailed proof of the
result can be found in [5] (Theorem 8).

Theorem 3 For an arbitrary CSA, Π, with terminal alphabet T , there exists a
matrix grammar without a.c., G, with terminal alphabet T such that Psasyn

T (Π) =
PsT (L(G)) and vice versa.

We are now ready to define and to investigate robustness of CSAs against pertur-
bations of some of the features of the colony. For this purpose we use a similar idea
of robustness as employed in [12] in the framework of grammar systems, adapted
here to the proposed CSAs. We want to investigate situations where either some
of the agents (i.e., cells) or some of the rules (i.e., intra or intercellular actions) of
the colony do not function. We would like to know the consequences to the result
of the colony. We will investigate CSAs that are robust, e.g. where the produced
result does not change critically if one or more agents cease to exist in the colony or
if one or more rules stop working. As discussed in the Motivations, this can model
the fact that CSAs always stop in a “correct steady state”, independently of agents
or rules failure.

We can formalize these notions in the following way.
Let Π = (A, T,C,R) be an arbitrary CSA.

Colonies of synchronizing agents

43

We say that Π′ is an agent-restriction of Π if Π′ = (A, T,C ′, R) with C ′ ⊆ C. Π′

is a CSA where some of the agents originally present in Π no longer work, i.e., as
though they are absent from the colony.

We consider a rule-restriction of Π obtained by removing some or possibly all of
the rules. Then, Π′ = (A, T,C,R′) is a rule-restriction of Π if R′ ⊆ R. In this case
some of the rules do not work, as if, once again, they are absent from the colony.

We say that a CSA, Π, is robust when a core result, i.e., the minimally acceptable
result, is preserved when considering proper restrictions of it. Formally, by a core
result of Π we mean part of the result produced by Π, hence a subset of the set of
vectors generated by Π. We define these subsets by making an intersection with
a regular set of vectors taken from PsREG. The intersection selects the regular
property of the core result we are interested in. Note that the core result may be
infinite.

Questions about robustness can then be formalized as follows.
Consider an arbitrary CSA, Π, an arbitrary agent- or rule - restriction Π′ of

Π and an arbitrary set S from PsREG. Is it possible to check whether or not
Psasyn(Π) ∩ S ⊆ Psasyn(Π′), i.e., whether Π is robust against the restriction Π′ in
the sense that Π′ will continue to generate at least the core result defined by the
intersection of Psasyn(Π) and S)?

Example 4 We produce a small example that clarifies the introduced notion of
robustness in the case of agent-restriction, considering as core result specific contents
of the agents (the other cases are similar).

Consider Π given in Example 2. Suppose we fix as core result the set of vectors
{(1, 2)}, where it can be clearly obtained by intersection of Psasyn

T (Π) and {(1, 2)}.
Π is robust when an occurrence of agent bc is deleted from its initial configuration.
In fact, if we consider Π′ = (A, T,C ′, R) with C ′ = {(ab, 1), (bd, 1), (a, 1)} we have
that Psasyn

T (Π′) = {(1, 2), 0}, which still contains the defined core result. The single
computation of Π′ is represented in Figure 3(a).

(a) Π′: agent bc removed from C (b) Π′′: agent ab removed from C

Figure 3: The robustness and lack of robustness of (a) Π′ and (b) Π′′ from Example
4 when agents bc and ab, respectively, are removed from C.

M. Cavaliere, R. Mardare, S. Sedwards

44

On the other hand, Π is not robust when an occurrence of ab is deleted from
its initial configuration. In fact, if we consider Π′′ = (A, T,C ′′, R) with C ′′ =
{(bd, 1), (bc, 1), (a, 1)} we have that Psasyn

T (Π′′) = {0}, which does not contain the
core result. The single computation of Π′′, i.e., the one halting in the initial config-
uration (no rule can be applied), is represented in Figure 3(b).

We now analyse the case of agent-restrictions, producing a negative result.

Theorem 5 It is undecidable whether or not for an arbitrary CSA, Π, with arbitrary
terminal alphabet T , arbitrary agent restriction Π′ of Π and arbitrary set S from
PsREGT , Psasyn

T (Π) ∩ S ⊆ Psasyn
T (Π′).

The proof of the above Theorem is based on Theorem 3 and that, given two arbitrary
matrix grammars without a.c. M and M ′, it is undecidable whether or not L(M) ⊆
L(M ′) (see, e.g., [6], [8] and [9]).

Informally, Theorem 5 says that there is no algorithm to check whether or not
a CSA is robust against arbitrary deletion of agents from the initial configuration.
This result depends critically on the fact that the core result corresponds to a specific
internal contents that the agents must have in the halting configurations. In fact,
when we consider weaker core results we can get a positive result. For instance,
suppose we take as core result a specific magnitude that the agents must have in the
halting configurations. This means that we collect, for a CSA Π the set of numbers
Nasyn(Π). In this case the robustness problem can be rephrased in the following
manner.

Consider an arbitrary CSA, Π, with an arbitrary agent- or rule-restriction Π′

of Π and an arbitrary set S from NREG. Is it possible to decide whether or not
Nasyn(Π) ∩ S ⊆ Nasyn(Π′), i.e., whether Π is robust against the restriction Π′

such that Π′ can still generate at least the core result defined by the intersection
Nasyn(Π) ∩ S? Based on the fact that every language over a one letter alphabet
produced by a matrix grammar without a.c. is regular (see [6]), on the equality of
Theorem 3 we obtain the following corollary.

Corollary 1 For an arbitrary CSA, Π, there exists a regular language L such that
Nasyn(Π) = NL and vice versa.

Because containment of regular languages is algorithmically decidable (see, e.g.,
[10]), we obtain the following result.

Theorem 6 It is decidable whether or not, for an arbitrary CSA, Π, arbitrary agent
restriction Π′ of Π and arbitrary set S from NREG, Nasyn(Π) ∩ S ⊆ Nasyn(Π′).

Informally, the above result says that it is possible to check in an efficient way
whether or not a CSA is robust against arbitrary deletion of agents, subject to the
core result being defined in terms of magnitudes of agents.

We can also investigate the case when rule-restrictions are considered and we
obtain similar results. With a similar idea to that of Theorem 5, we obtain the
following negative result.

Colonies of synchronizing agents

45

Theorem 7 It is undecidable whether or not, for an arbitrary CSA, Π, with arbi-
trary terminal alphabet T , arbitrary rule restriction Π′ of Π and arbitrary set S from
PsREGT , Psasyn

T (Π) ∩ S ⊆ Psasyn
T (Π′).

However, using the same ideas as those in Theorem 6 we get a positive result.

Theorem 8 It is decidable whether or not, for an arbitrary CSA, Π, arbitrary rule
restriction Π′ of Π and arbitrary set S from NREG, N(Π) ∩ S ⊆ N(Π′).

Note, however, that even if robustness against rule absence is in many cases unde-
cidable, it is still possible to decide whether a rule (internal or synchronization) is
used or not by a CSA. So, if a rule is not used we can remove it and the colony will
be robust against such deletion.

Theorem 9 It is decidable whether or not, for an arbitrary CSA, Π =
(A,C, T,R), and an arbitrary rule r from R, there exists at least one asynchronous
computation for Π containing at least one configuration obtained by applying at least
one occurrence of rule r.

The proof is based on the result stated by Theorem 3 and on the fact that member-
ship and emptiness for matrix grammars without a.c. can be algorithmically decided
([6]). The idea of the proof is to reduce the problem to decide if the language pro-
duced by a matrix grammar without a.c. is the empty one.

4.2 A computational tree logic for CSAs

In this section we continue the investigation of the dynamic properties of CSAs and
for this purpose we introduce a computational tree logic (CTL temporal logic) to
formally specify, verify and model-check properties of CSAs. An introduction to the
basic notions and results of temporal logics can be found in [1, 18].

Temporal logics are the most used logics in model-checking analysis: efficient al-
gorithms and tools having already been developed for them, e.g. NuSMV [20]. They
are devised with operators for expressing and quantifying on possible evolutions or
configurations of systems. For instance, for an arbitrary system it is possible to
specify properties such as ‘for any possible evolution, φ is fulfilled’, ‘there exists an
evolution such that φ is not true’, ‘in the next state φ will be satisfied’, ‘eventually
φ will be satisfied’ and ‘φ happens until ψ is satisfied’, with φ and ψ properties of
the system. We show how to use these operators to formally specify and verify com-
plex properties of CSAs, such as ‘the agent will always eventually reach a certain
configuration’, or ‘rule r is not applicable until rule r′ is used’, etc.

In what follows we denote by CSAA,T,R
m the class of all CSAs having the alphabet

A, terminal alphabet T , set of rules R over A and degree m.

Definition 4.1 (Preconditions) Let A be an arbitrary alphabet and R an arbi-
trary set of rules over A. We define the mapping prec : R→ 2M(A) by

• if r ∈ R is the evolution rule u→ v then prec(r) = {u}.

M. Cavaliere, R. Mardare, S. Sedwards

46

• if r ∈ R is a synchronization rule 〈u, v〉 → 〈u′, v′〉 then prec(r) = {u} ∪ {v}.
We define prec(R) =

⋃
r∈R prec(r).

We now extend the definition of asyn-evolutions for a given CSA by introducing the
notion of asyn-complete evolution defined for arbitrary classes of CSAs.

In what follows, let C = CSAA,T,R
m be a class of all the CSAs having alphabet A,

terminal alphabet T , set of rules R over A, degree m, with A, T , R and m arbitrarily
chosen.

Definition 4.2 (asyn-complete evolutions) A sequence of CSAs 〈Π0,Π1, Π2,
. . . ,Πi, . . .〉 with Πi = (A, T,Ci, R) ∈ C, i ≥ 0, is called asyn-complete evolu-
tion in C starting in Π0 if 〈C0, C1, C2, . . . Ci, . . .〉, i ≥ 0, is a halting or an infinite
asyn-evolution of Π0.

We denote by Easyn
C (Π0) the set of all asyn-complete evolutions in C starting at

Π0.
Let e = 〈Π0,Π1, . . . ,Πi,Πi+1 . . .〉 be an arbitrary asyn-complete evolution in C

starting in Π0. We call 〈Πi,Πi+1, . . .〉, i ≥ 0, an i-suffix evolution4 of e and we
denote it by ei.

Definition 4.3 (Syntax of LC) The set AP (C) is defined by:

• > ∈ AP (C).

• prec(R) ⊆ AP (C).

• if w1, w2, . . . , wi ∈ prec(R) ∪ {>}, i ≤ m, then w1 ⊕ . . .⊕ wi ∈ AP (C).

We call the elements of AP (C) atomic formulas of the logic LC.
We define the configuration formulas of LC and the evolution formulas of LC in the
following way.

• any atomic formula of LC is a configuration formula of LC.

• if φ, ψ are configuration formulas of LC then ¬φ and φ ∧ ψ are configuration
formulas of LC.

• if φ is an evolution formula of LC then Eφ is a configuration formula of LC.

• if φ, ψ are configuration formulas of LC then Xφ and φUψ are evolution for-
mulas of LC.

The configuration formulas and evolution formulas of LC form the language of LC.

The meanings of >,¬,∧ are those from classical logic and we consider the derived
operators for implication ⇒ and disjunction ∨ defined as in classical propositional
logic. In addition, we have the temporal operators: Eφ that expresses an existential
quantification on evolutions, Xφ which means “at the next configuration φ is sat-
isfied” and φUψ which means “φ is satisfied until ψ is satisfied”. In what follows,
the properties we can express by using these operators are checked for some models
called temporal structures.

4Observe that for an arbitrary asyn-complete evolution e in C, for each i ≥ 0, ei is also a
asyn-complete evolution in C.

Colonies of synchronizing agents

47

Definition 4.4 (Temporal structures) We define the structure T asyn
C = (S,R)

as follows:

• S ⊆ C, such that if Π0 ∈ S then {Π1,Π2, . . . | 〈Π0,Π1,Π2, . . .〉 ∈ Easyn
C (Π0)} ⊆

S.

• R ⊆ S × S, such that (Π1,Π2) ∈ R iff there exists 〈Π1,Π2, . . .〉 ∈ Easyn
C (Π1).

We call T asyn
C a temporal structure in C.

Definition 4.5 (CSA-Semantics) Let T asyn
C = (S,R) be a temporal structure

in C. For an arbitrary Π ∈ S, an arbitrary e ∈ Easyn
C (Π) and an arbitrary for-

mula φ from the language of LC, we define coinductively the satisfiability relations
T asyn
C ,Π |= φ and T asyn

C , e |= φ by:
T asyn
C ,Π |= > always.
T asyn
C ,Π |= w for w ∈ prec(R) iff CΠ = {(w′, 1)} and w ⊆ w′.
T asyn
C ,Π |= w1 ⊕ w2 ⊕ . . . ⊕ wi for wj ∈ prec(R) ∪ {>}, 1 ≤ j ≤ i iff CΠ =

C1 + C2 + . . . + Ci s.t. for any wj 6= >, 1 ≤ j ≤ i, Cj = {(wj + uj , 1)} for some
uj ∈ M(A).

T asyn
C ,Π |= φ ∧ ψ iff T asyn

C ,Π |= φ and T asyn
C ,Π |= ψ.

T asyn
C ,Π |= ¬φ iff T asyn

C ,Π 6|= φ.
T asyn
C ,Π |= Eφ iff there exists e ∈ Easyn

C (Π) such that T asyn
C , e |= φ.

T asyn
C , e |= φUψ iff there exists i ≥ 0 such that T asyn

C , ei |= ψ and for all j ≤ i
T asyn
C , ej |= φ.
T asyn
C , e |= Xφ iff T asyn

C , e1 |= φ.

Definition 4.6 (Validity and satisfiability) A configuration formula φ (evolu-
tion formula φ) from LC is valid iff for every temporal structure T asyn

C = (S,R) in
C and any Π ∈ S (any e ∈ Easyn

C (Π), resp.) we have T asyn
C ,Π |= φ (T asyn

C , e |= φ,
resp.). A configuration formula φ (evolution formula φ) is satisfiable iff there exists
a temporal structure T asyn

C = (S,R) and a Π ∈ S (an e ∈ Easyn
C (Π), resp.) such

that T asyn
C ,Π |= φ (T asyn

C , e |= φ, resp.).

Definition 4.7 (Derived formulas) We define the following derived formulas for
LC.

Aφ = ¬E¬φ.
Fφ = >Uφ.
Gφ = ¬F¬φ.

The semantics of the derived formulas are the following.

T asyn
C ,Π |= Aφ iff for any e ∈ Easyn

C (Π) we have T asyn
C , e |= φ.

T asyn
C , e |= Fφ iff there exists i ≥ 0 such that T asyn

C , ei |= φ.

T asyn
C , e |= Gφ iff for any i ≥ 0 we have T asyn

C , ei |= φ.

Aφ is a universal quantification on evolutions. Fφ means “eventually φ is sat-
isfied” (i.e., Fφ is satisfied by an evolution that contains at least one configuration
that has the property φ). Gφ means “globally φ is satisfied” (i.e., Gφ is satisfied by
an evolution that contains only configurations satisfying φ).

M. Cavaliere, R. Mardare, S. Sedwards

48

Theorem 10 (Decidability) The satisfiability, validity and model-checking prob-
lems for LC against the CSA-semantics are decidable.

Proof. The result derives from the fact that CTL logic is decidable (see, e.g., [18, 1])
and from the fact that AP (C), the set of atomic formulas, is a finite set. �

To show the potential of the introduced logic we give a small example of properties
that can be specified. We pose the question whether or not during any evolution
the agents can always synchronize when they are ready to do so.

In other words, given an arbitrary CSA, Π, and an arbitrary rule r : 〈u, v〉 →
〈u′, v′〉, we would like to check whether or not it is true that, whenever during an
evolution of Π, a configuration with an agent w1, where u ⊆ w1, is reached, then in
the same configuration there is also an agent w2 with v ⊆ w2 (so rule r can actually
be applied). If this is true we say that Π is safe on synchronization of rule r.

This property can be expressed in the proposed temporal logic by the following
formula.

AG((u⊕>) ⇒ (u⊕ v ⊕>)).

Taking a CSA, Π0, from C. If we consider the introduced CSA-semantics we have
that:

T asyn
C ,Π0 |= AG((u⊕>) ⇒ (u⊕ v ⊕>))

iff for any e ∈ Easyn
C (Π0) we have T asyn

C , e |= G((u⊕>) ⇒ (u⊕ v ⊕>))
iff for any e = 〈Π0,Π1, . . . ,Πi, . . .〉 ∈ Easyn

C (Π0) and any i ≥ 0 we have
T asyn
C ,Πi |= (u⊕>) ⇒ (u⊕ v ⊕>).

This means that if any configuration present in a asyn-evolution of Π0 satisfies u⊕>
then it will also satisfy u⊕ v ⊕>.

In fact, we know that T asyn
C ,Πi |= u⊕> iff CΠi = C1 + C2, C1, C2 ∈ M(M(A))

and C1 = {(u+u′, 1)}, i.e., the configuration of Πi contains an agent w that contains
u.

Similarly, T asyn
C ,Πi |= u⊕ v ⊕> iff CΠi = C ′

1 +C ′
2 +C ′

3, C
′
1, C

′
2, C

′
3 ∈ M(M(A))

and C ′
1 = {(u+ u′′, 1)}, C ′

2 = {(v+ v′, 1)}, i.e., the configuration of Πi contains two
agents w1 and w2 such that u ⊆ w1 and v ⊆ w2, which precisely indicates that Π0

is safe on synchronization of rule r : 〈u, v〉 → 〈u′, v′〉.

5 Prospects

In this paper we have defined a basic model of Colonies of Synchronizing Agents,
however several enhancements to this are already in prospect. Primary among these
is the addition of space to the colony. Precisely, each agent will have a triple of
co-ordinates corresponding to its position in Euclidean space and the rules will be
similarly endowed with the ability to modify an agent’s position. A further extension
of this idea is to give each agent an orientation, i.e. a rotation relative to the spatial
axes, which may also be modified by the application of rules.

Colonies of synchronizing agents

49

The idea is to make the application of a rule dependent on either an absolute
position (thus directly simulating a chemical gradient) or on the relative distance
between agents in the case of synchronization. Moreover, in the case of the applica-
tion of a synchronization rule, the ensuing translation and rotation of the two agents
may be defined relative to each other. In this way it will be possible to simulate
reaction-diffusion effects, movement and local environments.

Some additional biologically-inspired primitives are also planned, such as agent
division (one agent becomes two) and agent death (deletion from the colony). These
primitives can simulate, for example, the effects of mitosis, apoptosis and morpho-
genesis. In combination with the existing primitives, it will be possible (and is
planned) to model, for example, many aspects of the complex multi-scale behaviour
of the immune system.

With the addition of the features just mentioned, it will also be interesting to
extend the investigation and proofs given above to identify further classes of CSAs
demonstrating robustness and having decidable properties. It is hoped that this
approach will then provide insight in challenging areas of systems biology.

References

[1] M. Ben-Ari, A. Pnueli, Z. Manna. The Temporal Logic of Branching Time. Acta
Inf., 20, 1983.

[2] F. Bernardini, R. Brijder, G. Rozenberg, C. Zandron. Multiset-Based Self-
Assembly of Graphs. Fundamenta Informaticae, 75, 2007.

[3] F. Bernardini, M. Gheorghe. Population P Systems. Journal of Universal Com-
puter Science, 10(5), 2004.

[4] C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, editors. Multiset Processing:
Mathematical, Computer Science, and Molecular Computing Point of View,
LNCS 2235, Springer-Verlag, 2001.

[5] M. Cavaliere, R. Mardare, S. Sedwards. Colonies of Synchronizing Agents. Tech-
nical Report CoSBi 11/2007. Available at www.cosbi.eu/Rpty Tech.php

[6] J. Dassow, Gh. Păun. Regulated Rewriting in Formal Language Theory.
Springer-Verlag, Berlin, 1989.

[7] A. Ilachinski. Cellular Automata - A Discrete Universe. World Scientific Pub-
lishing, 2001.

[8] R. Freund, Gh. Păun, O.H. Ibarra, H.-C.Yen. Matrix Languages, Register Ma-
chines, Vector Addition Systems. In Proc. Third Brainstorming on Membrane
Computing. RGCN Report 01/2005, Sevilla, 2005. Available at www.gcn.us.es

[9] S. Greibach. Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science, 7(3), 1978.

M. Cavaliere, R. Mardare, S. Sedwards

50

[10] J.E. Hopcroft, J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[11] J. Kelemen, A. Kelemenová, Gh. Păun. Preview of P Colonies - A Biochemically
Inspired Computing Model. Proceedings of Workshop on Artificial Chemistry,
ALIFE9, Boston, USA, 2004.

[12] J. Kelemen, Gh. Păun. Robustness of Decentralized Knowledge Systems: A
Grammar-Theoretic Point of View. Journal Expt. Theor. Artificial Intelligence,
12, 2000.

[13] C. Mart́ın-Vide, Gh. Păun, J. Pazos, A. Rodŕıguez-Patón. Tissue P Systems.
Theoretical Computer Science, 296(2), 2003.

[14] J. Mata, M. Cohn. Cellular Automata-Based Modelling Program: Synthetic
Immune Systems. Immunol Rev, 207, 2007.

[15] Gh. Păun. Membrane Computing - An Introduction. Springer-Verlag, Berlin,
2002.

[16] Gh. Păun. Introduction to Membrane Computing. In G. Ciobanu, Gh. Păun,
M.J. Pérez-Jiménez, editors, Applications of Membrane Computing. Springer-
Verlag, Berlin, 2006.

[17] G. Rozenberg, A. Salomaa, editors. Handbook of Formal Languages. Springer-
Verlag, Berlin, 1997.

[18] J. Van Benthem. Temporal logic. In Handbook of Logic in Artificial Intelligence
and Logic Programming: Epistemic and Temporal reasoning. Oxford University
Press, 1995.

[19] S. Wolfram. A New Kind of Science. Wolfram Media, 2002.

[20] http://nusmv.irst.itc.it/

[21] http://psystems.disco.unimib.it

Colonies of synchronizing agents

51

Networks of Mealy Multiset Automata

Gabriel Ciobanu and Mihai Gontineac

“A.I.Cuza” University of Iaşi, Romania

Faculty of Computer Science and Faculty of Mathematics

gabriel@info.uaic.ro, gonti@uaic.ro

Abstract

We introduce the networks of Mealy multiset automata, and study their
computational power. The networks of Mealy multiset automata are computa-
tionally complete.

1 Learning from Molecular Biology

Systems biology represents a new cross-disciplinary approach in biology which has
only recently been made possible by advances in computer science and technology.
As it is mentioned in [10], it involves the application of experimental, theoretical,
and modelling techniques to the study of biological organisms at all levels. Adding
new abstractions, discrete models and methods able to help our understanding of
the biological phenomena, systems biology may provide predictive power, useful
classifications, new paradigms in computing and new perspectives on the dynamics
of various biological systems.

Recent promising work [1] employs automata theory as an efficient tool of de-
scribing and controlling gene expression (a small automaton is encoded by DNA
strands and then it is used in logical control of gene expression).

In [2], we present a way of interaction between gene machine and protein ma-
chine, namely the process of making proteins, in abstract terms of Mealy automata,
transformation semigroups and abstract operations.

The Mealy automaton proposed as a formal model of the genetic message trans-
lation is a minimal one that accepts the mRNA messages and terminates the trans-
lation process (according to [9], there is no appropriate formalism for the process of
translation).

However molecular biology “deals” not only with sequences, but also with mul-
tisets. The biological cells are “smart” enough to put together at work sequences
and multisets of atoms and molecules, so if we try to get models from their func-
tioning, we should not restrict ourselves to dealing only with sequential machines
(like classical automata). To deal with multisets, the main approach is given by
membrane systems [11]. There is also introduced and studied an automaton-like
machine to work with multisets [7], i.e. multiset automaton. At a first glance, it
seems that they are nothing else but weighted automata with weights in the semiring
of positive integers. In [8] it is proven that such automata (weighted automata with

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 52 - 63, 2007.

52

weights in the semiring of positive integers) have the same power as finite automata
(accept only regular languages). In fact, a careful reader should remark that a mul-
tiset automaton is not a sequential machine, and it is not working with sequences
of multisets as in the case of weighted automata. A multiset automaton accepts,
together with a sequence of multisets, an entire class, namely the class of that se-
quence obtained by “abelianization” (as an example, together with the sequence,
say aab, it accepts aba and baa). In this manner, multiset automata become very
powerful (see [7], for details). Mealy multiset automata, [3], can be viewed as the
corresponding Mealy machine. We study some of their (co)algebraic properties in
[3] and [4] and we connect these properties with various aspects of their behaviour.
In [5], we organize them in a P machine, in order to simulate a P system. How-
ever, the biological systems are not always organized in a hierarchical manner. This
means that we also have to organize sets of Mealy multiset automata in networks.
In order to obtain the computing power for networks of such automata, we relate
them to neural P systems, proving that networks of Mealy multiset automata are
computationally complete.

2 Networks of Mealy Multiset Automata

In order to define networks of Mealy multiset automata, we can connect these au-
tomata in many ways, having both parallel and serial connections. In [3] we define
the restricted direct product of MmA for the parallel case, and the cascade product
for a serial connection.

2.1 Multisets

The evolution rules performed by membranes are multiset operators; the multiset
operators are associative and commutative, and have also an identity.

A multiset over an alphabet A = {a1, a2, ..., an} is a mapping α : A → N. It
can be represented by {(a1, α(a1)), (a2, α(a2)), ..., (an,α(an))}. Inspired from formal
power polynomials, we denote by N 〈A〉 = {α : A → N | α is a mapping} the set
of all multisets on A . The structure of N 〈A〉 is mainly an additive one, since
we add multiplicities of appearance (in fact, it is induced by the addition in N).
This argument is sustained also by the chemical reactions that are the base of the
biological modelling. They provide a notation for defining the way a biological
system evolves.

If α, β ∈ N 〈A〉, then their sum is the multiset (α + β) : A → N defined by
(α + β)(ai) = α(ai) + β(ai), i = 1, n. Moreover, if we consider the letters from A as
multisets, i.e. ai is given by µai

, where µai
: A→ N, µai

(ai) = 1 and µai
(aj) = 0 for

all j 6= i, then we can express every multiset α ∈ N 〈A〉 as a linear combination of

ai, i.e. α =

n
∑

i=1

α(ai) · ai (see also [3]). The length of a multiset α, denoted by |α|, is

defined by |α| =
n

∑

i=1

α(ai).

Networks of Mealy multiset automata

53

We can define an external operation mα =
n

∑

i=1

(mα(ai)) · ai, for all m∈ N and

α ∈ N 〈A〉.

Proposition 1 N 〈A〉 has a structure of N-semimodule (semimodule over the semir-
ing of positive integers).

2.2 Mealy multiset automata

Roughly speaking, a Mealy multiset automaton (MmA) consists of a storage location
(a box for short) in which we place a multiset over an input alphabet and a device to
translate the multiset into a multiset over an output alphabet. We have a detection
head that detects whether or not a given multiset appears in the multiset available
in the box. The multiset is removed from the box whenever it is detected, and
the automaton inserts a multiset over the output alphabet. The output alphabet
should be different from the input alphabet; if they are the same, we mark the
output symbols just to make different the output and input alphabet. In this way
the output symbols cannot be viewed by the detection head. This automaton stops
when no further move is possible. We say that the sub-multiset read by the head was
translated to a multiset over the output alphabet. We give here only the definitions
and the properties that we need for networks of MmA. For more informations see
[3] or [4].

From the formal point of view, a Mealy multiset automaton is a construct A =
(Q,V,O, f, g, q0) where

1. Q is a finite set, the set of states;

2. q0 ∈ Q is special state, which is both initial and final;

3. V is a finite set of objects, the input alphabet ;

4. O is a finite set of objects, the output alphabet, such that O ∩ V = ∅;

5. f : Q× N 〈V 〉 → P(Q) is the state-transition (partial) mapping ;

6. g : Q× N 〈V 〉 → P(N 〈O〉) is the output (partial) mapping.

If | f(q, a) |≤ 1 we say that A is Q- deterministic and if | g(q, a) |≤ 1 our automaton
is O-deterministic.

An MmA A receives a multiset in its box, and processing this multiset it passes
through different configurations. It starts with a multiset from N 〈V 〉 and ends
with a multiset from N 〈V ∪O〉. A configuration of A is a triple (q, α, β̄) where
q ∈ Q,α∈ N 〈V 〉, β̄∈ N 〈O〉. We say that a configuration (q, α, β̄) passes to (s, α −
a, β̄+ b̄) (or, that we have a transition between those configurations) if there is a ⊆ α
such that s ∈ f(q, a), b̄ ∈ g(q, a). We denote this by (q, α, β̄) ⊢ (s, α − a, β̄ + b̄),
and by ⊢∗ the reflexive and transitive closure of ⊢. We can alternatively define a
configuration to be a pair (q, α) where α ∈ N 〈V ∪O〉 and the transition relation is
(q, α) ⊢ (s, α− a + b̄), with the same conditions as above.

G. Ciobanu, M. Gontineac

54

Behaviour is often appropriately viewed as consisting of both dynamics and
observations, which have to do with change of states and partial access to states,
respectively. The main advantage of an MmA is that it has an output function that
can play the main role in observability, i.e. we do not have to construct an other
machine to describe the MmA’ s behaviour.

Definition 1 Let A = (Q,V,O, f, g) be a Mealy multiset automaton. The general
behaviour of a state q ∈ Q is a function beh(q) assigning to every multiset α∈N 〈V 〉
the output multiset obtained after consuming α starting from q.

When talking about the behaviour, we consider a specific order of consuming mul-
tisets, i.e. in terms of strings of multisets.

Definition 2 Let A = (Q,V,O, f, g) be a Mealy multiset automaton. The sequen-
tial behaviour of a state q ∈ Q is a function seqbeh(q) that assigns to every multiset
α∈N 〈V 〉 all the sequences of the output multisets obtained after consuming α starting
from q.

Example 1 Suppose that we have the following sequence of transitions (q, α, ε) ⊢
(q1, α− a1, b1) ⊢ (q2, α− a1 − a2, b1 + b2) ⊢ . . . ⊢ (qn, α− a1 − . . .− an, b1 + . . . + bn)
and MmA stops. Then beh(q)(α) = b1 + . . . + bn and seqbeh(q)(α) ∋ b1 . . . bn.
Moreover, b1 + . . . + bn belongs to N 〈O〉, while b1 . . . bn belongs to (N 〈O〉)∗.

Consider the canonical inclusion i : N 〈O〉 → (N 〈AO〉)∗ and the identity map
id : N(O) → N(O). By the universal property of the free monoid, we know that
there exists a unique homomorphism of monoids IO : (N 〈O〉)∗ → N 〈O〉 defined
by IO(b1 . . . bn) = b1 + . . . + bn such that IO ◦ i = id. Since id is onto, it follows
that I is onto, and so, applying the isomorphism theorem for monoids, we obtain
that (N 〈O〉)∗/kerIO ⋍ N 〈O〉. Moreover, for all the states q of a Mealy multiset
automaton we have

IO ◦ seqbeh(q) = beh(q).

Let Ai = (Qi, V,O, fi, gi), and Bi their corresponding boxes, i = 1, n, a finite
family of Mealy multiset automata. We can connect them in parallel in order to
obtain a new MmA defined by A =

∧n
i=1Ai = (×n

i=1Qi, V,On, f, g), called the
restricted direct product of Ai, where:

• f((q1, q2, . . . , qn), a) = (f1(q1, a), f2(q2, a), . . . , fn(qn, a)),

• g((q1, q2, . . . , qn), a) = (g1(q1, a), g2(q2, a), . . . , gn(qn, a)),

• box of A is the disjoint union
⊔n

i=1 Bi of {Bi | i = 1, n},

• a configuration of A is a triple (q, α, β̄), where q = (q1, q2, . . . , qn), α =
(α1, α2, . . . , αn), and β̄ = (β̄1, β̄2, . . . , β̄n),

• the transition relation of A: (q, α, β̄) ⊢ (s, α − a, β̄ + b̄) iff si ∈ fi(qi, ai) and
b̄i ∈ gi(qi, ai) for all i ∈ 1, n.

Networks of Mealy multiset automata

55

The cascade product is useful to describe a serial connection, and provide also
some results in decompositions of such machines in irreducible ones.

Let A = (Q,V,O, f, g), A′ = (Q′, V ′, O′, f ′, g′) be two Mealy multiset automata.
In order to connect them, we need a multiset mapping linking the output of one of
them to the input of the other. This can be done using a N-homomorphism from
N 〈O′〉 to N 〈V 〉 (this homomorphism can be obtained by using a mapping from O′

to V). We denote by Λ : N 〈O′〉 → N 〈V 〉 this homomorphism. Then we can define
a mapping Ω : Q′ × N 〈V ′〉 → N 〈V 〉 by Ω(q′, a′) = Λ(g′(q′, a′)).

• This mapping gives us the cascade product induced by Ω:

AΩA′ = (Q×Q′, V ′, O, fΩ, gΩ)

where fΩ((q, q′), a′) = (f(q,Ω(q′, a′)), f ′(q′, a′)), gΩ((q, q′), a′) = g(q,Ω(q′, a′)),
for all a′ ∈ N 〈V ′〉 , (q, q′) ∈ Q×Q′.

• The transition relation becomes ((q, q′), α′, β̄) ⊢ ((s, s′), α′−a′, β̄+ b̄) if there is
a′ ⊆ α′ such that (s, s′) = fΩ((q, q′), a′) and b̄ = gΩ((q, q′), a′), where a′, α′ ∈
N 〈V ′〉, (q, q′) ∈ Q×Q′, and β̄ ∈ N 〈O〉.

We can alternatively define the transition relation by

((q, q′), α′, β̄) ⊢ ((s, s′), α′ − a′, β̄ + b̄),

if there is a′ ⊆ α′ such that s=f(q,Λ(g′(q′, a′))), s′=f ′(q′, a′), b̄=g(q,Λ(g′(q′, a′))),
where a′, α′ ∈ N 〈V ′〉, (q, q′) ∈ Q×Q′, β̄ ∈ N 〈O〉.

The graphical representation of the cascade product is given in the following
figure:

In order to obtain the behaviour of a network of MmA’s, we should also consider
the behaviour of the cascade product. Roughly speaking, the two types of behaviour
depends mainly on the corresponding behaviours of A′. On the other hand, when
we have a cascade product, the observable part is strongly connected with the ob-
servations that could be made after we pass through A. We may also emphasize the
important role played by the connection homomorphism given by Λ.

Theorem 2 Let A = (Q,V,O, f, g), A′ = (Q′, V ′, O′, f ′, g′) be two MmA’s, AΩA′

their cascade product, and (q, q′) a state of this product. The behaviour of (q, q′) is
beh((q, q′)) = beh(q) ◦ Λ ◦ beh(q′).

If we want to get the sequential behaviour starting from beh((q, q′)) = beh(q) ◦Λ ◦
beh(q′), then (I, I′) ◦ seqbeh((q, q′)) = (I ◦ seqbeh(q)) ◦ Λ ◦ (I′ ◦ seqbeh(q′)).

Other properties of MmA’s, their behaviours and bisimulation relations are pre-
sented in [3] and [4].

G. Ciobanu, M. Gontineac

56

2.3 Networks of automata

The formal description of a network of Mealy multiset automata is not intuitive.
On the other hand, these networks could be very powerful, so we think that they
deserve our attention. We can consider several variants of such networks. Some of
them can have no inter-communication and, in this case, the network is, in fact, a
bigger MmA. The same remark can be done if we have only MmA connected in a
serial manner, without any ramifications. The case that we consider in this paper
is inspired by the definition of neural P systems (nP systems). Neural P systems
are defined in [11] as a computing model inspired by the network of cells. Each
cell has a finite state memory, and processes multisets of symbol (impulses); it can
send some impulses (called excitations) to the neighbouring cells. It is proved that
such networks are rather powerful: they can simulate Turing machines using a small
number of cells, every cell having in a small number of states. It is also proved that,
in appropriate organization, such a network can solve in linear time the Hamiltonian
Path Problem.

We consider a set of MmA that can communicate by means of some commu-
nication channels. All of them have the same input alphabet V , and their boxes
contain an input multiset over V (they can also have an empty multiset ε as input).
The output alphabet has a “real” part O of output alphabet, and a “specific” part
used for communication. The specific part is, in fact, a Cartesian product between
the input alphabet V and the set of targets T (the set of the indexes of the MmA
forming the net). We can also have a special MmA to collect in its box the result of
the computation (i.e. a multiset over O) for such a network. Alternatively, we can
consider as result of the computation the tuple of multisets obtained in the box of
every MmA of the net.

Definition 3 A network of Mealy multiset automata (shortly, nMmA) is a con-
struct N = (V,O, {Ai}i=1,n , {Λi}i=1,n , B) where:

• V = {a1, a2, . . . , am} is a finite set of objects, the input alphabet;

• O is the output alphabet such that O ∩ V = ∅;

• Ai = (Qi, V,O, fi, gi, s0,i) are MmA’s connected in the network. Their output
alphabets are of the form O = O ∪ (V × T), where T = {1, 2, . . . , n};

• B is a box where N “receives” the output multiset. Depending on features
that we consider for the net, B can be a specific box of a specific MmA in the
network, or B can be the Cartesian product of all the boxes.

• Λi : N
〈

O
〉

→ (N 〈O〉 ∪N 〈V 〉)n are the communication mappings associated to
all the Ai, i ∈ T .

A computation starts with some input multisets w0,i in the boxes of the MmA’s that
are in their initial states, s0,i; then we have a big step given by a translation (made by
the MmA’s, in fact by their restricted direct product

∧n
i=1Ai) and a communication

(done by {Λi}) - a kind of “parallel cascade product”, since every MmA is in cascade
with the restricted direct product of itself and the other MmA.

Networks of Mealy multiset automata

57

A configuration of the network is of the form (s,w), where s = (s1, s2, . . . , sn)
with si ∈ Qi is the global state, and w = (w1, . . . , wn) where wi ∈ N 〈O〉 ∪ N 〈V 〉.

A transition between configurations is denoted by (s,w) ⊢ (s′, w′) and is defined
in the following manner:

s′ = (s′1, s
′

2, . . . , s
′

n), where s′i ∈ fi(si, ai) with ai ∈ N 〈V 〉; we allow some of the
a′s to be ε if in the corresponding MmA there is no transition.

w′ = Λ1(b1) + Λ2(b2) + . . . + Λn(bn) + (w1 − a1, w2 − a2, . . . , wn − an), where
bi ∈ gi(si, ai).

A network of MmA can be used in various modes. We can use it as a generative
system, looking to the number of output objects that we find in the boxes (without
considering the final state for the MmA). It can be used also to compute functions
from N 〈V 〉 to N 〈O〉.

An example of such a network used as a generative system could clarify these
aspects:

Example 2 Let

N = (V,O, {Ai}i=1,3 , {Λi}i=1,3 , B1)

where:

• V = {a} is the input alphabet;

• O = {b} is the output alphabet b 6= a;

• Ai = ({si} , V,O, fi, gi, si), are the MmA’s connected in the network. Their
output alphabet is O = {b, (a, 1), (a, 2), (a, 3)}

• B1 is the box where N “receives” the output multiset.

• Λi : N
〈

O
〉

→ (N 〈O〉 ∪N 〈V 〉)3 are the communication mappings associated to
all the Ai, i ∈ T = {1, 2, 3}.

We describe now the mappings. The transition mappings are

• fi(si, a) = si, i = 1, 3.

The output mappings:

• g1(s1, a) ∈ {b, (a, 2) + (a, 3)}, so is a nondeterministic mapping;

• g2(s2, a) = (a, 1);

• g3(s3, a) = (a, 1).

The communication mappings:

• Λ1(nb + k1(a, 1) + k2(a, 2) + k3(a, 3)) = (nb + k1a, k2a, k3a));

• Λ2(nb + k1(a, 1) + k2(a, 2) + k3(a, 3)) = (k1a, ε, ε));

G. Ciobanu, M. Gontineac

58

• Λ3(nb + k1(a, 1) + k2(a, 2) + k3(a, 3)) = (k1a, ε, ε)).

Since A1 has a nondeterministic output mapping, the behaviour of our network
is nondeterministic. We denote the global state by s = (s1, s2, s3). We start our
computation from (s, (a, ε, ε)) Applying the restricted direct product we can obtain
(s, (b, ε, ε)) or (s, (ε, a, a)).

In the first case we obtain one b, so we generate 1. In the second case, the compu-
tation continues with communication, and we obtain (s, (a+a, ε, ε) = (s, (2a, ε, ε),
and, again, we have various possibilities to choose. Anyway, it should be clear now
that we can generate any number of b′s, so N can generate every positive integer.

In order to study the computational power of nMmA, we are trying to simulate
neural-like P systems. To be more specific, we try to simulate the neural P systems
working in minimal mode and replicative manner. To keep the paper self-contained,
we remember some facts about neural P systems and adapt the notations from [11].

3 Neural P Systems

The former tissue P systems were called neural-like P systems in [11]. We start with
the classical definition, and later we adapt the notation to our needs. We consider
a class of networks of membranes inspired by the way the neurons cooperate to
process impulses in the complex net established by synapses. A possible model of
this symbol processing machinery can be given by a network of membranes, each
of them containing a multiset of objects and a state according to which the objects
are processed. The membranes can communicate along “axons” channels. We make
some minor modifications to the original notations, having in mind that in the Mealy
multiset automata we distinguish between multisets and strings that could represent
them (since we can deal with two kinds of behaviours, a global one and a sequential
one). We also restrict our presentation of neural P systems working in minimal mode
and replicative manner.

Definition 4 A neural P system (nP system) of degree m ≥ 1 is a construct

Π = (V, σ1, σ2, . . . , σm, syn, iout),

where

1. V is a finite non-empty alphabet (of objects);

2. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} (synapses among cells);

3. iout ∈ {1, 2, . . . ,m} indicates the output cell; we can put iout = 1;

4. σ1, σ2, . . . , σm are cells of the form σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ m,

where:

• Qi is a finite set (of states);

Networks of Mealy multiset automata

59

• Ri is a finite set of rules of the form sw → s′(x + ygo + zout), where s, s′ ∈ Qi,
w, x ∈ N 〈V 〉, ygo ∈ N 〈V × {go}〉 , zout ∈ N 〈V × {out}〉, with the restriction
that zout = ε for all i different from 1.

The objects that appears in the left hand multiset w of the rule sw → s′w′ are called
impulses, while those from w′ are called excitations.

Such a system is called to be cooperative if it contains at least one rule sw → s′w′

such that |w| > 1, and non-cooperative in the opposite case.
An m-tuple of the form (s1w1, s2w2, . . . , smwm) is called a configuration of Π.

Using the rules defined above, we can define transitions among the configurations of
the system. To this end, there are considered three modes of processing the impulse-
objects and three modes of transmitting excitation-objects from one cell to another
one. As we already mentioned, we restrict ourselves to the minimal processing mode.

Notation: Vgo = {(a; go) | a ∈ V }, Vout = {(a; out) | a ∈ V }, and Vtot = V ∪ Vgo ∪
Vout. For s, s′ ∈ Qi, x ∈ N 〈V 〉 and y ∈ N 〈Vtot〉, we write sx ⇒min s′y iff sw →
s′w′ ∈ Ri, w ⊆ x and y = (x − w) ∪ w′. In this case, only one occurrence of the
multiset from the left-hand side of a rule is processed, being replaced by the multiset
from the right-hand of the rule, and at the same time changing the state of the cell.

We also write sx ⇒min sx for s ∈ Qi and x ∈ N 〈V 〉 whenever there is no
rule sw → s′w′ ∈ Ri such that w ⊆ x. This encodes the case when a cell cannot
process the current objects in a given state (it can be “unblocked” after receiving
new impulses from the cells which are active and can send objects to it).

Now, recall that the multiset w′ from a rule sw → s′w′ contains symbols from
V , but also symbols of the form (a, go) (or, in the case of the cell 1, of the form
(a, out)). Such symbols are sent to the cells related by synapses to the cell σi where
the rule sw → s′w′ is applied, according to various manners of communication. As
we already mentioned, we choose the replicative manner, i.e. each symbol a from
(a, go) appearing in w′, it is sent to each of the cells σj such that (i; j) ∈ syn.

In order to formally define the transition among the configurations of Π, some
further notations are needed. For a multiset w over Vtot, we consider the projections
on V , Vgo and Vout, namely prV (w); prVgo

(w), and prVout
(w) (see [11] for details). For

a node i in the graph defined by syn, the ancestors and the successors of node i are
denoted by anc(i) = {j | (j, i) ∈ syn} and succ(i) = {j | (i, j) ∈ syn}, respectively.

Each transition lasts one time unit, and the network is synchronized: a global
clock define the passage of time for all the cells.

For two configurations C1 = (s1w1, . . . , smwm) and C2 = (s′1w
′′

1 , . . . , s′mw′′

m) we
write C1 ⇒ C2 if there are w′

1, . . . , w
′

m in N 〈Vtot〉 such that

siwi ⇒ s′iw
′

i, 1 ≤ i ≤ m,

and
w′′

i = prV (w′

i) +
∑

j∈anc(i)

prVgo
(w′

j).

Obviously, objects are always sent to a cell i only from its ancestors, namely
from cells j such that a direct synapse exists from j to i. In the case of the cell 1, we

G. Ciobanu, M. Gontineac

60

remove from w′

1 all the symbols a ∈ V which appear in w′

1 in the form (a, out). If
during a transition a cell does nothing (no rule is applicable to the available multiset
of objects in the current state), then the cell waits until new objects are sent to it
from its ancestor cells.

A sequence of transitions among the configurations of Π is called a computation
of Π. A computation ending in a configuration where no rule in no cell can be used is
called a halting computation. The result of a halting computation is the number of
objects in the output cell 1 (or sent to the environment from the output cell 1). We
denote by N(Π) the set of all natural numbers computed in this way by a system Π.
We denote by NOnPm,r(coo) the family of sets N(Π) computed by all cooperative
neural-like P systems with at most m ≥ 1 cells, each of them using at most r ≥ 1
states. When non-cooperative systems are used, we write NOnPm,r(ncoo) for the
corresponding family of sets N(Π).

3.1 Computational power

We denote by NRE the family of Turing computable sets of natural numbers.
Following [11], we mention that the minimal mode of using the rules turns out

to be computationally universal. If we consider the apparently weak neural-like P
systems, then the fact that we obtain universality even in the non-cooperative case
when using the mode min of applying the rules is rather unexpected. The same
result holds true also when using cooperative rules. Among the results presented in
[11] we mention here only those for minimal mode and for replicative manner.

Theorem 3 NOnP2,5(ncoo) = NRE.

For the cooperative rules, the number of states can be decreased.

Theorem 4 NOnP2,2(coo) = NRE.

4 Universality of the Networks

In order to obtain the generative power of a network of MmA, we give the following
result.

Theorem 5 Any nP System working in min mode and replicative manner can be
simulated by a network of MmA (possibly nondeterministic).

Proof. Let Π = (V, σ1, σ2, . . . , σm, syn, 1) be an nP system with its components
described as in the previous section. We remind that σ1, σ2, . . . , σm are cells of the
form σi = (Qi, si,0, wi,0, Ri) (1 ≤ i ≤ m), where Qi is a finite set (of states) and Ri is
a finite set of rules of the form sw → s′(x + ygo + zout) with s, s′ ∈ Qi, w, x ∈ N 〈V 〉,
ygo ∈ N 〈V × {go}〉, zout ∈ N 〈V × {out}〉 (with the restriction that zout = ε for all i
different from 1).

We can build a nMmA N = (V,O, {Ai}i=1,m , {Λi}i=1,m , B1) where:

• the output alphabet O is Vout;

Networks of Mealy multiset automata

61

• Ai = (Qi, V,O, fi, gi, s0,i) is the MmA simulating the activity of cell σi. The
output alphabets are of the form O = O ∪ (V × T), where T = {1, 2, . . . ,m};

• B1 is the box where N collects the output multisets;

• Λi : N
〈

O
〉

→ (N 〈O〉 ∪N 〈V 〉)n are the communication mappings associated to
Ai, i ∈ T .

Consider a rule sw → s′(x + ygo + zout) from Ri. We can simulate this rule with
fi and gi by defining them in the following manner:

• fi(s,w) = s′;

• gi(s,w) = (zout + x + k1(y, 1) + k2(y, 2) + . . . + km(y,m)),

with the following restrictions in gi:

• if i 6= 1, then zout = ε;

• if there is no synapse from σi to σj , we define kj = 0, else kj = 1.

In this manner we can also simulate the replicative manner of applying the rules,
since y is marked to be sent to all the cells having synapse from σi. It is easy to see
that we have a transition (s1w1, . . . , smwm) ⇒ (s′1w

′′

1 , . . . , s′mw′′

m) in Π if and only if
((s1, s2, . . . , sn), (w1, . . . , wn)) ⊢ ((s′1, s

′

2, . . . , s
′

n), (w′′

1 , . . . , w′′

n)). �

As an immediate consequence of this result we get the following

Theorem 6 Nondeterministic networks of Mealy multiset automata are universal.

Proof. We already know that NOnP2,2(coo) = NRE. Applying the previous theo-
rem we obtain that the generative power of a nondeterministic network of MmA is
NRE.

Moreover, according to the proof for NOnP2,2(coo) = NRE ([11], page 261), the
universality is obtained for a network with two Mealy multiset automata, the first
one having two states, while the second one has only one state. �

Therefore a network of Mealy multiset automata is able to simulate Turing machines,
and so it is computationally complete. The number of cells and states sufficient to
characterize the power of Turing machines is rather small.

P systems are simulated on a cluster (network) of computers [6]. It would be
interesting to see whether such an implementation can be related to the network of
Mealy multiset automata.

References

[1] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, E. Shapiro. An autonomous molec-
ular computer for logical control of gene expression. Nature 429:423-429, 2004.

[2] G. Ciobanu, M. Gontineac. An Automata Description of the Genetic Message
Translation. Fundamenta Informaticae, 64:93-107, 2005.

G. Ciobanu, M. Gontineac

62

[3] G. Ciobanu, M. Gontineac. Mealy Multiset Automata. International Journal of
Foundations of Computer Science, 17(1):111-126, 2006.

[4] G. Ciobanu, M. Gontineac. Algebraic and Coalgebraic Aspects of Membrane
Computing. In volume 3850 of Lecture Notes in Computer Science, pages 181-
198, Springer-Verlag, 2006.

[5] G. Ciobanu, M. Gontineac. P Machines: An Automata Approach to Membrane
Computing. In volume 4361 of Lecture Notes in Computer Science, pages 314-
329, Springer-Verlag, 2006.

[6] G. Ciobanu, W. Guo. P Systems Running on a Cluster of Computers. In vol-
ume 2933 ofLecture Notes in Computer Science, pages 123-139, Springer-Verlag,
2004.

[7] E. Csuhaj-Varjú, C. Mart́ın-Vide, V. Mitrana. Multiset Automata. In Multiset
Processing, volume 2235 of Lecture Notes in Computer Science, pages 69-83,
Springer-Verlag, 2001.

[8] S. Eilenberg. Automata, Languages and Machines. Vol. A, Academic Press,
1976.

[9] H. de Jong. Modelling and Simulation of Genetic Regulatory Systems: A Lit-
erature Review. Journal of Computational Biology, 9:67-103, 2002.

[10] H. Kitano. Computational Systems Biology. Nature, 420:206-210, 2002.

[11] Gh. Păun. Membrane Computing: An Introduction. Springer-Verlag, 2002.

Networks of Mealy multiset automata

63

Extended Spiking Neural P Systems with Decaying

Spikes and/or Total Spiking

Rudolf Freund1, Mihai Ionescu2, and Marion Oswald1

1Faculty of Informatics, Vienna University of Technology

Favoritenstr. 9–11, A–1040 Vienna, Austria

{rudi,marion}@emcc.at
2 Research Group on Mathematical Linguistics

Rovira i Virgili University

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

armandmihai.ionescu@urv.cat

Abstract

We consider extended variants of spiking neural P systems with decaying
spikes (i.e., the spikes have a limited lifetime) and/or total spiking (i.e., the
whole contents of a neuron is erased when it spikes). Although we use the
extended model of spiking neural P systems, these restrictions of decaying spikes
and/or total spiking do not allow for the generation or the acceptance of more
than regular sets of natural numbers.

1 Introduction

Spiking neural P systems (in short SNP systems) are a growing research direction
in the membrane computing community and have as core concept the idea of neural
communication through electrical pulses called spikes, or action potential. It is
known that the spikes of a given neuron all look alike, so the form of the action
potential does not carry any information. But what matters is the timing and the
number of spikes entering a (postsynaptic) neuron (for details on spiking neurons
we refer to [5], [8] or [9]).

Initially defined in [7], SNP systems are represented as a graph with the neurons
placed in the nodes of the graph. They are sending signals (spikes) along the synapses
(the edges of the graph) if the firing rules inside each neuron can be activated. Hence,
the structure is that of a tissue-like P system (e.g., see [4]) where the objects are
all of the same form (an introduction to membrane computing can be found at [10]
and an up-to-date information on this area is available online at [12]).

The functioning of an SNP system is rather simple. A global clock is assumed,
and in each time unit each neuron which can use a rule should use it. The system is
synchronized but it works sequentially at the level of the neurons: in every step at
most one rule is used in each of them. In a generating system, one of the neurons
is the designated output neuron, from which spikes are sent to the environment –

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 64 - 75, 2007.

64

eventually only the difference between the first two spikes is considered to be the
output number, see [7] – or else are collected as output, whereas in an analyzing
(or accepting) system (spiking neural P automaton) the designated input neuron
contains the initial number to be analyzed (accepted) as the number of spikes in the
cell or else we take the difference between the first two input spikes as input.

Going back to neural biology, it is worth mentioning that the effect of a spike
on the postsynaptic neuron can be measured, and is called the membrane potential
(the potential difference between the interior of the cell and its surroundings). If
the neuron has no electrical activity, its membrane potential is constant. After
the arrival of a single spike, the potential changes and finally decays back to the
resting potential. Hence, if no other spikes arrive in a certain amount of time in the
postsynaptic neuron, the initial spike is lost (disappears) and has no further effect
on the neuron.

In this paper we incorporate this phenomenon in SNP systems. We also model
the threshold of the neuron in a different way than it was considered before. More
precisely, if the threshold of a neuron is k, then if at any time during the computation
the neuron has inside a number of spikes greater or equal to k the neuron must
fire, and then erase its whole contents; in a more general way, we here consider
total firing where a neuron has to empty its whole contents when firing provided its
current contents belongs to a given regular set. As the underlying model in which we
shall elaborate these ideas of decaying spikes and total firing we shall take extended
spiking neural P systems, see [1], and we shall show that even this extended model
does not allow us to go beyond regularity when using decaying spikes and/or total
firing.

2 Preliminaries

For the basic elements of formal language theory needed in the following, we refer
to any monograph in this area, in particular, to [3] and [11]. We just list a few
notions and notations: V ∗ is the free monoid generated by the alphabet V under
the operation of concatenation and the empty string, denoted by λ, as unit element.
N+ denotes the set of positive integers, N is the set of non-negative integers (natural
numbers), i.e., N = N+∪{0}. For 0 ≤ k ≤ m, the interval of natural numbers
between k and m is denoted by [k..m]. Observe that there is a one-to-one corre-
spondence between a set N ⊆ N and the one-letter language L (N) = {an | n ∈ N},
hence, N is a regular (semilinear) set of non-negative integers if and only if L (N)
is a regular language; on the other hand, for a given one-letter language L the
corresponding set of natural numbers {n | an ∈ L} is denoted by N (L). By FIN
and REG we denote the families of finite sets and regular sets of natural numbers,
respectively. For a finite set N , |N | denotes the cardinality of N .

A deterministic finite automaton M is a construct (Q,T, δ, q0, F) where Q is a set
of states, T is a set of terminal symbols, δ : Q×T → Q is the transition function, q0 is
the initial state, and F ⊆ Q is a set of final states; in the case of a non-deterministic
finite automaton, δ is a finite subset of Q×T ∗×Q. The language accepted by M is
denoted by L (M). The regular grammar G corresponding to the non-deterministic

Extended spiking neural P systems with decaying spikes and/or total spiking

65

finite automaton is G = (Q,T, P, q0) where P is the set of productions with P =
{p → wq | (p,w, q) ∈ δ}∪{p → λ | p ∈ F}. As is well known, the family of languages
accepted by (deterministic or non-deterministic) finite automata coincides with the
family of regular languages and equals the family of languages generated by regular
grammars; hence, the families of one-letter languages accepted by (deterministic or
non-deterministic) finite automata or generated by regular grammars coincide with
REG.

3 Extended Spiking Neural P Systems

The reader is supposed to be familiar with basic elements of membrane computing,
e.g., from [10]; comprehensive information can be found on the P systems web page
[12]. Moreover, for the motivation and the biological background of spiking neural
P systems we refer the reader to [7]. The following definition is mainly taken from
[1]:

An extended spiking neural P system (of degree m ≥ 1) (in the following we shall
simply speak of an ESNP system) is a construct

Π = (m,S,R)

where

• m is the number of cells (or neurons); the neurons are uniquely identified by
a number between 1 and m (obviously, we could instead use an alphabet with
m symbols to identify the neurons);

• S describes the initial configuration by assigning an initial value (of spikes)
to each neuron; for the sake of simplicity, we assume that at the beginning
of a computation we have no pending packages along the axons between the
neurons;

• R is a finite set of rules of the form
(

i, E/ak → P ; d
)

such that i ∈ [1..m]
(specifying that this rule is assigned to cell i), E ⊆ REG is the checking set
(the current number of spikes in the neuron has to be from E if this rule
shall be executed), k ∈ N is the “number of spikes” (the energy) consumed
by this rule, d is the delay (the “refraction time” when neuron i performs this
rule), and P is a (possibly empty) set of productions of the form (l, w, t) where
l ∈ [1..m] (thus specifying the target cell), w ∈ N is the weight of the energy
sent along the axon from neuron i to neuron l, and t is the time needed before
the information sent from neuron i arrives at neuron l (i.e., the delay along
the axon).

A configuration of the ESNP system is described as follows:

• for each neuron, the actual number of spikes in the neuron is specified;

• in each neuron i, we may find an “activated rule”
(

i, E/ak → P ; d′
)

waiting to
be executed where d′ is the remaining time until the neuron spikes;

R. Freund, M. Ionescu, M. Oswald

66

• in each axon to a neuron l, we may find pending packages of the form (l, w, t′)
where t′ is the remaining time until w spikes have to be added to neuron l
provided it is not closed for input at the time this package arrives.

A transition from one configuration to another one now works as follows:

• for each neuron i, we first check whether we find an “activated rule”
(

i, E/ak → P ; d′
)

waiting to be executed; if d′ = 0, then neuron i “spikes”,
i.e., for every production (l, w, t) occurring in the set P we put the corre-
sponding package (l, w, t) on the axon from neuron i to neuron l, and after
that, we eliminate this “activated rule”

(

i, E/ak → P ; d′
)

;

• for each neuron l, we now consider all packages (l, w, t′) on axons leading
to neuron l; provided the neuron is not closed, i.e., if it does not carry an
activated rule

(

i, E/ak → P ; d′
)

with d′ > 0, we then sum up all weights w in
such packages where t′ = 0 and add this sum to the corresponding number of
spikes in neuron l; in any case, the packages with t′ = 0 are eliminated from
the axons, whereas for all packages with t′ > 0, we decrement t′ by one;

• for each neuron i, we now again check whether we find an “activated rule”
(

i, E/ak → P ; d′
)

(with d′ > 0) or not; if we have not found an “activated
rule”, we now may apply any rule

(

i, E/ak → P ; d
)

from R for which the
current number of spikes in the neuron is in E and then put a copy of this
rule as “activated rule” for this neuron into the description of the current
configuration; on the other hand, if there still has been an “activated rule”
(

i, E/ak → P ; d′
)

in the neuron with d′ > 0, then we replace d′ by d′ − 1 and
keep

(

i, E/ak → P ; d′ − 1
)

as the “activated rule” in neuron i in the description
of the configuration for the next step of the computation.

After having executed all the substeps described above in the correct sequence,
we obtain the description of the new configuration. A computation is a sequence of
configurations starting with the initial configuration given by S. A computation is
called successful if it halts, i.e., if no pending package can be found along any axon,
no neuron contains an activated rule, and for no neuron, a rule can be activated.

An ESNP is called finite if all the regular checking sets in the rules are finite.
In this paper, however, we will consider the following variants of the above

systems:

1. ESNP systems with decaying spikes:

The spikes in the system are decaying, i.e., they only have a limited lifetime
before disappearing. In this case, a spike a is now written in the form (a, e),
where e ≥ 1 is the decay that, from the moment a spike (a, e) arrives in
a neuron, is decremented by one in each step of the computation. As soon
as e = 0, the corresponding spike is lost and cannot be used anymore. There
could be different strategies with respect to the question which spikes should be
consumed when the neuron fires, but these considerations are of no importance
for the results elaborated below.

Extended spiking neural P systems with decaying spikes and/or total spiking

67

2. ESNP systems with total spiking:

In this case, the whole contents of the neuron is lost as soon as a spiking
rule (i, E/ → P ; d′) (we omit specifying the number of spikes to be consumed
when applying such a rule) can be applied in neuron i as the number of spikes
present in the cell is in E.

As a special case of ESNP systems with total spiking we could also consider
ESNP systems with thresholds where the regular sets E all are of the special
form {n ∈ N |n ≥ h} with h being the so-called threshold. In this case, the rule
(i, E/ → P ; d′) is also written as (i,≥ h/ → P ; d′). We postpone a thorough discus-
sion of these restricted variants for a longer version of this paper, yet we shall use
the notation in special examples for ESNP systems with total spiking.

For decaying spikes and total spiking and even a combination of these two, we
will consider ESNP systems as generating as well as accepting devices, where the
output (input in the case of accepting devices, respectively) is either given in a
specified output (input) neuron, or else as the distance between the first two spikes
exiting (entering) the system.

4 Results

As throughout this section we do not use delays in the rules and productions,
we simply shall omit them to keep the description of the systems concise, e.g.,
instead of

(

2,
{

ai
}

/ai →
{(

2, aj , 0
)

, (1, a, 0)
}

; 0
)

, in the following we shall write
(

2,
{

ai
}

/ai →
{(

2, aj
)

, (1, a)
})

.

First we investigate the generative power of extended spiking neural P systems
with decaying spikes and/or total spiking; in the following, for generating ESNP
systems we shall always assume that the output neuron contains no spiking rules;
moreover, the neurons except the output neuron are called actor neurons:

When we consider the output to be the number of spikes at the end of a successful
computation, then ESNP systems with decaying spikes can only generate finite sets,
because the number of spikes that can be added in one step to the contents of a
neuron is bounded, but the spikes in a neuron have a limited life-time, hence, at
any moment the number of spikes in a neuron is bounded. On the other hand,
every finite set of natural numbers can be generated by an extended spiking neural
P system with spikes of minimal decay with only two neurons:

Example 1 Any finite set of natural numbers N can be generated by a finite ESNP
system with spikes of minimal decay with only two neurons.

Let N be a finite set of natural numbers. We now construct the finite ESNP
system Π that generates an element of N by the number of spikes contained in the
output neuron 1 at the end of a successful computation:

Π = (2, S,R) ,
S = {(1, λ) , (2, (a, 1))} ,

R =
{(

2, {(a, 1)} / (a, 1) →
{(

1, (a, 1)j
)})

| j ∈ N
}

;

R. Freund, M. Ionescu, M. Oswald

68

after one step, every computation halts, the output neuron having received a number
of spikes corresponding to a number from N . We could even add the feature of total
spiking or minimal threshold 1 in order to obtain the same result; in this case, R
would be written as

{(

2, {(a, 1)} / →
{(

1, (a, 1)j
)})

| j ∈ N
}

or
{(

2,≥ 1/ →
{(

1, (a, 1)j
)})

| j ∈ N
}

.

For the sake of completeness, we should like to mention that the empty set is
generated by the ESNP system

Π0 = (2, S,R0) ,
S = {(1, λ) , (2, (a, 1))} ,
R0 = {(2,≥ 1/ → {(2, (a, 1))})} ,

which only has one infinite computation.

In sum, the ESNP systems with decaying spikes (even together with total spiking)
generating the result as the number of spikes in the output neuron at the end of a
successful computation characterize the finite sets of natural numbers:

Theorem 2 Any finite set of natural numbers N can be generated by a ESNP system
with spikes of minimal decay with only two neurons (even with total spiking, too).
On the other hand, every set of natural numbers generated in the output neuron by
an ESNP system with decaying spikes (even with total spiking, too) is finite.

If we only consider the output to be the difference between the first two spikes
arriving in the output neuron during a halting computation, then we obtain a char-
acterization of the regular sets of natural numbers even with ESNP systems with
decaying spikes:

Example 3 Let N be a regular set of natural numbers accepted by the deterministic
finite automaton M = (Q, {a} , δ, 1, F) with Q = [1..m]. Then L (M) is generated
as the difference between the (first) two spikes arriving in the output neuron by the
following ESNP system with decaying spikes and total spiking Π′ with the output
neuron 1:

Π′ = (2, S′, R′) ,

S′ =
{

(1, λ) ,
(

2, (a, 1)m+1
)}

,

R′ =
{(

2,
{

(a, 1)i
}

/ →
{(

2, (a, 1)j
)})

| i, j ∈ [1..m] , δ (i, a) = j
}

∪
{(

2,
{

(a, 1)i
}

/ → {(1, (a, 1))}
)

| i ∈ [1..m] , i ∈ F
}

∪
{(

2,
{

(a, 1)m+1
}

/ → {(1, (a, 1)) , (2, (a, 1))}
)}

.

Obviously, this system can also be interpreted as ESNP with having only one of the
features decaying spikes and total spiking.

Extended spiking neural P systems with decaying spikes and/or total spiking

69

If only the restricted variant of total spiking with thresholds is used, then we need
a more complicated ESNP system Π′′ (without or even with decaying spikes) where
each state i of M is represented by the neuron i + 1:

Π′′ = (m + 2, S′′, R′′) ,
S′′ = {(m + 2, (a, 1))} ∪ {(i, λ) | i ∈ [1..m + 1]} ,
R′′ = {(i,≥ 1/ → {(j, (a, 1))})

| i, j ∈ [2..m + 1] , δ (i− 1, a) = j − 1}
∪ {(i,≥ 1/ → {(1, (a, 1))}) | i ∈ [2..m + 1] , i− 1 ∈ F}
∪ {(m + 2,≥ 1/ → {(1, (a, 1)) , (2, (a, 1))})} .

In fact, the control set {n ≥ 1} could be replaced by the finite set {1}, i.e., Π′′

corresponds to a finite system.
A slight modification of the ESNP system Π′′ yields the ESNP system Π′′′ which

generates L (M) as the number of spikes in the output neuron even with the minimal
threshold, but obviously only without decays:

Π′′′ = (m + 1, S′′, R′′′) ,
S′′ = {(2, a)} ∪ {(i, λ) | i ∈ {1} ∪ [3..m + 1]} ,
R′′′ = {(i,≥ 1/ → {(1, a) , (j, a)})

| i, j ∈ [2..m + 1] , δ (i− 1, a) = j − 1}
∪ {(i,≥ 1/ → ∅) | i ∈ [2..m + 1] , i− 1 ∈ F} .

In [1] it was shown that every ESNP system where the number of spikes remains
bounded can only generate regular sets. The same arguments used to prove this
result immediately show that ESNP systems with decaying spikes can only generate
regular sets because the number of spikes is bounded in these cases and therefore
the behaviour of the ESNP systems can be modeled by a (non-deterministic) finite
automaton. Yet the same also holds true for ESNP systems with total firing:

Theorem 4 Every language generated by an ESNP system with total firing is reg-
ular.

Proof (sketch). Let Π be an ESNP system with total firing. Then the regular sets
used in the rules of Π are of a very special form, i.e., they are a finite union of
very simple sets which either are equal to {y} or of the form {xn + y | n ∈ N} with
x, y ∈ N and x 6= 0. Hence, it is sufficient to store the actual contents of a neuron
as a vector remembering for each of these sets either the value until it exceeds y for
{y} and the module class after exceeding y for {xn + y | n ∈ N}, i.e., in sum we only
have a finite number of possible states of each neuron we have to consider instead
of the actual values which eventually might go beyond any fixed bound.

Then the number of configurations differing in the actor neurons (i.e., the neurons
except the output neuron) and the packages along the axons, but without considering
the contents of the output neurons, is finite, hence, we can assign non-terminal
symbols Ak to each of these configurations and take all right-regular productions
Ai → akAj such that k is the number of spikes added the output neuron when
going from configuration i to configuration j. The initial configurations is the start

R. Freund, M. Ionescu, M. Oswald

70

symbol of the regular grammar G constructed in that way, and, finally, for all halting
configurations i we add the production Ai → λ. In that way we can construct a
regular grammar generating a one-letter language corresponding with the set of
natural number generated by Π in the output neuron.

These considerations can also be taken over to the case when the output is taken
as the difference between the (first) two spikes arriving in the output neuron: here
we use productions of the form Ai → Aj for the periods before the first spike appears
in the output neuron; afterwards we take productions Ai → aAj , i.e., for each time
step in Π we generate one symbol a in a derivation in G. After the second spike
has appeared in the output neuron we continue again with productions of the form
Ai → Aj , and as for the previous case we finish with productions Ai → λ for all
halting configurations i. �

Hence, we can summarize these results characterizing REG for the generating cases
as follows:

Theorem 5 Any regular set N ∈ REG can be generated by an ESNP system with
decaying spikes and/or total firing and the output taken as the difference between
the first two spikes arriving in the output neuron during a successful computation;
moreover, N can also be generated by an ESNP system with total firing and the
output given as the number of spikes in the output neuron at the end of a successful
computation. On the other hand, every language generated by an ESNP system with
total firing or by an ESNP system with decaying spikes and/or total firing and the
output being the difference between the first two spikes arriving in the output neuron
during a successful computation is regular.

Now we consider the accepting case where the case of the input being given as the
number of spikes in the input neuron (we always assume that the input neuron gets
its input only from the environment) is quite trivial:

Example 6 Let N be a regular set of natural numbers. Then N is accepted by the
ESNP system with decaying spikes and/or total firing

Π(N) = (2, {(1, λ) , (2, λ)} , R (N)) ,
R (N) = {(1, L (N−N) / → {(2, (a, 1))}) , (2, {a} / → {(2, (a, 1))})} .

The input n is given by (a, 1)n in the first neuron which fires if and only if n /∈ N ,
hence the infinite loop in the second neuron is only started in this case, whereas
for n ∈ N the system immediately halts. We should like to mention that the spike
consumed by the rule (2, {a} / → {(2, (a, 1))}) will always be a decaying spike (a, 1).

Example 7 Let N be a regular set of natural numbers accepted by the deterministic
finite automaton M = (Q, {a} , δ, 1, F) with Q = [1..m]. Then N (L (M)) is accepted
as the input being given as the difference between the first and the second spike
arriving in the input neuron by the following finite ESNP system with total spiking

Extended spiking neural P systems with decaying spikes and/or total spiking

71

even when using spikes with minimal decay:

Πt =
(

m + 5, St, Rt
)

,
St = {(2, (a, 1))} ∪ {(i, λ) | i ∈ {1} ∪ [3..m + 5]} ,
Rt = {(1, {(a, 1)} / → {(m + 2, (a, 1)) , (m + 3, (a, 1)) , (m + 4, (a, 1))})}

∪ {(m + 2, {(a, 1)} / → {(m + 2, (a, 1)) , (m + 4, (a, 1))})}

∪
{(

m + 2,
{

(a, 1)2
}

/ →
{(

m + 3, (a, 1)2
)

, (m + 5, (a, 1))
})}

∪ {(m + 3, {(a, 1)} / → ∅)}

∪
{(

m + 3,
{

(a, 1)2
}

/ →
{(

m + 3, (a, 1)2
)})}

∪
{(

m + 3,
{

(a, 1)3
}

/ → {(j, (a, 1)) | j ∈ [2..m + 1]}
)}

∪ {(m + 4, {(a, 1)} / → ∅)}

∪
{(

m + 4,
{

(a, 1)2
}

/ → {(m + 5, (a, 1))}
)}

∪ {(m + 5, {(a, 1)} / → ∅)}

∪
{(

m + 5,
{

(a, 1)2
}

/ →
{(

2, (a, 1)2
)})}

∪
{(

i,
{

(a, 1)2
}

/ →
{(

j, (a, 1)2
)})

| i, j ∈ [2..m + 1] , δ (i− 1, a) = j − 1}

∪
{(

i,
{

(a, 1)3
}

/ → ∅
)

| i ∈ [2..m + 1] , i− 1 ∈ F
}

.

The neuron m + 2 keeps the computation alive until the input neuron 1 spikes for
the first time. This starting impulse is also propagated through neurons m + 4 and
m + 5 to neuron 2 (which corresponds to the initial state of M). This delay through
neurons m+4 and m+5 allows for starting the loop in neuron m+3 in time, because
this loop can only be ceased by the second spike arriving in the input neuron, which
then also has to be propagated to the neuron i representing the actual state i − 1

of M and to halt the computation in Πt by applying the rule
(

i,
{

(a, 1)3
}

/ → ∅
)

provided i− 1 is a final state in M .

Again similar arguments as in Theorem 5 can be applied when considering ESNP
systems accepting a number given as this number of spikes in the input neuron or
else as the difference between the (first) two spikes introduced in the input neuron
from the environment:

Theorem 8 Every set of natural numbers accepted by an ESNP system with total
firing and/or decaying spikes is regular.

Proof (sketch). Let Π be an ESNP system with total firing and/or decaying spikes.
We then construct a (non-deterministic) finite automaton M accepting the regular
language corresponding with the set of natural numbers accepted by Π̇:

First we consider the case where the input is given as the number of spikes in
the input neuron. For an ESNP system with total spiking, we first construct a finite
automaton M ′ which analyses the given input according to the rules of Π in the
input neuron, which, as already elaborated in the proof of Theorem 5 are of a very
special form, i.e., they are a finite union of very simple sets which either are equal
to some singleton set {y} or of the form {xn + y | n ∈ N} with x, y ∈ N and x 6= 0.

R. Freund, M. Ionescu, M. Oswald

72

Hence, it is sufficient to evaluate the contents of the input neuron to a state of M ′

which represents a vector remembering for each of these sets either the value until
it exceeds y for {y} and the module class after exceeding y for {xn + y | n ∈ N}.
According to the state of M ′ finally reached with the input string, we then know
whether the input neuron would spike or not. M then consists of M ′ and M ′′ where
M ′′ is constructed to start with the information from the computation in M ′ and
then simulates the transitions in Π without taking into account the input neuron
anymore. M ′′ only makes λ-transitions until it reaches a state corresponding to a
halting configuration; exactly these states corresponding to a halting configuration
are the final states of M , i.e., M halts in a final state if and only if Π halts. If we add
the feature of decaying spikes, this has no influence on M ′, we only have to take it
into account for M ′′. Observe that in any case, the construction of M ′′ again relies
on the finiteness of the description of the actual contents of the neurons possible for
total firing. On the other hand, if we have only decaying spikes (a, e) given in the
input neuron, but no total spiking, after e steps no further information is left in the
input neuron. Hence, we can apply a similar construction for a finite automaton M
where we integrate the possible states of the input neuron in the possible behaviour
of the whole system which remains bounded due to the fact that with decaying
spikes the maximal number of spikes in the whole system remains bounded after the
first e steps.

If the input is given as the difference between the first two spikes in the input
neuron, then we have to construct M in three substeps: In the first step, the ESNP
system works without taking into consideration the input cell. In all cases, i.e.,
working with decaying spikes and/or total spiking, we only get a finite set of possible
states QI and corresponding transitions between them which exactly simulate the
behaviour of the ESNP system. For every state q ∈ QI we now take a state q′ which
only differs from q by having one spike in the input neuron; in that way we get a set
Q′

I describing the configurations of Π when the first input spike arrives. Starting
with Q′

I we now compute all possible configurations and the transitions between
them, which yields the set QC . For every state q ∈ QC we now take a state q′ which
only differs from q by having one spike in the input neuron; in that way we get a set
of states Q′

C describing the configurations of Π when the second input spike arrives.
The states in Q′

C are the starting point for the third and last step of the simulation,
which again can be described by a finite set of states QO and the transitions between
them. For getting M from QI , Q′

I , QC , Q′

C , and QO and the transitions between
these states, we take the union of all these states as the set of states for M ; the initial
state is the state from QI corresponding to the initial configuration; the final states
are those states from QO that correspond to a halting configuration; the transitions
between the states in QI , between the states in QI and those in Q′

I , the transitions
between the states in QC and those in Q′

C , as well as the transitions between the
states in QO are λ-transitions in M , whereas a transition between the states p and
q in QC corresponds with an a-transition (p, a, q) in M , i.e., each time step between
the first and the second spike arriving in the input neuron in Π consumes one symbol
a in M . This observation completes the proof. �

Hence, we can summarize the results characterizing REG for the accepting cases as

Extended spiking neural P systems with decaying spikes and/or total spiking

73

follows:

Theorem 9 Any regular set N ∈ REG can be accepted by an ESNP system with
decaying spikes and/or total firing, the input either being given in the input neuron
or else being taken as the difference between the first two spikes arriving in the input
neuron during a successful computation. On the other hand, every language accepted
by an ESNP system with decaying spikes and/or total firing, the input either being
given in the input neuron or else being taken as the difference between the first
two spikes arriving in the input neuron from the environment during a successful
computation, is regular.

5 Conclusion

In this paper, we have investigated extended spiking neural P systems with decaying
spikes and/or total spiking, and we have proved that even when combining decaying
spikes and/or total spiking we get a characterization of the regular sets of natural
numbers with these systems being considered as generating devices or else as ac-
cepting devices (automata), except for the following cases: extended spiking neural
P systems with decaying spikes (even with total spiking, too) used as generating
devices with the output being given as the number of spikes in the output neuron
at the end of a successful computation yield a characterization of the finite sets.

In an extended version we shall also investigate the generating and accepting
power of spiking neural P systems incorporating only the original features or even
more restricted variants (e.g., see [6]) as well as decaying spikes and/or total spiking.
Moreover, ESNP systems with thresholds deserve further investigations. Finally,
(E)SNP systems should also be considered as generators or acceptors for sets of
vectors of natural numbers as well as even of string languages (e.g., compare [2]).

6 Acknowledgements

The work of Marion Oswald is supported by FWF-project T225-N04.

References

[1] A. Alhazov, R. Freund, M. Oswald, M. Slavkovik. Extended Spiking Neu-
ral P Systems Generating Strings and Vectors of Non-Negative Integers. In:
H.J. Hoogeboom, Gh. Păun, G. Rozenberg, editors, Workshop on Membrane
Computing, WMC7, Leiden, The Netherlands 2006, LNCS 4361, pages 123-134.
Springer, 2007.

[2] H. Chen, R. Freund, M. Ionescu, Gh. Păun, M. J. Pérez-Jiménez. On String
Languages Generated by Spiking Neural P Systems. In M.A. Gutiérrez-Naranjo,
Gh. Păun, A. Riscos-Núñez, F. José Romero-Campero, editors, Fourth Brain-
storming Week on Membrane Computing, Vol. I, RGNC REPORT 02/2006,
pages 169-194. Research Group on Natural Computing, Sevilla University, Fénix
Editora, Sevilla, 2006.

R. Freund, M. Ionescu, M. Oswald

74

[3] J. Dassow, Gh. Păun. Regulated Rewriting in Formal Language Theory.
Springer-Verlag, Berlin, 1989.

[4] R. Freund, Gh. Păun, M.J. Pérez-Jiménez. Tissue-like P systems with channel
states. Theoretical Computer Science, 330:101–116, 2005.

[5] W. Gerstner, W. Kistler. Spiking Neuron Models. Single Neurons, Populations,
Plasticity. Cambridge Univ. Press, 2002.

[6] O. H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sośık, S. Woodworth.
Normal Forms for Spiking Neural P Systems. In M. A. Gutiérrez-Naranjo,
Gh. Păun, A. Riscos-Núñez, F. José Romero-Campero, editors, Fourth Brain-
storming Week on Membrane Computing, Vol. II, RGNC REPORT 02/2006,
pages 105-136. Research Group on Natural Computing, Sevilla University, Fénix
Editora, Sevilla, 2006.

[7] M. Ionescu, Gh. Păun, T. Yokomori. Spiking neural P systems. Fundamenta
Informaticae, 71(2–3):279–308, 2006.

[8] W. Maass. Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK, 8(1):32–36, 2002.

[9] W. Maass, C. Bishop, editors. Pulsed Neural Networks. MIT Press, Cambridge,
1999.

[10] Gh. Păun. Membrane Computing: An Introduction. Springer-Verlag, Berlin,
2002.

[11] G. Rozenberg, A. Salomaa, editors. Handbook of Formal Languages (3 volumes).
Springer-Verlag, Berlin, 1997.

[12] The P Systems Web Page, http://psystems.disco.unimib.it

Extended spiking neural P systems with decaying spikes and/or total spiking

75

Principles of Transforming Communicating X-Machines

to Population P Systems

Petros Kefalas1, Ioanna Stamatopoulou2, and Marian Gheorghe3

1CITY College, Dept. of Computer Science

Tsimiski 13, Thessaloniki 54624, Greece

kefalas@city.academic.gr

2South-East European Research Centre

Mitropoleos 17, Thessaloniki 54624, Greece

istamatopoulou@seerc.org

3University of Sheffield, Dept. of Computer Science

Regent Court, 211 Portobello Str., Sheffield S1 4DP, UK

m.gheorghe@dcs.shef.ac.uk

Abstract

Population P Systems is a class of P Systems in which cells are arranged in a
graph rather than a hierarchical structure. On the other hand, Communicating
X-machines are state-based machines, extended with a memory structure and
transition functions instead of simple inputs, which communicate via message
passing. One could use Communicating X-machines to create system models
built out of components in a rather intuitive way. It is worth investigating how
existing Communication X-machine models can be transformed to Population
P system models so that we could take advantage of the dynamic features of
the latter. In this paper, we attempt to define the principles of transform-
ing Communicating X-machines to Population P Systems. We describe the
rules that govern such transformation and we present an example in order to
demonstrate the feasibility of the transformation and discuss its advantages and
shortcomings.

1 Introduction

In the last years, attempts have been made to devise computational models in the
form of generative devices, such as P systems [13] and its variants. These new
computational paradigms have been used to solve well-known hard problems. Oc-
casionally, some attempts also have been made to use P Systems towards modelling
of swarm-based multi-agent systems [14], in order to take advantage of the recon-
figuration features of P systems, such as cell death, cell division, reconfiguration of
structure etc. The main problem which appears in such modelling activity is that
the model resulting for the object interaction within a cell is not always easy to de-
velop. On the other hand, state-based models provide the necessary “intuitiveness”

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 76 - 89, 2007.

76

to model the behaviour of system components or agents. For instance, communi-
cating X-machines have been used as a suitable paradigm of modelling agent based
specification [11].

As a natural consequence of the above complementary features is to either try
to combine both formalisms [17, 18] or to transform one formalism to another. The
current trend in P system community research shows more interest in connecting
this model with other computational approaches - Petri nets [12], process algebra [3],
cellular automata [4] etc. In the past relationships between some classes of P systems
and communicating X-machines have been investigated. Especially transformations
of P systems into communicating stream X-machines have been particularly consid-
ered [9]. Most of these studies have been interested in translations between these
models in order to make use of various strengths offered by different formalisms -
model checking, for process algebra, invariants, for Petri nets, or testing methods,
for X-machines.

This paper presents some principles for transforming Communicating X-machi-
nes to Population P Systems. Section 2 provides the basic background on X-machine
modelling and Communicating X-Machines accompanied by an example. The defini-
tion and advantages of Population P Systems are presented in Section 3. In Section
4, we demonstrate how a transformation from one model to another is feasible and
apply the guidelines to the particular example. We then discuss how the resulting
model could be enhanced further to take advantage of the dynamic features of Pop-
ulation P Systems. We conclude by discussing the ideas behind the transformation
and the issues that need further consideration.

2 State-Based Modelling with X-Machines

2.1 X-machines

X-machines (XM), a state-based formal method introduced by Eilenberg [5], are
considered suitable for the formal specification of a system’s components. Stream
X-machines, in particular, were found to be well-suited for the modelling of reactive
systems. Since then, valuable findings using the X-machines as a formal notation for
specification, communication, verification and testing purposes have been reported
[6, 7, 10]. An X-machine model consists of a number of states and also has a memory,
which accommodates mathematically defined data structures. The transitions be-
tween states are labelled by functions. More formally, a steam X-machine is defined
as the 8-tuple (Σ ,Γ , Q,M,Φ, F, q0 ,m0) where:

• Σ and Γ are the input and output alphabets respectively;

• Q is the finite set of states;

• M is the (possibly) infinite set called memory;

• Φ is a set of partial functions ϕ that map an input and a memory state to an
output and a possibly different memory state, ϕ : Σ ×M → Γ ×M ;

Principles of transforming communicating X-machines to population P systems

77

• F is the next state partial function, F : Q× Φ → Q, which given a state and
a function from the type Φ determines the next state. F is often described as
a state transition diagram;

• q0 and m0 are the initial state and initial memory respectively.

For the purposes of this work we consider that the memory M is of the form
M = (m1, . . . ,mn), where each mi is a label that refers to any arbitrary value from
a domain set Di.

2.2 Example of XM

Assume a system that consists of two XM models, i.e. one traffic light and one
car. The traffic light XM has a number of states Q = {green, yellow, red, off}
and a set of inputs Σ = {tick, power on, power off} representing a clock tick
and the availability of electricity respectively. The output Γ = {green, red, yel-
low, black} is the colour that the traffic light displays. The memory structure of
this XM holds the display duration (in clock ticks) of each colour and a timer that
counts down the ticks on each colour display. Therefore, M = (time left to change,
duration green, duration yellow, duration red), where time left to change ∈ N0,
and duration green, duration yellow, duration red ∈ N. An instance of the above
model, e.g. TL1, may have m0 = (20, 20, 3, 10) and q0 = green. The state transition
diagram F is depicted in Fig. 1. The set Φ consists of a number of functions, as for
example:

keep green(tick, (time left, dg, dy, dr)) = (green, (time left− 1, dg, dy, dr)),
if time left > 0

change yellow(tick, (0, dg, dy, dr)) = (yellow, (dy, dg, dy, dr))

switch off(power off, (tl, dg, dy, dr)) = (black, (tl, dg, dy, dr))

Similarly the car model (Fig. 1) is defined as follows:

Q = {stopped, accelerating, cruising, breaking}

M = (speed, decrease rate, position) with speed ∈ N0, decrease rate ∈ N and
position ∈ {free road, approaching light(TL)}, where TL is the identifier of the
specific traffic light the car is approaching.

Σ = {traffic light(TL), passed traffic light(TL), push break to stop,
push break, push accpedal, leave break, leave accpedal}

and Γ = N0 having each function output the current speed of the car.
An instance of car, e.g. CAR1, may have m0 = (100, 2, free road) and q0 =

cruising.
Indicatively some of the functions in Φ are:

approaching tl(traffic light(TL), (speed, decrease rate, pos)) =
(speed, (speed, decrease rate, approaching light(TL)))

start breaking(push break, (speed, decrease rate, pos)) =
(speed/decrease rate, (speed/decrease rate, decrease rate, pos))

decrease speed(push break, (speed, dr, pos)) = (speed/dr, (speed/dr, dr, pos))

stop(push break to stop, (speed, dr, pos)) = (0, (0, dr, pos))

start(push accpedal, (0, dr, pos)) = (10, (10, dr, pos))

P. Kefalas, I. Stamatopoulou, M. Gheorghe

78

Figure 1: State Transition Diagrams for two XMs: a traffic light and a car.

2.3 Communicating X-machines

In addition to having stand-alone X-Machine models, communication is feasible by
redirecting the output of one machine’s function to become input to a function of
another machine. The system structure of Communicating X-machines is defined
as the graph whose nodes are the components and edges are the communication
channels among them. A Communicating X-machine System Z is a tuple:

Z = ((Cx
i)i=1,...,n, R)

where:

• Cx
i is the i-th Communicating X-machine Component, and

• R is a relation defining the communication among the components, R ⊆ Cx×
Cx and Cx = {Cx

1 , . . . , Cx
n}. A tuple (Cx

i , Cx
k) ∈ R denotes that the X-machine

component Cx
i can output a message to a corresponding input stream of X-

machine component Cx
k for any i, k ∈ {1, . . . , n}, i 6= k.

A Communicating X-machine Component (CXM for short) can be derived by
incorporating into an X-machine information about how it is to communicate with
other X-machines that participate in the system. Exchange of messages among
the components is achieved by redirecting one component’s function output to be
received as input by a function of another machine. In order to define the commu-
nication interface of an X-machine two things have to be stated: (a) which of its

Principles of transforming communicating X-machines to population P systems

79

functions receive their inputs from which machines, and (b) which of its functions
send their outputs to other machines.

Graphically on the state transition diagram we denote the acceptance of input
from another component by a solid circle along with the name Cx

i of the CXM that
sends it. Similarly, a solid diamond with the name Cx

k denotes that output is sent
to the Cx

k CXM. An abstract example of the communication between two CXMs is
depicted in Fig. 2. It has to be noted that though a function ϕ may only read from
one component at a time, it is possible that it sends its output to more than one
components. A complete formal definition of Communicating X-Machines can be
found in [16].

Figure 2: Abstract example of the communication between two Communicating X-machine
Components.

2.4 Example of CXM

The two instances TL1 and CAR1 may form a communicating system as illustrated
in Fig. 3. Functions of TL1 send messages to CAR1, through the transformation
function T :

T (change yellow) = push break
T (keep yellow) = push break
T (change red) = push break to stop
T (change green) = push accpedal

Functions in CAR1 accept those messages as inputs. The rest of the functions
not annotated with receive (read) or send (write) obtain their input from the envi-
ronment and send their output to the environment as normal.

3 Population P-Systems with Active Cells

A Population P System (PPS) [2] is a collection of different types of cells evolving
according to specific rules and capable of exchanging biological / chemical substances
with their neighbouring cells (Fig. 4). More formally, a PPS with active cells [2] is
defined as a construct P = (V,K, γ, α,wE , C1, C2, . . . , Cn, R) where:

• V is a finite alphabet of symbols called objects;

• K is a finite alphabet of symbols, which define different types of cells;

P. Kefalas, I. Stamatopoulou, M. Gheorghe

80

Figure 3: A CXM system consisting of one traffic light and a car.

• γ = ({1, 2, . . . n}, A), with A ⊆ {{i, j} | 1 ≤ i 6= j ≤ n }, is a finite undirected
graph;

• α is a finite set of bond-making rules of the form (t, x1;x2, p), with x1, x2 ∈ V ∗

(multi-sets of objects represented as strings), and t, p ∈ K meaning that in the
presence of x1 and x2 inside two cells of type t and p respectively, a bond is
created between the two cells;

• wE ∈ V ∗ is a finite multi-set of objects initially assigned to the environment;

• Ci = (wi, ti), for each 1 ≤ i ≤ n, with wi ∈ V ∗ a finite multi-set of objects,
and ti ∈ K the type of cell i;

• R is a finite set of rules dealing with communication, object transformation,
cell differentiation, cell division and cell death.

All rules present in the PPS are identified by a unique identifier, r. More par-
ticularly:

Communication rules are of the form r : (a ; b, in)t, r : (a ; b, enter)t, r :
(b, exit)t, for a ∈ V ∪{λ}, b ∈ V , t ∈ K, where λ is the empty string, and allow the
moving of objects between neighbouring cells or a cell and the environment according
to the cell type and the existing bonds among the cells. The first rule means that
in the presence of an object a inside a cell of type t an object b can be obtained by

Principles of transforming communicating X-machines to population P systems

81

Figure 4: An abstract example of a Population P System; Ci: cells, Ri: sets of rules
related to cells; wi: multi-sets of objects associated to the cells.

a neighbouring cell non-deterministically chosen. The second rule is similar to the
first with the exception that object b is not obtained by a neighbouring cell but by
the environment. Lastly, the third rule denotes that if object b is present it can be
expelled out to the environment.

Transformation rules are of the form r : (a → b)t, for a ∈ V , b ∈ V +, t ∈ K,
where V + is the set of non-empty strings over V , meaning that an object a is
consumed and replaced by an object b within a cell of type t.

Cell differentiation rules are of the form r : (a)t → (b)p, with a, b ∈ V , t, p ∈ K
meaning that consumption of an object a inside a cell of type t changes the cell,
making it become of type p. All existing objects remain the same besides a which
is replaced by b.

Cell division rules are of the form r : (a)t → (b)t (c)t, with a, b, c ∈ V , t ∈ K.
A cell of type t containing an object a is divided into two cells of the same type.
One of the new cell has a replaced by b while the other by c. All other objects of
the originating cell appear in both new cells.

Cell death rules are of the form r : (a)t → †, with a ∈ V , t ∈ K meaning that
an object a inside a cell of type t causes the removal of the cell from the system.

4 Transformation Principles

The question under investigation is whether some generic guidelines or principles
for transforming Communicating X-machines to Population P Systems exist. We
are dealing with two different methods that possess different characteristics. CXMs
provide a straightforward and rather intuitive way for dealing with a component’s
behaviour, however, the structure of a communicating system should be known in
advance and fixed throughout the computation. Additionally, CXM computation is
asynchronous. On the other hand, PPS provide a straightforward way for dealing
with the change of a system’s structure, however, the rules specifying the behaviour
of the individual cells in a PPS are of the simple form of rewrite rules which are not
that intuitive to model. Finally, PPS computation is synchronous.

The rationale behind such transformation is to automatically or semi-automati-
cally produce PPS models that can be later on enhanced with dynamic behaviour

P. Kefalas, I. Stamatopoulou, M. Gheorghe

82

features. This will have the advantage of using existing CXM models whose com-
ponents have been thoroughly verified and tested. The resulting PPS model will
have cells, objects, transformation and communication rules. The model can then
be enriched with cell differentiation, death, birth and bond making rules (see next
section).

4.1 Cells and types

Every CXM component will form a cell with objects, transformation and communi-
cation rules. We will refer to these cells as cells of a communicating type.

4.2 Objects in cells

We consider that all objects in the PPS are of the form (tag : value), tag being
a description that allows us to identify what each object represents. At least the
following objects must be present in a cell to represent:

• the states in Q: objects of the form (state : q), where q ∈ Q

• the memory M = (m1, . . . ,mn): objects of the form (m1 : d1) . . . (mn : dn)
where d1, . . . , dn ∈ D1, . . . ,Dn, with D1, . . . ,Dn being the finite domains of
each memory item

• the inputs in Σ : objects of the form (input : i), where i ∈ Σ

• the outputs in Γ : objects of the form (output : o), where o ∈ Γ

• the messages sent/received: objects of the form
(message : (m, sender, receiver)) where m is the actual message being sent.

4.3 Transformation rules

For every function ϕ : Σ ×M → Γ ×M such that ϕ(σ, (d1, ...dn)) = (γ, (d′

1, ...d
′

n)),
where di, d

′

i ∈ Di, σ ∈ Σ , γ ∈ Γ , for every q, q′ ∈ Q such that q′ ∈ F (ϕ, q) and for
(mi : di), (mi : d′

i) representing old and new values of the memory used by ϕ, a rule

ϕ : ((state : q) (input : σ) (m1 : d1) . . . (mn : dn)
→ (state : q′) (output : γ) (m1 : d′

1) . . . (mn : d′

n))t

is constructed.

4.4 Communication rules

For a function with communication annotations there are three different variations of
conformation rules (read only, write only, both read and write). For the latter, it be-
ing the most general one, we may consider that for every function ϕ : Σ×M → Γ×M
such that ϕ(σ, (d1, ...dn)) = (γ, (d′

1, ...d
′

n)), where di, d
′

i ∈ Di, σ ∈ Σ , γ ∈ Γ , for every
q, q′ ∈ Q such that q′ ∈ F (ϕ, q), for (mi : di), (mi : d′

i) representing old and new
values of the memory used by ϕ and for incoming ∈ Σ , T (ϕ) = outgoing a rule

Principles of transforming communicating X-machines to population P systems

83

ϕ : ((state : q) (mi : di) . . . (mj : dj)
(message : (incoming, sender, ∗this))

→ (state : q′) (output : γ) (mi : d′

i) . . . (mj : d′

j)

(message : (outgoing′, ∗this, receiver)))t

is constructed where ∗this denotes the identity of the cell containing the rule.
incoming is a message received from another cell (sender) therefore it is of type
Σ . outgoing is a message to be received by another cell (receiver) and thus must
be of the input type Σ of the receiver (this being accomplished by T (ϕ) = outgoing
which transforms the standard output of the function ϕ into something understand-
able for the receiver).

Every transformation rule for a function with communication annotations must
also be accompanied by a communication rule that will be responsible for importing
the message from a neighbouring cell (receiver) when a bond exists between them.
The communication rule resides always on the receiver side and it is of the form:
cr : (λ; (message : (incoming, sender, ∗this)), in)t

4.5 Main result

The constructions described by the previous subsections lead to the following:

Theorem 4.1 For any communicating X-machine working in a synchronous mode,
with all sets Di finite and a given input multi-set there is an equivalent Population
P System (produces the same output as the communicating X-machine).

4.6 Example transformation

The above example of a CXM system consisting of a traffic light TL1 and a car
CAR1 can be transformed according to the above principles as follows:

So far, we need two types of cells, therefore K = {cTL, cCAR} (‘c’ standing
for ‘communicating’). There will be two cells, namely CTL1

= (wTL1
, cTLTL1

) and
CCAR1

= (wCAR1
, cCARCAR1

).

The objects which appear during computation in cell CTL1
will be:

• (state : q), where q ∈ {green, yellow, red, off}

• (time left to change : d1), (duration green : d2), (duration yellow : d3),
(duration red : d4) where d1 ∈ N0, and d2, d3, d4 ∈ N

• (input : i), where i ∈ {tick, power on, power off}

• (output : o), where o ∈ {green, red, yellow, black}

• (message : (push break, TL1, CAR1)), (message : (push break to stop,
TL1, CAR1)) and (message : (push accpedal, TL1, CAR1)).

Initially the objects wTL1
are: (state : green), (time left to change : 20),

(duration green : 20), (duration yellow : 3), (duration red : 10), which correspond
to the initial state and memory values.

P. Kefalas, I. Stamatopoulou, M. Gheorghe

84

The transformation rules for non-communicating functions are indicatively as
follows:

keep green : ((state : green) (input : tick) (time left to change : tl)
→ (state : green) (time left to change : tl − 1)

(output : green))cTL, if tl > 0

switch off : ((state : X) (input : power off)
→ (state : off) (output : black))cTL

The objects which appear during computation in cell CCAR1
will be:

• (state : q), where q ∈ {stopped, accelerating, cruising, breaking}

• (speed : d1), (decrease rate : d2), (position : d3) where d1 ∈ N0, d2 ∈ N and
d3 ∈ {free road, approaching light(TL)}

• (input : i), where i ∈ {traffic light(TL), passed traffic light(TL), pu-
sh break, push break to stop, push accpedal, leave break, leave accpedal}

• (output : o), where o ∈ N0 (speed).

• (message : (push break, TL1, CAR1)), (message : (push break to stop, TL1,
CAR1)) and (message : (push accpedal, TL1, CAR1)).

Initially the objects wCAR1
are: (state : cruising), (speed : 100), (decrease rate :

2), (position : free road).

Indicatively a transformation rule for the corresponding non-communicating
function is:
approaching tl : ((state : cruising) (input : traffic light(TL1))

(speed : sp) (position : pos)
→ (state : cruising) (output : sp)

(speed : sp) (position : traffic light(TL1)))cCAR

As far as communication is concerned, in the cells CTL1
and CCAR1

there will
be some transformation rules that correspond to the communicating functions. For
example:
change yellow : ((state : green) (input : tick)

(time left to change : 0) (duration yellow : dy)
→ (state : yellow) (message : (push break, TL1, CAR1))

(output : yellow) (time left to change : dy))cTL

start breaking : ((state : cruising) (decrease rate : dr)
(speed : sp) (message : (push break, TL1, CAR1))

→ (state : breaking) (output : sp/dr)
(decrease rate : dr))cCAR

In addition, cell CCAR1
will have a the communication rules:

cr1 : (λ; (message : (push break, TL1, CAR1)), in)cCAR

cr2 : (λ; (message : (push break to stop, TL1, CAR1)), in)cCAR

cr3 : (λ; (message : (push accpedal, TL1, CAR1)), in)cCAR

in order to receive messages that appear in CTL1
.

Principles of transforming communicating X-machines to population P systems

85

5 Enhancing the model

So far, a set of guidelines have been presented to transform a (static) CXM model
to a (static) PPS model. One could enhance the PPS model with features that deal
with a potential dynamic structure of the system. For instance:

• if the traffic light malfunctions then it should be removed from the PPS model,

• if the car leaves the traffic light, the bond between the two cells ceases to exist,

• if another car arrives, a new cell should be generated,

• if the new car approaches the traffic light, a bond should be generated, etc.

All the above issues can be dealt with by features of PPS, such as cell death,
bond making rules, cell division etc. For the first example, a cell death rule such as
r : ((state : off))cTL → † will do.

For the rest of the examples, we need to introduce another type of cell which
corresponds to the non-communicating counterparts (XMs). This is because two
cells that are not connected with a bond should not really have communication rules
or transformation rules that correspond to communicating functions. Therefore, it
is necessary to introduce two new types in K, namely genericTL and genericCAR,
which are basically equivalent to the corresponding non-communicating XMs.

So, for example, after a car passes a traffic light, a differentiation rule should
change a cell from cCAR type to genericCAR type:
diffrule1 : ((input : passed traffic light(TL)))cCAR

→ ((input : passed traffic light(TL)))genericCAR

diffrule2 : ((state : green))cTL

→ ((state : green))genericTL

The opposite is also feasible:
diffrule3 : ((input : traffic light(TL)))genericCAR

→ ((input : traffic light(TL)))cCAR

diffrule2 : ((state : yellow))genericTL

→ ((state : yellow))cTL

A bond making rule such as:
(cTL, (state : yellow); (input : traffic light(TL)), cCAR)

will produce a bond between a traffic light and an approaching car.

6 Discussion and Conclusion

We presented a set of principles that guide the transformation of CXM models
into PPS models. One of the motives behind this attempt lies in the fact that the
resulting PPS model can be further enriched with PPS features that deal with the
dynamic nature of the system’s structure. There are a few more issues for discussion
and further consideration.

Firstly, the objects in the environment wE in the PPS have not been modelled.
In X-machines an environment model per se does not exist. The “environment” pro-
vides the inputs in a steam and they are consumed by the functions of the machines

P. Kefalas, I. Stamatopoulou, M. Gheorghe

86

in a timely fashion. In a PPS, we need to consider an equivalent environment. More
particularly:

• either the input objects appear in the environment during the computation,
or

• input objects are generated by a generator device in an appropriate order.

In both cases, an input object is not as simple as presented in the previous sec-
tions. Instead, input objects should be of the form (input : (σ, cell identity))
where cell identity is the cell that the input is for. An additional communica-
tion rule in both generic and communicating types of cells is required r : (λ; (input :
(σ, ∗this)), enter)t in order for the cells to import the input from the environment.
Outputs may be treated in a similar way, i.e. exported to the environment.

Secondly, the direct sending of messages between cells has not been addressed.
In a CXM model, a CXM component function sends a message to another CXM
component function. In a PPS, a cell cannot directly send a message but instead
import a message from another cell as long as they are connected with a bond (due
to the bond making rule). For two cells, as presented in the example, this does not
appear to be a problem. However, if more than two cells are neighbours, then the
transformation rule responsible for producing a messages should be able to produce
multiple copies of it. In turn, this would mean that each cell should be aware of the
identities of each of its neighbours and therefore it is implied that the identity needs
to be communicated once a bond is established.

Finally, we did not deal with the different types of computation, which in CXM is
asynchronous whereas in PPS is synchronous. For the specific example, this did not
matter much, because the clock ticks and the connectivity of the machines imposes
some kind of synchronisation in the CXM model. However, the consequences of the
different types of computation in other cases should be further investigated. We
anticipate that future work will deal with all these issues.

The current work will facilitate the development of algorithms to automatically
translate from a specification to another one. That implies that the tools that have
been developed for both methods [1, 8, 15] and their animators, could be linked
together to form an integrated environment where transformations are made easy
from one model to another and vice-versa.

References

[1] J. Auld, F. Romero-Campero, and M. Gheorghe. P system modelling frame-
work. http://www.dcs.shef.ac.uk/˜marian/PSimulatorWeb/P Systems appli-
cations.htm, November 2006.

[2] F. Bernandini and M. Gheorghe. Population P Systems. Journal of Universal
Computer Science, 10(5):509–539, 2004.

[3] G. Ciobanu and B. Aman. On the relationship between membranes and ambi-
ents. BioSystems, 2007. To appear.

Principles of transforming communicating X-machines to population P systems

87

[4] D. Corne and P. Frisco. Dynamics of HIV infection studied with cellular au-
tomata and conformon-P systems. BioSystems, 2007. To appear.

[5] S. Eilenberg. Automata, Languages and Machines. Academic Press, 1974.

[6] G. Eleftherakis. Formal Verification of X-machine Models: Towards Formal
Development of Computer-based Systems. PhD thesis, Department of Computer
Science, University of Sheffield, 2003.

[7] M. Holcombe and F. Ipate. Correct Systems: Building a Business Process
Solution. Springer-Verlag, London, 1998.

[8] E. Kapeti and P. Kefalas. A design language and tool for X-machines specifica-
tion. In D. I. Fotiadis and S. D. Spyropoulos, editors, Advances in Informatics,
pages 134–145. World Scientific Publishing Company, 2000.

[9] P. Kefalas, G. Eleftherakis, M. Holcombe, and M. Gheorghe. Simulation and
verification of P systems through communicating X-machines. BioSystems,
70(2):135–148, 2003.

[10] P. Kefalas, G. Eleftherakis, and E. Kehris. Communicating X-machines: A
practical approach for formal and modular specification of large systems. Jour-
nal of Information and Software Technology, 45(5):269–280, 2003.

[11] P. Kefalas, M. Holcombe, G. Eleftherakis, and M. Gheorghe. A formal method
for the development of agent-based systems. In V. Plekhanova, editor, Intel-
ligent Agent Software Engineering, pages 68–98. Idea Publishing Group Co.,
2003.

[12] J. Klein and M. Koutny. Synchrony and asynchrony in membrane systems.
In H. J. Hoogeboom, G. Paun, G. Rozenberg, and A. Salomaa, editors, Mem-
brane Computing, 7th International Workshop, Leiden, Holland, number 4361
in Lecture Notes in Computer Science, pages 66–85. Springer, 2007.

[13] G. Păun. Computing with membranes. Journal of Computer and System Sci-
ences, 61(1):108–143, 2000. Also circulated as a TUCS report since 1998.

[14] I. Stamatopoulou, M. Gheorghe, and P. Kefalas. Modelling dynamic configura-
tion of biology-inspired multi-agent systems with Communicating X-machines
and Population P Systems. In G. Mauri, G. Păun, M. J. Pérez-Jiménez,
G. Rozenberg, and A. Salomaa, editors, Membrane Computing: 5th Interna-
tional Workshop, volume 3365 of Lecture Notes in Computer Science, pages
389–401. Springer-Verlag, Berlin, 2005.

[15] I. Stamatopoulou, P. Kefalas, G. Eleftherakis, and M. Gheorghe. A modelling
language and tool for Population P Systems. In Proceedings of the 10th Pan-
hellenic Conference in Informatics, Volos, Greece, November 11-13, 2005.

[16] I. Stamatopoulou, P. Kefalas, and M. Gheorghe. Modelling the dynamic struc-
ture of biological state-based systems. BioSystems, 87(2-3):142–149, February
2007.

P. Kefalas, I. Stamatopoulou, M. Gheorghe

88

[17] I. Stamatopoulou, P. Kefalas, and M. Gheorghe. OPERAS for space: Formal
modelling of autonomous spacecrafts. In T. Papatheodorou, D. Christodoulakis,
and N. Karanikolas, editors, Current Trends in Informatics, volume B of Pro-
ceedings of the 11th Panhellenic Conference in Informatics (PCI’07), pages
69–78, Patras, Greece, May 18-20, 2007.

[18] I. Stamatopoulou, P. Kefalas, and M. Gheorghe. OPERASCC : An instance of a
formal framework for MAS modelling based on Population P Systems. In The
8th Workshop on Membrane Computing (WMC’07), pages 551–566, 2007.

Principles of transforming communicating X-machines to population P systems

89

On a Characterization of Cellular Automata in Tilings of

the Hyperbolic Plane

Maurice Margenstern

Laboratoire d’Informatique Théorique et Appliquée, EA 3097

Université de Metz, I.U.T. de Metz, Département d’Informatique

Île du Saulcy, 57045 Metz Cedex, France

margens@univ-metz.fr

Abstract

In this paper, we look at the extension of Hedlund’s characterization of
cellular automata to the case of cellular automata in the hyperbolic plane. This
requires an additional condition. The new theorem is proved with full details in
the case of the pentagrid and in the case of the ternary heptagrid and enough
indications to show that it holds also on the grids {p, q} of the hyperbolic plane.

1 Introduction

Hedlund’s theorem, see [4] is a well known characterization of cellular automata in
terms of transformation over the space of all possible configurations. The theorem
says that the global transition function defined by the local rule of a cellular au-
tomaton is a continuous function on the space of all configurations of the cellular
automaton and that this global function also commutes with all shifts. The theorem
states that the converse is true. As a well known corollary of the theorem, we know
that a cellular automaton is reversible if and only if its global transition function is
bijective.

In the paper, we investigate the status of the theorem in the case of cellular
automata in the hyperbolic plane. We shall prove that it is not true, stricto-sensu:
there are cellular automata in the hyperbolic plane which do not commute with
all the shifts which leave invariant the grid of the cellular automaton. In fact, we
shall prove that the commutation with shifts entails another property of the cellular
automation which we call rotation invariance. Then, denoting C the space of
configurations for the considered grid, here the pentagrid or the ternary heptagrid.
We can state:

Theorem 1 A mapping F from C into C is the global transition function of a ro-

tation invariant cellular automaton on the pentagrid or the ternary heptagrid if and

only if F is continuous and if F commutes with all the shifts leaving the grid invari-

ant.

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 90 - 107, 2007.

90

Later, we shall extend the theorem to all grids of the form {p, q} of the hyperbolic
plane. During the proof, we shall prove that the considered shifts are finitely gener-
ated: in the case of the pentagrid and of the ternary heptagrid but also, generally,
for any grid {p, q}.

As we shall see, the main concern of the proof is the coordinate system for
locating the cells of the cellular automaton.

This problem is obvious in the case of the Euclidean plane: in fact, whatever the
grid, we may consider that we are in ZZ2 and the proof is almost word by word the
same as in the unidimensional case.

In the case of the hyperbolic plane, things are very different. First, there are
infinitely many tilings defined by tessellation, i.e. generated by the reflection of a
regular polygon in its edges and, recursively, of the images in their edges. Second,
there is no as general pattern as in the Euclidean plane to locate the cells of the grid.
In [6], a new tool was introduced which allows to better handle the problem. It gives
a general frame to locate the cells in any grid {p, q}, but the realization of the frame
for each tiling {p, q} generally depends of the tiling. There are a few exceptions.
Among them we have the case of the pentagrid and of the ternary heptagrid which,
up to a point, can be handled in the same way.

Just after this introduction, in the second section, we remind the reader with
the system of coordinates introduced in [6], also explained in [7]. Then, in the third
section, we look at the continuity part of the theorem. In the fourth section, we
prove that the shifts are finitely generated, extending the result to any grid {p, q}.
In the fifth section, we prove that the commutation with the shifts is equivalent to
the rotation invariance. In the sixth section, we prove the theorem and its corollary
about reversible cellular automata in the hyperbolic plane.

The reader is referred to [7] for an introduction to hyperbolic geometry which is
aimed at the implementation of cellular automata in the corresponding spaces.

2 Coordinates in the Pentagrid and in the Heptagrid of

the Hyperbolic Plane

As recalled in the introduction, the hyperbolic plane admits infinitely many tilings
defined by tessellation. This is a corollary of a famous theorem proved by Henri
Poincaré in the late 19th century, see [7], for instance.

Figure 1 sketchily remembers that the tiling is spanned by a generating tree.
Now, as indicated in figure 2, five quarters around a central tile allows us to exactly
cover the hyperbolic plane with the pentagrid which is the tessellation obtained
from the regular pentagon with right angles.

In the right-hand side picture of figure 2, we remember the basic process which
defines the coordinates in a quarter of the pentagrid, see [7]. We number the nodes
of the tree, starting from the root and going on, level by level and, on each level,
from the left to the right. Then, we represent each number in the basis defined by
the Fibonacci sequence with f1 = 1, f2 = 2, taking the maximal representation,
see[6, 7].

On a characterization of cellular automata on the tilings of the hyperbolic plane

91

Figure 1 On the left: the tiling; on the right: the underlying tree which spans the tiling.

From the left-hand side picture of figure 2, we can see that any tile can be located
by the indication of two numbers (i, ν), where i ∈ {1..5} numbers a quarter around
the central tile and ν is the number of the tile in the corresponding tree which we
call a Fibonacci tree as the number of tiles at distance n from the root of the tree
is f2n+1, see [8, 6, 7].

1

2
3

4

5
6

7
8

9

10
11

12

13
1415

1617

1819
202122

232425

26
27

2829
30

31
32

33

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21
22

23
24
25

26

27

28

29
30

31

32
33 12

3 4

5

6
7

8 9
10

11 12

13

14

15

16
17 18

19
20

2122 23
2425

26 27 28
2930

31 3233

1

2

3

4

5
6

7
8

9

10

11

12

13
14

15 16
17

18

19

20
21

22

23
24
25

26

27

28
29
30

31
32
33

1

2

3

4

5

6

7

8
9

10

11
12

13

14

15

16

17

18

19

20

21
22

23
24

2526

27
28

293031
3233

1
0

1
0
0

1
0
1

1
0
0
0

1
0
0

1
0
1
0

1
0
0
0

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
01

0 1 0 0 1

1
0
0
0
0

1
0
0
0

1
0
0

1
0

0

1
0

0
0
1

0
1
0

0
1

0
0

1
0
1
0

0

0
1

1
0

1
0
1
0
0
1

1
0
1
0
1
0

1
0

0

0

1
0

0

0
0

1
0

0
0

0

1
0

0
0
0

1
0

0
0
0

1
0
0

0

0

1
0
0

0
0

1
0
0

0
0
0

1
0
0
0

0

1
0
0
0

0
0

1
0
0
0
0

0

1
0
0
0
0
0
1

1
0
0
0
0
0
0

1

1

2 3 4

5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

1
1 1

1

1 1

1

1

1

1 1

0 1

1 1 1

1
1 1

1

Figure 2 On the left: five quarters around a central tile; on the right: the representations
of the numbers attached to the nodes of the Fibonacci tree.

Almost the same system of coordinates can be defined for the ternary hep-

tagrid which is obtained by tessellation from a regular heptagon with the interior

angle of
2π

3
, see figure 3.

Remind that the main reason of this system of coordinates is that from any cell,
we can find out the coordinates of its neighbours in linear time with respect to the
coordinate of the cell. Also in linear time from the coordinate of the cell, we can
compute the path which goes from the central cell to the cell.

M. Margenstern

92

Figure 3 On the left: seven sectors around a central tile; on the right: the structure of a
sector, where a Fibonacci tree can easily be recognized.

Now, as the system coordinate is fixed, we can turn to the space of configurations.

3 Topology on the Space of All Possible Configurations

In the proof of Hedlund’s theorem, the space of configurations a cellular automaton
with Q as a set of states is represented by QZZ2

. Accordingly, each configuration
is viewed as a mapping from ZZ2 into Q. Now, as Q is a finite set, it is naturally
endowed with the discrete topology which can be defined by a distance: dist(q1, q2) =
1 if q1 6= q2 and dist(q1, q2) = 0 if q1 = q2. The space QZZ2

is endowed with the
product topology. It is the topology of the simple convergence, and it can also be
defined by a distance:

dist(x, y) =
∑

i∈ZZ2

dist(x(i), y(i))

4(2|i| + 1)
2−|i|,

where |(α, β)| = max(|α|, |β|). Note that 4(2n+1) is the length of a square centred
at (0,0), exactly containing the points (α, β) with |(α, β)| = n.

The translation to the case of the pentagrid or the heptagrid is immediate.
Again, let Q be the set of states of the cellular automaton. We define dist on Q as
previously. Now, we denote by F5 the set of five Fibonacci trees dispatched around a
central node. Similarly, we define F7 for the set of seven Fibonacci trees dispatched
in a similar way.

Then the distance on the set of all configurations is defined by

dist(x, y) =
∑

i∈Fα

dist(x(i), y(i))

α(f2|i|+1)
2−|i|,

where α ∈ {5, 7} and |i| is defined by the distance of i to the central cell. In other
terms, |i| is the index of the level of the tree on which i is. We note that αf2n+1 is
the number of nodes which are at distance n from the central cell.

It is not difficult to see that if x(i) = y(i) on a ball of radius n around the central

On a characterization of cellular automata on the tilings of the hyperbolic plane

93

cell, dist(x, y) ≤ 2−n. Conversely, if dist(x, y) ≤
1

f2n+12−n
, then x(i) = y(i) on a

ball of radius n−1 around the central cell.

As well known, the set of all configurations QFα endowed with the just defined
topology is a compact metric space.

It is plain that we have the following property:

Lemma 1 A cellular automaton on the pentagrid or on the heptagrid is continuous

on the set of all configurations with respect to the product topology.

Indeed, as long as two configurations are equal on the neighbourhood of a cell c

which corresponds to the local function of transition, the values given by the cellular
automaton at c are the same for both configurations.

It is possible to extend this result to any grid {p, q}.

Remind that the restriction of the tiling to an angular sector of angle
2π

q
can

be spanned by a tree Fpq, see [9]. Accordingly, the whole tiling can be generated

by p.(h−1) trees dispatched around a central tile, where h = ⌊
q

2
⌋. Then, there is a

bijection between the copies of the spanning trees and this tile with the tiling. Let
FFpq denote the new tree obtained by the central cell surrounded by the p.(h−1)
copies of Fpq. We can then consider that the set of configurations of a cellular
automaton A in the grid {p, q} is QFFpq , where Q is the set of states of A.

Then, the metric of this compact metric space is defined by:

dist(x, y) =
∑

i∈FFpq

dist(x(i), y(i))

α(ui)
2−|i|,

where ui is the number of nodes at distance i from the root of Fpq, and where
α = p(h−1), as there are p(h−1) copies of Fpq around the considered central cell.
Note that the case q = 3 has an exceptional status, see [7].

Now, the same arguments as above for the pentagrid and for the ternary hepta-
grid allows us to reformulate lemma 1 as:

Lemma 2 For all positive integers p and q with
1

p
+

1

q
<

1

2
, a cellular automaton

on the grid {p, q} of the hyperbolic plane is continuous on the set of all configurations

with respect to the product topology.

4 Generating the Shifts

First, if we analyze the proof of Hedlund’s theorem, we only need the commutation
with shifts to prove that a continuous mapping on the set of configurations is a
cellular automaton. It is not required that the shifts constitute a group. What is
needed is that for any cell c, there is a shift which transforms the origin (0, 0) into c.
Next, if the shifts we need can be generated by finitely many fixed in advance shits,
we are done, whether the shifts commute or not between themselves. If they do not
commute, the representation will be more complicate, but this aspect is not relevant
for our question.

M. Margenstern

94

The second good news is that we can find two shifts for the generation of all the
shifts, both in the case of the pentagrid and of the ternary heptagrid. The proof is
rather simple for the pentagrid. It is a bit more complex for the ternary heptagrid.
It is a bit more difficult, also in the case of the grids {p, q}, when q is even. At last,
it requires some effort in the case of the grids {p, q}, when q is odd.

In all these studies, we shall make use of the following general property:

Lemma 3 Let τ1 and τ2 be two shifts along the lines ℓ1 and ℓ2 respectively. Then,

τ1◦τ2 ◦ τ−1
1 is a shift along the line τ1(ℓ2), with the same amplitude as τ2 and in the

same direction.

Although it is well known in the specialized literature, we provide the reader with
a proof of the lemma. It relies on the following well known features on shifts in the
hyperbolic plane:

(i) a shift has no fixed point in the hyperbolic plane,
(ii) there is a unique line of the hyperbolic plane, called the axis of the shift
which is globally invariant under the action of the shift,
(iii) a shift also leaves each half-plane, defined by the complement of its axis in
the plane, globally invariant,
(iv) a shift is an isometry, in particular it preserves lengths and it transforms
lines into lines.
A transformation of the hyperbolic plane into itself which satisfies these three

properties is a shift along its axis.

Proof of lemma 3. Consider two shifts τ1 and τ2, and let τ = τ1◦τ2◦τ
−1
1 . Let δ be the

axis of τ2 and let δ1 = τ1(δ). Take a point A on the line δ and define A1 = τ−1
1 (A).

Clearly, if τ2(A) = B, we have τ(A1) = τ1(B). Define B1 = τ1(B). Now, as δ is the
axis of τ2, B ∈ δ and so, A1, B1 ∈ δ1. Now, τ1(B1) = B, so that τ(B1) = τ1(C),
where C = τ2(B). As δ is the axis of τ2 and as B ∈ δ, we have also that C ∈ δ, so
that τ1(C) ∈ δ1. Now, τ1(C) = τ(B1), so that τ(B1) ∈ δ1. Accordingly, A1 and B1

belong to δ1 and A1 6= B1 as A 6= B = τ2(B) as τ2 has no fixed point. Consequently,
as τ is an isometry as a finite product of isometries, τ(δ1) ⊆ δ1. And so, δ1 is the axis
of τ . Also, τ has no fixed point. Indeed, if P were a fixed point of τ , τ−1

1 (P) would
be a fixed point of τ2. Impossible, as τ2 is a shift. Accordingly, as τ is a product
of shifts which are positive isometries, τ is also a positive isometry: it necessarily
leaves the half-planes defined by δ1 globally invariant. And so, τ is a shift along δ1.
Now, A1B1 = τ−1

1 (AB) = AB, as τ1 is an isometry. And so the amplitude of τ ,
which is A1B1 = A1τ(A1), is AB = Aτ2(A), the amplitude of τ2. 2

Now, it is possible to state:

Lemma 4 The shifts leaving the pentagrid globally invariant are generated by two

shifts and their inverses. The same property holds for the ternary heptagrid.

We shall consider the cases of the pentagrid and of the heptagrid separately. We
shall make use of the traditional notation of τ1◦τ2◦τ

−1
1 by τ τ1

2 .
First, consider the case of the pentagrid, it is illustrated by the left-hand side

picture of figure 4.

On a characterization of cellular automata on the tilings of the hyperbolic plane

95

Fix a tile of the pentagrid, say Π0. Fix an edge of Π0 and let ℓ1 be the line
which supports this edge. Consider a contiguous edge, supported by the line ℓ2.
Both lines are lines of the pentagrid. Let A be the common point of ℓ1 and ℓ2: it is
a vertex of Π0. Let B be the other vertex of Π0 on ℓ1 and let C be the other vertex
of Π0 on ℓ2. Then, define τ1 to be the shift along ℓ1 which transforms A into B

and define τ2 to be the shift along ℓ2 which transforms A into C. Now, let us show
that τ1, τ2, τ−1

1 and τ−1
2 generate all the shifts which leave the pentagrid globally

invariant. It will be enough to show that if we take a tile P , there is a product of
τ1, τ2, τ−1

1 and τ−1
2 which is a shift and which transforms Π0 into P .

Π 0

Π 1

Π 5

Π 4

Π 3

Π 2
A

B C

D E

H0

H1

H2

H3

H4

H5H6

H7

A

B

C

D

Figure 4 Action on the shifts τ1, green, and τ2, blue. On the left-hand side, Πi, i ∈ {1..5}
denote the neighbour of Π0 sharing with it the edge i. Similarly, on the right-hand side, the
neighbours of H0 are denoted by Hi, i ∈ {1..7}. Also, note the mid-points A, B, C and D
which are used by table 1.

Number the edges of Π0 by 1 up to 5 and assume that the edge 1 is AB and that
the edge 2 is AC. Then, from lemma 3, τ τ1

2 is a shift along the edge 5, transforming B

into the other end of this edge. Similarly, τ τ2
1 is the shift along the edge 3 which

transforms C into the other end of this edge. Now, it is not difficult to see that

τ
τ

τ2

1

2 is a shift along the edge 4 transforming τ τ1
2 (B) into τ τ2

1 (C). Taking these shifts
and the inverses, we get shifts which transform Π0 in all its neighbouring tiles in
the sense of Moore. Now, it is not difficult to repeat this construction with any
neighbour of Π0: it shares an edge with Π0 and it has two other edges which are
supported by a line which also supports another edge of Π0. Accordingly, we get all
the tiles within a ball of radius 2 around Π0. Now, by an easy induction, we get all
the tiles of the pentagrid. Note, that for a given shift of the pentagrid, there is no
unique representation of this shift as a product of powers of τ1, τ2 and their inverses.

Now, let us look at the case of the ternary heptagrid which is illustrated by the
right-hand side picture of figure 4.

This time, we cannot take the lines which support the edges of a heptagon: due

to the angle
2π

3
, such a line supports edges but it also cuts heptagons for which they

are an axis of reflection. In [2, 7], I have indicated that mid-point lines play the
rôle of the expected shifts. This is what is performed in the right-hand side picture
of figure 4.

M. Margenstern

96

Consider again τ τ1
2 , where τ1 and τ2 are shifts along two mid-point lines which

meet on an edge of the heptagon. By construction of the mid-point lines, the defini-
tion of τ1 and τ2 involves the neighbours of H0, the heptagon which we fix in order
to define the generators of the shifts. As shown in the right-hand side of figure 4, τ1

transforms H0, say into H1 while τ2 transforms H0 into H4: we number the edges
of H0 clockwise. Now τ τ1

2 transforms H1 into H2, and so, it transforms H0 into H3.
Similarly, we find that τ τ2

1 transforms H0 into H2.

For the convenience of the reader, we indicate the next shifts which transform
H0 into the remaining neighbours. Using the previous transformations, let us set
ξ1 = (τ τ1

2)−1 and ξ2 = (τ τ2
1)−1. Then, ξ1 transforms H0 into H7 while ξ2 trans-

forms H0 into H5. At last, ξ
ξ2
1 transforms H0 into H5.

Hi point shift1 shift2

H1 B τ1 τ τ1
2

H2 C τ τ2
1 ξ1

H3 C ξ1 ξ2

H4 D ξ2 τ2

H5 D τ−1
2 ξ2

H6 B τ−1
1 τ−1

2

H7 B τ−1
1 ξ1

Table 1 The shifts which, for each neighbour of H0 generate the transformations of Hi

into its neighbours. Note that there is no order in the pair of generating shifts.

In order to reproduce the same actions for the neighbours of H0, we just need
to define mid-points of edges which will allow us to define the shifts which will play
the rôle of τ1 and τ2 for each neighbour. The considered mid-points are indicated in
the right-hand side picture of figure 4. Table 1 indicates for each neighbour the mid-
point which is used and the shifts denoted in terms of the shifts which we already
defined.

This allows us to prove the statement of lemma 4 for the ternary heptagrid. 2

Before proving the same property of finite generation for any grid {p, q} of the
hyperbolic plane, the reader may wonder why we need two different techniques for
the pentagrid and for the heptagrid? The mid-point lines can also be defined in
the pentagrid and the same type of shifts, defined for the ternary heptagrid, can be
defined for the pentagrid. This is true but such shifts would not be interesting for
our purpose in the pentagrid. In the pentagrid, it is possible to colour the tiles with
black and white in order to get something which looks like a chessboard: any white
tile is surrounded by black ones and any black one is surrounded by white ones.
Now, it is not difficult to remark that the shifts based on mid-point lines transform
a tile of one colour into a tile of the same colour. Accordingly, we cannot get the
immediate neighbours of a cell with such shifts.

As announced in our introduction, now, we prove the same property of finite

On a characterization of cellular automata on the tilings of the hyperbolic plane

97

generation for any grid {p, q} of the hyperbolic plane. From the previous remark,
we may expect that the parity of q is important.

Indeed, the argument which we considered can be extended to any grid {p, q}
but, roughly speaking, the argument for the pentagrid extends to all grid {p, q},
when q is even. Similarly, the argument for the ternary heptagrid extends to all grid
{p, q}, when q is odd.

V

P Q

A

M i Mi +1

B

Figure 5 The mid-point figure around a vertex, when q is odd.

This is obvious for the grids {p, 4} and {p, 3}. For the other grids, it follows
from the following consideration. When q is bigger, number the p edges of the basic
polygon P0, e1, . . . , ep, by turning around P0, clockwise. Also number the vertices
V1, . . . , Vp with Vi+1 ∈ ei ∩ ei+1 for i ∈ {1..p−1} and V1 ∈ e1 ∩ ep. Denote by τi the
shift along the axis of ei which transforms Vi into Vi+1, considering that Vp+1 = V1.
Then, if we perform successively the shifts τ1, . . . , ep, the image of e1 is not e1 but

its image under a rotation of p.
2π

q
around V1. Repeating this tour, we get all the

tiles which are around V1. Now, from τ1, we go to a polygon P which is around V2.
With an appropriate number of rounds around P , we get the neighbour of P0 which
shares e2 with it. And then, we can repeat the construction with the other edges,
which provides us with all the shifts transforming P0 into its immediate neighbours.
Now, we notice that, for this construction, we need all the shifts defined by the
edges of P0. They are enough as the shifts around the sides of P are given by τ1

and τ τ1
2 , . . . , τ τ1

p .

For the case when q is odd, the situation is a bit more complex. In fact, we take
this time the mid-points of the edges of Q0, the basic polygon, into consideration.
Now, we consider also the mid-points of all edges of polygons which share a vertex
with Q0. Now, fix a vertex V1 of Q0. We consider all the mid-point of the edges
which have a vertex in common with Q0. All such mid-points which are around V1

constitute the mid-point figure around V1, see figure 5, where a partial view is
given.

Let us focus on this figure. Mi and Mi+1 are consecutive mid-points of edges
which share V . The mid-point line which joins Mi and Mi+1 also meets the line AP

in P and the line BQ in Q. The line AP is an edge of a copy Qb of Q0 which
shares V with Q0 and which is also determined by its other edge V P . Similarly,
the line BQ is also an edge of another copy Qa of Q0 which shares V with Q0 and
which is determined by its edge V Q. Now, the shift σi along the line MiMi+1 which

M. Margenstern

98

transforms A into Mi+1 transforms Qb into Qa. The opposite shift, along the same
line, transforms Qa into Qb and, for instance, B into Mi.

By rotation around V , we determine the other shifts, constructed from two
consecutive mid-point edges around V . It is not difficult to note that by applying
these shifts consecutively in turning twice around the vertex, we obtain all the copies
of Q0 which are around V . Now, one of these shifts, say τ , transforms Q0 in another
neighbouring polygon Q. Note that all shifts, constructed around vertices in the
above indicated way, but corresponding to Q, are obtained from those, say t, which
are attached to Q0 as tτ . Accordingly, the shifts attached to Q0 by the above process
generate all the shifts which leave the tiling {p, q} invariant.

And so, we proved the following extension of lemma 4:

Lemma 5 For all positive integers p and q such that
1

p
+

1

q
<

1

2
, the shifts leaving

the grid {p, q} globally invariant are finitely generated. The number of generators is

at most p when q is even, and at most p.q when q is odd.

5 Commutation with Shits and Rotation Invariance

First of all, we have to define what is rotation invariance and then, we shall prove
that it is characterized by the commutation with shifts.

5.1 Rotation invariance

In the Euclidean plane, the definition of rotation invariant rules, a well known notion
in cellular automata, can easily be defined.

Consider the case of von Neumann neighbourhood. It is not difficult to see that
the rules of a cellular automaton can be represented as follows:

(r) sN , sE , sS , sW , sc → s′c,

sN , sE, sS and sW are the states of the neighbours of c which are on the North, the
East, the South and the West respectively. The state of c itself is sc at the moment
when the ruled is applied, and it becomes s′c after that, which is indicated by the
arrow in formula (r).

In the Euclidean case, a rotation invariant cellular automaton A is rotation

invariant if for all rules of A written in the form of (r), the rules obtained from (r)
by a circular permutation on the terms which are on the left-hand side of the arrow
are also rules of A and they all give the same new state s′c as in (r).

It is not difficult to see that such a syntactic rule can easily be transported to
the case of any grid {p, q} of the hyperbolic plane.

If we transpose the definition of the Euclidean plane to the hyperbolic one, we can
see that the notion of direction plays a key rôle. As mentioned in the introduction,
there is no such notion on the hyperbolic plane. The tools introduced in [6] provide
us with something which plays the rôle of the North pole in the hyperbolic plane.
As the basic structure of a tiling {p, q} of the hyperbolic plane is the existence of a
generating tree, for each cell, the central one excepted, the direction to the father is
a way to define a direction in a meaningful way. In the case of cellular automata in

On a characterization of cellular automata on the tilings of the hyperbolic plane

99

the Euclidean plane, the coordinates seems to be so an evident feature that almost
nobody pays attention to that. However, if we want to actually implement cellular
automaton for some simulation purpose, we are faced to the problem, even in this
trivial case. And we can see that there is a price to pay, although the coordinate
system seems to be for free. In a concrete implementation, cells have coordinates
which are numbers, and numbers take some room which cannot be neglected. It
could be answered that this is a hardware matter and that in a theoretical study,
we may ignore this constraint. OK, let us take that granted. In this case, we can
assume the same for the hyperbolic plane: fixing a central cell, the generating trees
and from that the coordinates of any cell is a hardware feature.

In the next section, we shall go back to this question. We shall see that the
question of direction can be, theoretically be handled in a pure cellular automata

approach.
Remember that the neighbourhood of a cell c is a part of a ball around c which

contains c itself. We require that the neighbourhoods Nc and Nd of two cells c

and d could be put into a one-to-one correspondence by a positive displacement δ

from Nc onto Nd such that δ(c) = d and δ(d) = f(d), where f(x) is the father of
the cell x. As we shall consider the question of rotation invariance, we assume that
the neighbourhood around a cell c is a ball around c of a fixed radius k depending
only on the cellular automaton. Now, as the father is known, we can number the
neighbours of c by associating 1 to the father and then, clockwise turning around
the cell, by associating the next numbers to the next cells at distance 1, then, in
the same rotation motion, to the cells at distance 2, and then, going on in this way
until we reach the last cell which is at the distance k of c. This allows us to define
the format of a rule as follows:

(R)
(

{(ηi)}i ∈ {1..αuk}
, η

)

→ η′

where ηi is the state of the neighbour i of c, uk is the number of cells in Fpq which
are at distance k−1 from the root of Fpq, and α is the number of such trees around
the central cell. Note that, in particular, η1 is the state of the father of c. Now, we
remark that 1, . . . , p are exactly the numbers of the neighbours which are distance 1
and that a rotation on the neighbourhood of c defines a circular permutation on
{1, ..p}.

Now, it is easy to notice that, conversely, a circular permutation on the numbers
of the cells which are at distance 1 of c can be extended into an isometry which
is nothing else than a rotation around c. If we consider a circular permutation π

on {1, ..p}, this defines a rotation on the neighbourhood of c. Now, this induces a
new numbering of the cells of the neighbourhood by applying the same algorithm to
number the cells at a greater distance than 1 as the one we have above described.
This new numbering will also be denoted by π, π(i) being the value defined by the
just defined algorithm when i > p. Accordingly, we can give the following definition:

Definition 1 Consider a cellular automaton A on a grid {p, q} of the hyperbolic

plane, and assume that the neighbourhood of any cell c is a ball around c of radius k,

where k is a constant. Say that A is rotation invariant if and only if for any rule

of its table which can be written in the form (R), all the rules:

(R′)
(

{(ηπ(i))}i ∈ {1..αuk}
, η

)

→ η′

M. Margenstern

100

where π is a circular permutation on {1..p}, extended to {1..αuk} by the rotation

induce by π, also belong to the table of A.

5.2 Commutation with shifts

Consider a cellular automaton A on the grid {p, q} of the hyperbolic plane. Let us
denote by C the set of configurations on the grid. We define the global function FA

from C into C as usual: if x ∈ C, then for any cell c, we have FA(x)(c) = f(x(Nc), x(c)),
where Nc is the set of the neighbours of c, listed as {ci}i ∈ {1..αuk}

, according to

the numbering which we have above defined, and f is the table of the rules of A.

Definition 2 Let A be a cellular automaton on the grid {p, q} of the hyperbolic

plane. Let FA denote its global transition function. Then A is said to commute

with the shifts if and only if FA◦σ = σ◦FA for all shifts σ leaving the grid {p, q}
globally invariant.

The main result of this section is:

Theorem 2 A cellular automaton on the grid {p, q} of the hyperbolic plane com-

mutes with the shifts if and only if it is rotation invariant.

Before proving the theorem, let us remark that most cellular automata which are
devised for various theoretical computations are rotation invariant. This is the case
for many of them in the Euclidean plane. It is also the case of several of them,
among the few ones devised in the hyperbolic plane or in the 3D space.

Let us go back to the definition of the commutation of FA with a shift. This
means that: FA(σ(x)) = σ(FA(x)). Let d = σ(c), where c is a cell. Then, by
definition, FA(σ(x))(d) = f(σ(x(Nc)), sc), where f is the table of A, as σ gives in d

the state sc which we have in c. Now, σ(x(Nc)) clearly transports the states of the
cells in Nc onto a set of states on a rotated image of Nd with respect to the father
of d. And, a priori, the father of d is not the image of the father of c under σ. In
the next sub-section, we shall see that indeed, the shifts need not commute with the
operation which, to a cell, assigns its father.

Accordingly, if the cellular automaton commutes with the shifts, it is invariant
under this rotation, and conversely. Now, we know that all these rotations are
generated by shifts, as it easily follows from the proof of lemma 5. Consequently,
this gives us the result. 2

5.3 Rotation invariant cellular automata

In this section, we shall first see that a cellular automaton on a grid {p, q} need not
commute with shifts. Then, we shall prove the following result:

Theorem 3 For any cellular automaton A on the pentagrid or the ternary hepta-

grid, there is a cellular automaton B and a projection ξ of the states of B on state

of A such that B is rotation-invariant and, for any cell c, A(c) = ξ(B(c)). There

is also another cellular automaton C with a projection χ of its states on those of A

satisfying A(c) = χ(C(c)) and which is not rotation invariant.

On a characterization of cellular automata on the tilings of the hyperbolic plane

101

The proof of the theorem is obtained by constructing a product automaton with
a cellular automaton which we shall define. Then, from this product, we shall
construct a set of rules which is not rotation invariant and another one which is so.

The special factor of this product is a cellular automaton which propagates the
tree structure inside the grid, here the pentagrid or the ternary heptagrid.

For this purpose, we assign an extended status to each cell which is an ex-
tension of the notion of status of this cell as a node of the Fibonacci tree where it
stands. Remember that a node is black if it has two sons and that it is white if it
has three sons. Black and white defines the status of the node, see [6]. Now, we
define the extended status as follows, indicating them by symbols at the same
time. First, we proceed with black nodes and then with white ones.

Bb, Bw : black node, black, white father respectively; in figure 6, below, they
are represented by the colours dark and light blue, respectively.

Wwm, Wwr : white node, white father, middle, right-hand son, respectively;
in figure 6, they are represented by the colours yellow and green, respectively.

Wb : white node, black father, represented in orange in figure 6.

For each node, its immediate neighbours are given by the following tables, first
listing the father f of a cell c and then, clockwise turning around c, its neighbours
n2, . . . , nα, with α ∈ {5, 7}.

We can see that black nodes are always identified by the pattern Bb, Wb, Bw

in their immediate neighbourhood, while white nodes are identified by the pattern
Bw, Wwm, Wwr.

Now, the extended status can always be inferred from such a neighbourhood. In
nodes of extended status Bb and Bw, the identification comes from the neighbour n1

: it is white for Bb-nodes but Wwm nether occurs. For white nodes, the distinction
between the extended status Wwm and the others comes from the neighbour n4: it
is Bw for Wwm nodes and Bb for the others. Between Wmr and Wb nodes, the
difference comes from the father, of course.

Now, the rows of these tables can easily be transformed into conservation rules:
a row c, f, n2, . . . , nα induces the rule f, n2, . . . , nα, c → c.

It remains to see that we can define propagation rules for a cellular automaton.
Indeed, the initial configuration would assign a special state to the central cell and
the quiescent state to all the other cells. Then, the propagation rules would define
the extended status of the neighbouring cells, and defining the extended status of
all cells, ring by ring, where a ring is a set of cells at the same distance from the
central cell.

We give the propagation rules for such an automaton in the case of the pentagrid
in figure 6, where the explanation of the rules is shortly given in the caption of the
figure. We leave the propagating rules for the case of the ternary heptagrid as an
exercise for the reader.

M. Margenstern

102

ν f n1 n2 n3 n4

Bb: Bb Wmr Bb Wb Bw

Bw Wb Bb Wb Bw

Bw Wmr Bb Wb Bw

Bw: Wwm Bw Bb Wb Bw

Wwr Wwm Bb Wb Bw

Wb Bb Bb Wb Bw

Wwm: Wwm Bw Wwm Wwr Bw

Wwr Bw Wwm Wwr Bw

Wb Bw Wwm Wwr Bw

Wwr: Wwm Bw Wwm Wwr Bb

Wwr Bw Wwm Wwr Bb

Wb Bw Wwm Wwr Bb

Wb: Bb Bw Wwm Wwr Bb

Bw Bw Wwm Wwr Bb

Table 2 Rules for the conservation of the structure of the Fibonacci tree, case of the pen-
tagrid.

Now, we are in the position to prove theorem 3.

Consider the automaton P whose table is defined by the rules of figure 6 and
table 2 in the case of the pentagrid. In the case of the ternary heptagrid, the
propagation rules are adapted from figure 6 and also taken from table 3.

Let A a cellular automaton. We first define the product A × P by the states
(η, π), where η runs over the states of A and π over those of P . We shall also say
that η is the A-state of (η, π) and that π is its P -states.

Before going further, let us note that the function which associates its father to
a cell does not necessarily commute with shifts.

This can easily be seen on figure 4. Consider its left-hand side picture, the case
of the pentagrid. Imagine that Π0 is a black node whose father is Π1. Then the
shift ED, which transforms E into D along the line passing through these points
transforms Π0 into its black son Π5. Now, the same shift does not transform Π1

into Π0, but in the reflection of Π1 in the line BD. On another hand, the shift BD

transforms Π1 into Π0 and Π0 into P4 whose father is indeed Π0. The same figure
shows that for each kind of node and each kind of son there is a shift which maps
the father onto the father in this situation and a shift which does not.

This allows us to prove the theorem. First, we notice that we can consider cells
at a time when their P -state is stable. Then, we note that the rules of A×B are of
the form:

On a characterization of cellular automata on the tilings of the hyperbolic plane

103

(R1) {(ηi, πi)}i ∈ {1..α}, (η, π) → (η′, π)

From the table 2 and 3, it is clear that rotating a rule does not entail contradic-
tions with already established rules: the distinction between the actual father and
the rotated one is always clear.

ν f n1 n2 n3 n4 n5 n6

Bb: Bb Wwr Wwr Bb Wb Bw Wb

Bw Wb Wwr Bb Wb Bw Wb

Bw Wwr Wwr Bb Wb Bw Wb

Bw: Wwm Bw Wb Bb Wb Bw Wwm

Wwr Wwm Wwr Bb Wb Bw Wwm

Wb Bb Wb Bb Wb Bw Wwm

Wwm: Wwm Bw Bw Wwm Wwr Bw Wwr

Wwr Bw Bw Wwm Wwr Bw Wmr

Wb Bw Bw Wwm Wwr Bw Wmr

Wwr: Wwm Wwm Bw Wwm Wwr Bb Bw

Wwr Wwm Bw Wwm Wwr Bb Bb

Wb Wwm Bw Wwm Wwr Bb Bb

Wb: Bb Bb Bw Wwm Wwr Bb Bw

Bw Bb Bw Wwm Wwr Bb Bw

Table 3 Rules for the conservation of the structure of the Fibonacci tree, case of the ternary
heptagrid.

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23.

Figure 6 Rules for the propagation of the Fibonacci tree structure in the case of the pen-
tagrid.

Initially, the central cell O contains a red state. By the rule 1, it sends a dark red state
to each root of a Fibonacci tree. The rules 2 and 3 allow to determine the black and white
nodes of the first level of a tree which consists of the sons of the root. The rule 3 defines a

M. Margenstern

104

black node and the rule 2 defines a white one. The same difference later occurs on the next
levels: a black node, up to now in a quiescent state, takes the state of its status when it sees
two non quiescent nodes on the previous levels, namely its father and its neighbour 2. This
is provided by the rules 6, 7, 9, 12 and 14. Note that when a quiescent node sees two non
quiescent nodes, it recognizes its father as the right-hand side one which allows to also fix its
extended status. In the other cases, the node is white, which is provided by the other rules.

The colours of the nodes represent their extended status which indicates the status of
the node and the status of its father. For white nodes, it also indicates the position of their
position in the list of the white sons when the father is white.

For white nodes, they know there status at the same speed as the black nodes: a node
knows as it is white as it can see only one neighbour, n1, in a non quiescent state. Now,
the propagation of the extended status requires an additional step for the white nodes. The
rules 22 and 23 introduce this delay. And so, the node remains pink while its future white
sons become pink. This is why in the rules 15 up to 20 the future white sons are pink while
the black sons are already installed.

Accordingly, we can decide, either to introduce all the following rotated rules:
(R′) {(ησ(i), πσ(i))}i ∈ {1..α}, (η, π) → (η′, 0P),

where 0P is the quiescent state of P and σ does perform a rotation, or all the
following ones:

(R′) {(ησ(i), πσ(i))}i ∈ {1..α}, (η, π) → (η′, π).

In the first case, the new automaton is not rotation invariant. In the second
case, it is rotation invariant. 2

As a matter of case, for the cellular automaton P itself, the rules given by figure 6
are rotation invariant, while those given by tables 2 and 3 are not. The just produced
argument for the proof of theorem 3 allows us to extend the rules of tables 2 and 3
either to rotation invariant ones or to non rotation invariant ones.

6 Proving Hedlund’s Theorem

Now, the proof of the theorem goes as it does classically.
From lemmas 1 and 2, we know that cellular automata on grids {p, q} are con-

tinuous on the space of configurations. From lemma 3, we know that they commute
with any shift if and only if they are rotation invariant.

For the converse, we consider a mapping F on the space of configurations. We
assume that it is continuous with respect to the topology defined in section 3 and
that it commutes with the shifts. Then, again, the standard argument applies. The
compacity of the space with respect to the topology allows to consider the distance
between two sets {x | F (x)(c) = p} for different states p, as the configurations are
defined on QFFpq , Q being called the set of states which we assume to be finite, c

being a fixed cell. This minimal distance is positive and it allows to define a ball Bn

for some n such that the value of F (x) at c depends only on the values of x on the
ball Bn around c.

Next, as in the classical proofs, we transport this property to any cell thanks to
the commutation property of F with the shifts. 2

And so, we proved theorem 1. From this, we immediately get, as classically:

Theorem 4 A rotation invariant cellular automaton on a grid {p, q} of the hyper-

bolic plane is reversible if and only if it is bijective.

On a characterization of cellular automata on the tilings of the hyperbolic plane

105

At this point, let us note that the proof of theorem 1 is non-constructive. Mainly,
the proof that a continuous mapping which commutes with the shifts is a cellular
automaton is non-effective. The compactness argument indicating that the distance
between the two sets of configurations giving rise to the same state is not effective.
This does not allow to directly give an estimate on the size of the neighbourhood of
the inverse cellular automaton. However, in the one dimensional case, the converse
is obtained effectively, see [1]. Recent results, with a tight bound on the size of the
inverse neighbourhood, can be found in [3].

7 Conclusion

The question arises whether other classical theorems on cellular automata are also
true for hyperbolic cellular automata. As an example, we can take the theorems of
Moore and Myhill, see [10, 11], characterizing surjective global transition functions
as injective global transition functions restricted to finite configurations. In fact, it
seems difficult to adapt the classical proof in a straightforward way.

The reason is that the classical argument relies on the fact that the surface of a
big square in a square tiling of the Euclidean plane becomes negligible with respect
to its all area when the size of the square tends to infinity. In the hyperbolic plane,
this is no more true for a closed ball: the number of tiles on the border is more than
the half of the total of number of all the tiles in the ball.

And so, there is still some work ahead: either to find another argument, or to
find that Moore’s or Myhill’s theorem is no more true in the hyperbolic space.

Another example is the theorem about whether the reversibility of cellular au-
tomata in the hyperbolic plane is undecidable as it is in the case for the Euclidean
plane, see [5].

Accordingly, there is still much work to do in these directions.

References

[1] S. Amoroso, Y. Patt. Decision Procedures for Surjectivity and Injectivity of
Parallel Maps for Tessellations Structures. Journal of Computer and System

Sciences, 6:448-464, 1972.

[2] K. Chelghoum, M. Margenstern, B. Martin, L. Pecci. Cellular automata in
the hyperbolic plane: proposal for a new environment. In Proceedings of

ACRI’2004, Amsterdam, October, 25-27, 2004, volume 3305 of Lecture Notes

in Computer Sciences, pages 678-687. 2004.

[3] E. Czeizler, J. Kari. A tight linear bound on the synchronization delay of bi-
jective automata. Theoretical Computer Science, 380(1-2):23-36, 2007.

[4] G. Hedlund. Endomorphisms and automorphisms of shift dynamical systems.
Math. Systems Theory, 3:320-375, 1969.

[5] J. Kari. Reversibility and surjectivity problems of cellular automata. Journal

of Computer and System Sciences, 48:149-182, 1994.

M. Margenstern

106

[6] M. Margenstern. New Tools for Cellular Automata of the Hyperbolic Plane.
Journal of Universal Computer Science 6(12):1226–1252, 2000.

[7] M. Margenstern. Cellular Automata in Hyperbolic Spaces, Volume 1, Theory,
OCP, Philadelphia, 2007, to appear.

[8] M. Margenstern, K. Morita. NP problems are tractable in the space of cellular
automata in the hyperbolic plane. Theoretical Computer Science, 259:99–128,
2001.

[9] M. Margenstern. About an Algorithmic Approach to Tilings {p, q} of the Hy-
perbolic Plane. Journal of Universal Computer Science, 12(5):512-550, 2006.

[10] E.F. Moore. Machine Models of Self-reproduction. Proceedings of the Sympo-

sium in Applied Mathematics, 14:17-33, 1962.

[11] J. Myhill. The Converse to Moore’s Garden-of-Eden Theorem. Proceedings of

the American Mathematical Society, 14:685-686, 1963.

On a characterization of cellular automata on the tilings of the hyperbolic plane

107

Non-Determinism in Peptide Computer

M. Sakthi Balan

Department of Computer Science, The University of Western Ontario

London, Ontario, Canada, N6A 5B7

sakthi@csd.uwo.ca

Abstract

Peptide computer is a formal model for peptide computing. It involve reactions
between various multiset of symbols and sequences. We study three kinds of non-
determinism in peptide computer – global, locally-global and local. We show
that (local) locally-global is a restrictive version of (locally-global) global. We
also characterize conditions for a (locally-global) global system to be a system
which is not (local) locally-global system.

1 Introduction

Peptide computing introduced by H. Hug and R. Schuler [6], takes interaction be-
tween peptides and antibodies as the basic frame work for computing. A formal
model for this computing, called peptide computer, was proposed in [2]. This pa-
per continues that study with an investigation of various kinds of non-determinism
present in a peptide computer.

Peptide, a sequence of amino acids attached by covalent bonds called peptide
bonds, consists of recognition sites, called epitopes, for the antibodies. A peptide
can contain more than one epitope for the same or different antibodies. With each
antibody, which attaches to a specific epitope, a binding power is associated, called
its affinity. When antibodies compete for recognition sites – which may overlap in
the given peptide – then the antibodies with greater affinity have higher priority.
For further information regarding the bio-chemical processes themselves we refer
to, for example, [5]. Dynamic global computing models for the immune system are
presented in [7, 9].

Peptide computing refers to computational processes based on the elementary
operations such as binding of antibodies to peptide sequences and removal of anti-
bodies from peptide sequences.

In [6] it was shown how to solve the satisfiability problem using peptide comput-
ing and in the subsequent paper [3] it was shown to solve two further NP-complete
problems – Hamiltonian circuit and exact cover by 3-set . Moreover in [3], a simula-
tion of Turing machine by peptide computing is presented to show peptide computing
is computationally complete. Towards formalizing the peptide computing model in
a rigorous way a formal model called as peptide computer was proposed in [1, 2].
Peptide computer defines the notion of a step and it was also shown in [2] that it

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 108 - 119, 2007.

108

can be simulated by a Turing machine under some conditions. A survey on peptide
computing depicting the state-of-the-art at its time is presented in [4].

A peptide computer, informally, consists of some symbols and sequences and
the processing take place through reactions between symbols and sequences or be-
tween sequences. The presence of many symbols and sequences together with their
multiple occurrences (multiset) brings in non-determinism to the system. Hence non-
determinism can be studied in two ways: one, due to interactions between multiple
occurrence of a sequence or a symbol and the other one where non-determinism
happens when interactions occur between different sequences and different symbols.
Non-determinism is an essential one for unconventional computing like peptide com-
puting. Hence a study of non-determinism existing in a peptide computer would help
us to understand how processing take place.

Our paper is organized as follows: in the following section we give some prelimi-
nary on peptide computer and introduce the basic notations that are necessary for
the paper. In Section 3 we define three kinds of non-determinism in peptide com-
puter and in Section 4 we study some of the properties of non-determinism. The
paper concludes with some remarks in Section 5.

2 Preliminaries

For a set S, |S| denotes the cardinality of S. When S is a singleton set, S = {x} say,
we often omit the set brackets, that is, we write x instead of {x}. For sets S and T ,
consider a relation ̺ ⊆ S × T . Then ̺−1 is the relation ̺−1 = {(t, s) | (s, t) ∈ ̺}

and, for s ∈ S, ̺(s) = {t | (s, t) ∈ ̺}. We use the notation ̺ : S
◦
→ T to denote

a partial mapping of S into T . In that case dom ̺ is the subset of S on which ̺ is
defined. The notation ̺ : S → T means that ̺ is a total mapping of S into T , hence
dom ̺ = S in this case. In addition to the standard symbols for operations on sets,
we use the symbol ⊎ to denote disjoint union.

Let S be a non-empty set. A multiset on S is a pair M = (I, ι) where I is a
set, the index set, and ι is a mapping of I into S, the index mapping. A multiset
M is non-empty, if I is non-empty; it is finite if I is finite. For s ∈ S, the number
mult(s) = |{i | i ∈ I, ι(i) = s}| is the multiplicity of s. When I is countable, we write
M = {mi | i ∈ I} where mi = ι(i) is implied. With this notation, it is possible that
mi = mj while i 6= j for i, j ∈ I. We use the standard symbols for set theoretic
operations also for multisets. However, on multisets, union is disjoint union and
both intersection and difference take multiplicities into account. Formally this can
be handled by appropriate operations on the index sets.

Multisets as defined above are also called families in the literature. The usual
definition of a multiset as a set {(s, mult(s)) | s ∈ S} of pairs is adequate only when
all multiplicities are finite.

By N and N0 we denote the sets of positive integers and of non-negative integers,
respectively. The set B = {0, 1} represents the set of Boolean values. For n ∈ N0,
the ordinal number n is represented by the set n = {i | i ∈ N0, i < n}. Thus, for
example, 0 = ∅, 1 = {0} and, in general, n = {0, 1, . . . , n − 1}. By R we denote the
set of real numbers, and R+ = {r | r ∈ R, r ≥ 0}.

Non-determinism in peptide computer

109

An alphabet is a non-empty set. Let X be an alphabet. Then X∗ is the set of all
words over X including the empty word λ, and X+ = X∗ \{λ}. For a word w ∈ X∗,
|w| is its length. Any word u ∈ X∗ with w ∈ uX∗ is a prefix of w; let Pref(w) be the
set of prefixes of w; the words in Pref+(w) = {u | u ∈ X+, w ∈ uX+} are the proper
prefixes of w. Similarly, a word u ∈ X∗ with w ∈ X∗uX∗ is an infix of w, Inf(w) is
the set of infixes of w and Inf+(w) = {u | u ∈ X+, u ∈ Inf(w), u 6= w} is the set of
proper infixes of w. A language over X is a subset of X∗. For a language L over X
and Y ∈ {Pref, Pref+, Inf, Inf+}, Y (L) =

⋃

w∈L Y (w).
Let L be a language over X and w ∈ X∗. An L-decomposition of w is a pair of

sequences (u0, u1, . . . , uk), (v0, v1, . . . , vk−1) of words in X∗ such that u0v0u1v1 · · ·
vk−1uk = w, v0, v1, . . . , vk−1 ∈ L and u0, u1, . . . , uk /∈ X∗LX∗. A language in X+

such that every word has a unique L-decomposition is called a solid code [8]. Consider
w ∈ X+ of length n, say w = x0x1 · · · xn−1 with xi ∈ X for i = 0, 1, . . . , n − 1. An
L-decomposition of w as above can be specified by a set of pairs {(il, jl) | l =
0, 1, . . . , k − 1} such that, for l = 0, 1, . . . , k − 1, vl = xilxil+1 · · · xjl

. Let ∂L(w) be
the set of L-decompositions when represented in this way. Let D(L) = {(w, d) | w ∈
X∗, d ∈ ∂L(w)} be the set of words together with all their L-decompositions.

Now we give a brief description of peptide computer presented in [2].

Definition 1 A peptide computer is a quintuple P = (X,E,A,α, β) where X is
a finite alphabet (to represent basic building units like molecules), E ⊆ X+ is a
language (to represent epitopes), A is a countable alphabet with A ∩ X∗ = ∅ (to
represent antibodies), α ⊆ E × A is a relation (such that a ∈ α(e) means that
antibody a can be attached to epitope e), β : E × A → R+ is a mapping such that
β(e, a) > 0 if and only if (e, a) ∈ α (denoting the affinity between epitope e and
antibody a).

Consider a word w ∈ X+ and d ∈ ∂E(w). An A-attachment is a partial mapping

τ : d
◦
→ A. Suppose w = x0x1 · · · xn and d = {(il, jl) | l = 0, 1, . . . , k − 1}. Then

τ defines a word wτ ∈ (X ∪ (E × A))∗ as follows: For all l = 0, 1, . . . , k − 1, if
(il, jl) ∈ dom τ replace e = xilxil+1 · · · xjl

by (e, τ(il, jl)) in w. Such a mapping τ is
legal if (e, τ(il, jl)) ∈ α for all l. When τ is legal then wτ ∈ (X∪α)∗ and τ is called an
A-attachment to w. For a language L ⊆ X+, let T (L) be the set of A-attachments
to words in L. Conversely, a word z ∈ (X ∪ α)∗ defines a word w ∈ X∗ and a set
of A-attachments τ , such that wτ = z. Note that w is uniquely defined, but that τ
may apply to several d ∈ ∂Ew.

Consider a word z ∈ (X ∪ α)+ and a symbol a ∈ A. Let w and τ be such
that wτ = z. Moreover, let w = x0x1 · · · xn with x0, x1, . . . , xn ∈ X. Consider any
d ∈ ∂Ew with dom τ ⊆ d and any d′ ∈ ∂Ew. For (i, j) ∈ d′ let ei,j = xixi+1 · · · xj.
We say that a dominates (i, j) in z when the following condition is satisfied: For all
(i′, j′) ∈ d such that {i′, i′ + 1, . . . , j′} ∩ {i, i + 1, . . . , j} 6= ∅ and (i′, j′) ∈ dom τ ,

β(ei,j , a) > β(xi′xi′+1 · · · xj′ , τ(i′, j′)).

In such a case, all pairs (i′, j′) ∈ d with {i′, i′ + 1, . . . , j′} ∩ {i, i + 1, . . . , j} 6= ∅
are said to be affected. If a dominates (i, j) in z, the following basic reaction will
happen forming a multiset R(z, a): For each affected pair (i′, j′), a copy of τ(i′j′) is

M. Sakthi Balan

110

put into R(z, a); let Y ⊆ dom τ be the set of pairs which are not affected and let

d′′ ∈ ∂Ew be such that Y ∪ (i, j) ⊆ d′′. Define the A-attachment τ̄ : d′′
◦
→ A by

τ̄(p) = τ(p) for p ∈ Y and τ̄ (i, j) = a. Put a copy of wτ̄ into R(z, a). The multiset
R(z, a) is the result of a basic reaction between z and a. If a is binding with z and
some symbols are released from z when R(z, a) is formed then we denote the set of
released symbols by Out(z, a). If nothing is released when a binds then Out(z, a)
will be {λ}.

We also need to consider basic reactions between words z, z′ ∈ (x∪α)+, where z
and z′ need not be different. Again we want to define the resulting multiset R(z, z′).

We use w, d and τ as above. Now z′ = w′

τ ′ where τ ′ : d′
◦
→ A for some d′ ∈ ∂Ew′.

Consider (i′, j′) ∈ dom τ ′ and let a = τ ′(i′j′). Moreover, let e′i′,j′ be the infix of w′

which starts at i′ and ends at j′. Suppose a dominates (i, j) in z for some (i, j) ∈
d̄ ∈ ∂Ew and β(ei,j , a) > β(e′i′,j′ , a), then the reaction is as follows.

Since the basic reactions between two words z and z′ are with respect to a, we
represent these by Ra(z, z′). They take place in two steps:

1. The reaction SepRa(z, z′) produces a multiset containing z, z′′ and a, where
z′′ is defined as follows: let τ ′′ be the restriction of τ ′ to dom τ ′ \ (i′j′); then
z′′ = w′

τ ′′ .

2. Next is the reaction leading to R(z, a).

As before Out(z1, z2) denotes the set of symbols released from z1 when a binds
with z1. When z and z′ are the same occurrence of a word then SepRa(z, z′) consists
only of z′′ and a.

The basic reactions resulting in R(z, a) and Ra(z, z′) take place only when there
is instability. Instability between z and a occurs when a dominates (i, j) ∈ ∂Ew
where z = wτ . Likewise instability between two words z and z′ occurs when there is
a symbol a = τ ′(i′, j′) where (i′, j′) ∈ dom τ ′ and τ ′ : d′

◦
→ A for some d′ ∈ ∂E(w′).

A basic reaction can trigger a sequence of reactions; this might even lead to a
cycle which in turn will not result in a stable configuration. In the sequel we refer
to R(z, a) and Ra(z1, z2) as the results of a basic reaction or as multisets, whichever
is more appropriate in the context.

Definition 2 Let P be a peptide computer. A peptide configuration is a finite mul-
tiset of words in (X ∪ α)+ ∪A.

To a peptide configuration P a basic reaction may apply when instability exists in the
configuration, that is, there may be z, z′ ∈ (X ∪α)+ or a ∈ A which occur in P such
that R(z, a) differs from the multiset consisting of z and a or R(z, z′) differs from the
multiset consisting of z and z′. In either case a basic reaction non-deterministically
removes (z, a) or (z, z′) from P and adds R(z, a) or R(z, z′), respectively. Let R(P)
be the set of peptide configurations which result from P through one basic reaction.
For n ∈ N0, let Rn be the n-fold iteration of R.

Definition 3 A peptide configuration P is said to be stable if R(P) = {P}.

Non-determinism in peptide computer

111

If Rn(P) consists of stable configurations only, for some n, define R∗(P) = Rn(P)
for this n. Otherwise, R∗(P) = ∅. Let Γ be the class of stable peptide configurations.

To define peptide computations, we also need the following objects:

Definition 4 A peptide instruction has the form +P or −P where P is a peptide
configuration.

When P ′ is a peptide configuration and I is a peptide instruction then

I(P ′) =

{

P ′ ∪ P, if I = +P ,
P ′ \ P, if I = −P ,

with union and difference taken as multiset operations.

The instruction −P is called a flushing instruction if P = P ′ ∩ A; hence in this
case all the symbols in A which are not binding to any sequence in X+ are removed
from the configuration.

Definition 5 A peptide program is a pair (P, χ) where P is a mapping from Γ∗

into the set of peptide instructions and χ is a (halting) function χ : Γ → B.

Definition 6 Let P be a peptide computing model and let (P, χ) be a peptide pro-
gram for P. A peptide computation is a word c = c0c1 · · · ct ∈ Γ∗ with c0, c1, . . . , ct ∈
Γ such that

ci ∈ R∗(P(c0c1 · · · ci−1)(ci−1))

for i = 0, 1, . . . , ct.

A computation as above starts with c0 ∈ R∗(P(λ)) and ends when χ(ci) = 1 for
the first time.

To encode inputs we need a mapping γ from inputs to Γ, an input encoding; we also
need an output decoding, that is, a mapping δ from Γ to outputs.

Definition 7 A function f from inputs to outputs is peptide computable if there
is a peptide program P, a computable input encoding γ of inputs into P(λ) and
a computable decoding of Γ into outputs such that, for every x ∈ dom f , there is
a peptide computation c0c1 · · · ct with c0, c1, . . . , ct ∈ Γ and γ(x) = c0 satisfying
χ(ct) = 1 and δ(ct) = f(x).

3 Non-Determinism in Peptide Computer

As mentioned briefly in the introduction non-determinism comes into picture in
peptide computer in two ways. First one is, many-to-many interactions between
symbols and sequences and the other is, due to multiplicities of the sequences and
symbols. But when we look upon a multiset as a pair M = (I, ι) we can visualize
both the non-determinism as a single one since M can be virtually thought of as a
set but holding all the original properties of multiset. With this important note we
proceed to define non-determinism in peptide computer.

M. Sakthi Balan

112

We define non-determinism in peptide computer in three levels: global, locally-
global and local. We first describe all three of them very informally in the sequel.

Informally speaking there are two ways a non-determinism can occur in a peptide
computer: one, when there are more than one epitopes defined for a symbol and
two, when there are more than one symbols in competition to bind to their epitopes
which overlap with each other. The global definition is similar to the definition of
non-determinism in accepting devices like finite state automata, pushdown automata
and so on. It is defined in a more generic way on the system as a whole.

The other two local definitions are more interesting ones. Basically when reac-
tion take place we have a peptide configuration that contains all the sequences and
symbols participating in the reaction. The locally-global non-determinism is defined
by restricting the global definition of non-determinism to the sequences and the
symbols present in the configuration.

The third one is defined on the reactions taking place between symbols and
a sequence or between two sequences. As defined earlier, these reactions happen
only when there is an instability in the medium. When instability is present in the
medium and either of the following conditions are satisfied: there is a possibility of
more than one epitopes for a symbol to bind or there are more than one symbol that
can attach to an epitope, then we say that it is locally non-deterministic.

All the above definitions will be explained more in detail when we define them
formally.

It can be seen that the local definitions are more restrictive versions of the global
definition. We prove it formally in the next section. There can be many instances
that even though the definition might be non-deterministic globally it might not be
non-deterministic when reaction occurs. We will present under what conditions this
happens.

The reason behind defining non-determinism in three levels is explained in the se-
quel. The peptide computer is a generic system used to solve a set of problems. Hence
it can be defined as a non-deterministic or deterministic one. To solve a problem by
peptide computer we write a peptide program to work with the available sequences
and symbols. Even when the generic system is a non-deterministic one, when writing
a program for a problem there might not be a need for non-determinism. Hence we
have separated out the non-determinism as global and locally-global ones. Similarly
even when a program uses non-determinism when actual processing take place due to
the structure of the sequence and the binding properties of the symbols there might
not be any non-determinism present when reactions take place. These arguments
show that we have to separate non-determinism into three levels.

Before defining non-determinism formally, we define few technical terms which
we use in the paper later.

Definition 8 For a peptide configuration P we say a sequence z ∈ (X ∪ α)+ as a
participating sequence if z ∈ P . Likewise a symbol a is a participating symbol if
a ∈ P .

The set of all participating sequences is denoted by Pseq and the set of all partic-
ipating symbols is denoted by Psym. A participating sequence is denoted by pseq
and a participating symbol by psym.

Non-determinism in peptide computer

113

Definition 9 For a peptide configuration P , an epitope e ∈ E is said to be a par-
ticipating epitope if e ∈ Sub(w) where wτ = z is a pseq and τ is an arbitrary
A− attachment.

The set of all participating epitopes is denoted by Pepi. A participating epitope is
denoted by pepi.

We recall that only when the configuration attains stability the next peptide in-
struction is applied. When a peptide instruction is carried out by peptide computer,
the configuration becomes instable and reactions occur to attain stability. Now we
have the following definition:

Definition 10 The time period between applying a peptide instruction and attaining
stability is defined as the instability period. The series of reactions happening in the
instability period are collectively called as a step.

Definition 11 For a sequence x ∈ V + represented as x = x1x2 · · · xn where xi ∈ V ,
any epitope e in x is of the form xi · · · xj where i ≤ j ≤ n.

For any two epitopes e, e′ in x with e = xi · · · xj and e′ = yk · · · yl where i ≤ j ≤ n
and k ≤ l ≤ n we say e and e′ overlap when either i ≤ k ≤ j or k ≤ i ≤ l.

Now we present formal definitions for three types of non-determinism in peptide
computer.

Definition 12 A peptide computer P = (X,E,A,α, β) is said to be globally non-
deterministic if either of the following conditions are satisfied:

• there exists a symbol a ∈ A and epitopes e1, e2, · · · , en, n ≥ 2 such that {(e1, a),
(e2, a), · · · , (en, a)} ⊆ α

• there are symbols a1, a2, · · · , am,m ≥ 2 and there exists epitopes e1, e2, · · · , ep,
p ≥ 1 such that

– each ej overlaps with each other ei where 1 ≤ i 6= j ≤ p, and

– for each ai there exists at least one j such that (ej , ai) ∈ α where 1 ≤ i ≤
m and 1 ≤ j ≤ p.

Definition 13 A peptide computer P = (X,E,A,α, β) is said to be locally-global
non-deterministic if either of the following conditions are true for all peptide config-
uration P :

• there exists a symbol a ∈ Psym and epitopes e1, e2, · · · , en, n ≥ 2, ei ∈ Pepi,
1 ≤ i ≤ n such that {(e1, a), (e2, a), · · · , (en, a)} ⊆ α

• there are symbols a1, a2, · · · , am,m ≥ 2, ai ∈ Psym, 1 ≤ i ≤ m and there exists
epitopes e1, e2, · · · , ep, p ≥ 1, ej ∈ Pepi, 1 ≤ j ≤ p such that

– each ej overlaps with each other ek where 1 ≤ j 6= k ≤ p, and

– for each ai there exists at least one l such that (el, ai) ∈ α where 1 ≤ l ≤ p
and 1 ≤ i ≤ m.

M. Sakthi Balan

114

Before defining locally non-deterministic we recall that a step in peptide computer
consists of a sequence of set of reactions R1(P), R2(P), · · · · · · where P is the con-
figuration of the peptide computer. At each i, Ri(P) consists of reactions between
z and a and reactions between two sequences z1 and z2. Now we define local non-
determinism:

Definition 14 A step in peptide computer is said to be non-deterministic if there
exists a m ≥ 1 such that Rm(P) satisfies either of the following conditions:

• if a ∈ Psym dominates more than one pair, say the set of pairs {(i1, j1), (i2, j2),
· · · , (in, jn)}

• if there are symbols a1, a2, · · · , am,m ≥ 2, ai ∈ Psym, 1 ≤ i ≤ m and there
exists epitopes e1, e2, · · · , ep, ei ∈ Pepi, 1 ≤ i ≤ p such that

– for each ai there exists at least one j such that (ej , ai) ∈ α and ai domi-
nates ej , and

– each ej overlaps with each other ei.

In all the three definitions presented above we note that there are two different views
of non-determinism – one, with respect to a symbol which can non-deterministically
bind to one of its epitopes and the other one with respect to epitopes, where non-
deterministically one of many symbols can bind to it. We note here that epitopes for
those symbols need not be the same epitope but a set of epitopes with the property
that epitopes overlap with each other.

Definition 15 A symbol a ∈ A is a non-deterministic symbol if | α(a) |> 1.

The set of all non-deterministic symbols in A is denoted by And. In the following
definitions we classify the set of epitopes as non-deterministic and deterministic
epitopes.

Definition 16 A set F ⊆ E is said to be overlapping set if every two epitopes
ei, ej ∈ F overlap.

By definition it should be obvious to note that every singleton set of E is an over-
lapping set. For any sequence x over V ∗ if any epitope in x is associated with the
overlapping set F then we denote it as xF .

Definition 17 An overlapping set F = {f1, f2, · · · , fm},m ≥ 1 is said to be a non-
deterministic epitope-set if there is a set A′ ⊆ A, say A′ = {a1, a2, · · · , an} where
n ≥ 2 such that for all ai ∈ A′ there is at least one j satisfying the condition that
(ej , ai) ∈ α.

The set of all non-deterministic epitope set is denoted by End. If End = {E1, E2, · · · ,
En} and F ⊆ E then we define EF

nd as the family of set {E1 ∩F,E2 ∩F, · · ·En ∩F}.

Definition 18 Let F be an overlapping set and e ∈ F . The weight of F is defined
as β(e, a) where (e, a) is a subsequence of xF .

Non-determinism in peptide computer

115

We note that the above definition is not ambiguous since all epitopes in F overlap
and so at any instance only one epitope will be bounded by a symbol. We denote
weight of F as w(F).

Definition 19 Let e ∈ E. We say e is closed if any overlapping set F containing
e has a non-zero weight. If all overlapping sets containing E are zero weight then it
is said to be open.

Using the definitions closed and open we define a characteristic function χ :
E −→ {0, 1} with χ(e) = 0 if e is closed and χ(e) = 1 if e is open.

Definition 20 Let X = {x1, x2, · · · , xn}, n ≥ 1 be a set. We define tuple(X) as a n-
tuple (xi1 , xi2 , · · · , xin) where (i1, i2, · · · , in) is any permutation of the set {1, 2, · · · , n}.
We extend the definition of χ to tuples over any subset of E, say (e1, e2, · · · , ek), as
(χ(e1), χ(e2), · · · , χ(en)).

Definition 21 A peptide computer is said to be strictly globally non-deterministic
if it is globally non-deterministic but not locally-global non-deterministic. Likewise a
peptide computer is said to be strictly locally-global non-deterministic if it is locally-
global non-deterministic but not locally non-deterministic.

We use the following notations in our paper. The set of all peptide computer P is de-
noted by PC. The set of all peptide computers which are globally non-deterministic
is denoted by PCgnd. Likewise peptide computers which are locally-global non-
deterministic (locally non-deterministic) is denoted by PClgnd (PClgd).

4 Results on Non-Determinism

Theorem 1

1. PClgnd ⊆ PCgnd,

2. PClnd ⊆ PClgnd.

Proof. Let P ∈ PClgnd. We prove P is also a globally non-deterministic one. This
simply follows from definition. Since Psym ⊆ A and Pepi ⊆ E, it directly follows
that if condition (1) of Definition 13 is true then condition (1) of Definition 12 is
true, or if the condition (2) of Definition 13 is true then condition (2) of Definition 12
is true. This shows that P ∈ PCgnd.

Let P ′ ∈ PClnd. We will show that P ′ ∈ PClgnd. Our assumption implies that
either the condition (1) or condition (2) of Definition 14 is satisfied. If condition
(1) is true then a ∈ Psym dominates more than one pair, i.e., the set of pairs
{(i1, j1), (i2, j2), · · · (in, jn)} where n ≥ 2. By the definition of a symbol dominating
a sequence it implies that for the symbol a ∈ Psym, {(e1, a), (e2, a), · · · , (en, a)} ⊆ α
where if (ik, jk) is a pair from the sequence xk ∈ Pseq then ek = xk

ik
xk

ik+1 · · · x
k
jk

, 1 ≤
k ≤ n. This proves condition (1) of Definition 13 is true.

If condition (2) of Definition 14 is satisfied, then there are symbols a1, a2, · · · , am,
m ≥ 2, ai ∈ Psym, 1 ≤ i ≤ m and there exists epitopes e1, e2, · · · , ep, p ≥ 1, ei ∈

M. Sakthi Balan

116

Pepi, 1 ≤ i ≤ p such that for each ai there exists at least one j such that (ej , ai) ∈ α.
This shows condition (2) of Definition 13 is satisfied.

Hence in either case we have P ∈ PClgnd. �

Now we study some properties of peptide computer which will help us to exhibit the
conditions for a peptide computer to be strictly globally-non-deterministic. Similarly
we also examine under what conditions peptide computer is strictly locally-global
non-deterministic one.

Theorem 2 A peptide computer P is strictly globally non-deterministic if it satisfies
either of the following conditions: for all i,

• Pi contains no symbols from And and no epitopes from End.

• For all a ∈ And∩Piseq, | α
−1(a)∩Piepi |= 1, and for all E ∈ EPiepi

nd
, | α(E) |=

1.

Proof. If Pi contains no symbols from And and no epitopes from End then it is trivial
that P is strictly globally non-deterministic since no other symbols and epitopes will
contribute to non-determinism.

We assume that Pi contain symbols from And. Let a ∈ And ∩ Piseq. Suppose a
satisfies the condition | α−1(a)∩Piepi |= 1 then it signifies that there is exactly one
e ∈ Piepi such that (e, a) ∈ α. Hence the configuration Pi has only one epitope for
all non-deterministic symbols in the configuration. This implies the condition (1) is
not satisfied in the Definition 13.

If there is a non-deterministic epitope set E in the configuration Pi and satisfies
the condition | α(E) |= 1 then it shows that there is only one a ∈ Pisym such
that (e, a) ∈ α where e ∈ E. The possibility of more than one e is ruled out by our
first assumption that | α−1(a) ∩ Piepi |= 1. This shows that P is not locally-global
non-deterministic.

Hence P is strictly globally non-deterministic. �

Theorem 3 A peptide computer P is strictly locally-global non-deterministic if it
satisfies either of the following conditions: for all i,

• For all a ∈ And ∩ Piseq, if χ(tuple(α−1(a) ∩ Piepi) is a zero vector or an unit
vector.

• For all E ∈ EPi

nd, | α(E) |≤ 1 if w(E) = 0 and | α(E) |≥ 0 if w(E) = 1.

Proof. Let P be locally-global non-deterministic satisfying the above conditions we
will show that it is not locally non-deterministic. Since P is locally-global non-
deterministic either of the conditions in Definition 13 is true. Suppose the condition
(1) is true for the configuration Pi. Let a ∈ Pisym∩And. Then there exists epitopes
e1, e2, · · · , en, n ≥ 2 such that ej ∈ Piepi and (ej , a) ∈ α. Hence a has n choices
of epitopes to bind. But since we are looking for a locally deterministic one, these
choices should not exist when reaction take place, i.e., there should be at most one
choice for the symbol a. For this to happen except at most one epitope, say ei,

Non-determinism in peptide computer

117

a should not dominate any other epitope. This implies all epitopes ej(j 6= i) are
bounded by a symbol – if some of them are not bounded by symbols any one of
the epitope overlapping with it is bounded by a symbol. This implies that if we
consider (e1, e2, · · · , en) as an n-dimensional vector then χ((e1, e2, · · · , en)) is a unit
vector or zero vector. Hence if χ((e1, e2, · · · , en)) is a unit vector or zero vector for
all a ∈ Pisym ∩And, then condition (1) of Definition 14 is not satisfied.

Now suppose there is a non-deterministic epitope set E in the configuration.
Since we look for a peptide computer that is not locally deterministic there should
not be n(n ≥ 2) possibilities of symbols binding with epitopes in E. There are only
two choices for that: (1) w(E) > 0 and (2) w(E) = 0 and n = 1. If w(E) > 0
then there are no open epitopes and hence n can be arbitrary. In other case since
w(E) = 0 all epitopes in E are open. Hence there should be at most one symbol in
competition for an epitope in E.

The discussion shows that P is strictly locally-global non-deterministic. �

5 Conclusion

We defined three levels of non-determinism in peptide computer: global, locally-
global and local. We showed global is a more general definition, locally-global is a
restrictive version of global and local is further restrictive version of locally-global.
We also characterized conditions for a global system to not to be a locally-global
one and locally-global to not to be a local one.

The three levels of non-determinism defined in peptide computer is helpful in the
following way: once a (locally-global) global non-deterministic peptide computer is
given we can either select the system to be (locally) locally-global non-deterministic
or strictly (locally-global) globally-non-deterministic. More interesting question is
to study how dynamically under some contextual conditions the system can pick a
step to be a locally non-deterministic one or a locally deterministic one. This will
control the use of non-determinism to a greater extent.

References

[1] M. S. Balan and H. Jürgensen. Peptide computing: Universality and theoreti-
cal model. In Unconventional Computation, volume LNCS 4135, pages 57–71.
Springer-Verlag, 2006.

[2] M. S. Balan and H. Jürgensen. On the universality of peptide computing. Natural
Computing, 2007. In print.

[3] M. S. Balan, K. Krithivasan, and Y. Sivasubramanyam. Peptide computing:
Universality and computing. In N. Jonoska and N. Seeman, editors, Proceedings
of Seventh International Conference on DNA based Computers, LNCS 2340,
pages 290–299, 2002.

M. Sakthi Balan

118

[4] M.S. Balan, H. Jürgensen, and K. Krithivasan. Peptide computing: A survey.
Technical Report preprint 4/2005, ISSN 0946-7580, Universität Potsdam, Ger-
many, 2005.

[5] C.R. Cantor and P.R. Schimmel. Biophysical Chemistry. W. H. Freeman and
Company, San Francisco, 1980. 3 volumes.

[6] H. Hug and R. Schuler. Strategies for the development of a peptide computer.
Bioinformatics, 17:364–368, 2001.

[7] Y. Ishida. Immunity-Based Systems: A Design Perspective. Springer, Berlin,
2004.

[8] H. Jürgensen and S. Konstantinidis. Codes. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 1, pages 511–607. Springer-Ver-
lag, Berlin, 1997.

[9] A. O. Tarakanov, V. A. Skormin, and S. P. Sokolova. Immunocomputing, Prin-
ciples and Applications. Springer, New York, 2003.

Non-determinism in peptide computer

119

On Local Testability in Watson-Crick Finite Automata∗

José M. Sempere

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera, s/n, 46022 Valencia, Spain
jsempere@dsic.upv.es

Abstract

Watson-Crick finite automata were first proposed in [2] inspired by formal
language theory, finite states machines and some ingredients from DNA compu-
ting such as working with molecules as double stranded complementary strings.
Here, we define different kinds of local testability in this model. Mainly, we will
explore local testability in the upper (lower) strand and in the double strand.

1 Introduction

Watson-Crick finite automata (WKFA) [2] is a good example of how DNA biological
properties can be adapted to propose computation models in the framework of DNA
computing. A recent survey on WKFA has been published in [1]. The WKFA model
works with double strings inspired by double-stranded molecules with a complemen-
tary relation between symbols (here, inspired by classical complementary relation
between nucleotides A-T and C-G). Different restriction over the model have been
proposed, mainly devoted to restrict the number of final states (i.e., all final and
stateless WKFA) and the way of processing the upper and lower string (i.e., 1-limited
and simple WKFA). Here we propose a different characterization of the model based
on a classical concept of formal language theory such as local testability.

Local testable languages were first defined by McNaughton and Papert [5]. These
languages have been widely studied in the framework of learning systems (i.e., [3,
10]), DNA and protein analysis (i.e., [12, 13]) and formal languages and semigroups
(i.e., [6]), among others.

Here, we will introduce local testability in different ways. First, we will introduce
a representation theorem for languages accepted by WKFA, which allows us to
study WKFA through linear and even linear languages. Then, we will study two
possibilities of defining local testability: in the upper (lower) strand and in the
double strand. Finally, we will give some guidelines for future works.

∗Work partially supported by the Generalitat Valenciana under research project GV06/068

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 120 - 128, 2007.

120

2 Basic Concepts and Notation

In this section we will introduce basic concepts from formal language theory accord-
ing to [4, 8] and from DNA computing according to [7].

Formal language theory

An alphabet Σ is a finite nonempty set of elements named symbols. A string defined
over Σ is a finite ordered sequence of symbols from Σ. The infinite set of all the
strings defined over Σ will be denoted by Σ∗. Given a string x ∈ Σ∗ we will denote
its length by |x|. The empty string will be denoted by λ and Σ+ will denote Σ∗−{λ}.
Given a string x we will denote by xr the reversal string of x. A language L defined
over Σ is a set of strings from Σ. Finally, Σ≤k will denote the set of strings with
length less than or equals to k and Σk will denote the set of strings with length
equals to k.

A grammar is a construct G = (N,Σ, P, S) where N and Σ are the alphabets of
auxiliary and terminal symbols with N ∩Σ = ∅, S ∈ N is the axiom of the grammar
and P is a finite set of productions in the form α → β. The language of the grammar
is denoted by L(G) and it is the set of terminal strings that can be obtained from S
by applying symbol substitutions according to P . Formally, w1 ⇒

G
w2 if w1 = uαv,

w2 = uβv and α → β ∈ P . We will denote by
∗
⇒
G

the reflexive and transitive closure

of ⇒
G

.

We will say that a grammar G = (N,Σ, P, S) is right linear (regular) if every
production in P is in the form A → uB or A → w with A,B ∈ N and u,w ∈ Σ∗.
The class of languages generated by right linear grammars coincides with the class
of regular languages and will be denoted by REG. We will say that a grammar
G = (N,Σ, P, S) is linear if every production in P is in the form A → uBv or
A → w with A,B ∈ N and u, v,w ∈ Σ∗. The class of languages generated by linear
grammars will be denoted by LIN . We will say that a grammar G = (N,Σ, P, S)
is even linear if every production in P is in the form A → uBv or A → w with
A,B ∈ N , u, v,w ∈ Σ∗ and |u| = |v|. The class of languages generated by even linear
grammars will be denoted by ELIN . A well known result from formal language
theory is the inclusions REG ⊂ ELIN ⊂ LIN .

A homomorphism h is defined as a mapping h : Σ → Γ∗ where Σ and Γ are
alphabets. We can extend the definition of homomorphisms over strings as h(λ) = λ
and h(ax) = h(a)h(x) with a ∈ Σ and x ∈ Σ∗. Finally, the homomorphism over a
language L ⊆ Σ∗ is defined as h(L) = {h(x) : x ∈ L}.

Local testability

Here, we will introduce the definition of local testability and local testability in the
strict sense. For any string x ∈ Σ∗ and any integer value k > 0, the testability
vector vk(x) is defined by the tuple (ik(x), tk(x), fk(x)) where

ik(x) =

{

x, if |x| < k
u : x = uv, |u| = k − 1 if |x| ≥ k

On local testability in Watson-Crick finite automata

121

fk(x) =

{

x, if |x| < k
v : x = uv, |v| = k − 1 if |x| ≥ k

tk(x) = {v : x = uvw, u,w ∈ Σ∗ ∧ |v| = k}.

We will define the equivalence relation ≡k in Σ∗×Σ∗ as x ≡k y iff vk(x) = vk(y).
It has been proved in [5] that ≡k is a finite index relation and that ≡k covers ≡k+1.

So, we will say that any language L is k-testable iff it is defined as the union
of some equivalence classes of ≡k. In addition, L is local testable iff it is k-testable
for any integer value k > 0. The family of k-testable languages will be denoted by
k − LT while LT will denote the class of testable languages.

A different kind of testability is the so called testability in the strict sense which
was again proposed in [5]. Here, for any alphabet Σ we will take the sets Ik, Fk ⊆
Σ≤k−1 and Tk ⊆ Σk. Then, a language L is said to be k-testable in the strict sense
if the following equation holds

L ∩ Σk−1Σ∗ = (IkΣ
∗) ∩ (Σ∗Fk)− (Σ∗TkΣ

∗).

Observe that, according to the last equation, any word in L with length greater
than or equals to k− 1 begins with a segment in Ik, ends with a segment in Fk and
has no segment from Tk. Any language L is locally testable in the strict sense iff it
is k-testable in the strict sense for any k > 0. The family of k-testable languages in
the strict sense will be denoted by k − LT SS while LT SS will denote the class of
testable languages in the strict sense.

It has been proved that k−LT is the boolean closure of k−LT SS [14]. Finally,
it can be easily proved that both classes k − LT and k − LT SS are subclasses of
REG.

Watson-Crick finite automata

Given an alphabet Σ = {a1, · · · , an}, we will use the symmetric (and injective)
relation of complementarity ρ ⊆ Σ × Σ. For any string x ∈ Σ∗, we will denote by
ρ(x) the string obtained by substituting the symbol a in x by the symbol b such
that (a, b) ∈ ρ (remember that ρ is injective) with ρ(λ) = λ.

Given an alphabet Σ, a sticker over Σ will be the pair (x, y) such that x = x1vx2,

y = y1wy2 with x, y ∈ Σ∗ and ρ(v) = w. The sticker (x, y) will be denoted by

(

x
y

)

.

A sticker

(

x
y

)

will be a complete and complementary molecule if |x| = |y| and

ρ(x) = y. A complementary and complete molecule

(

x
y

)

will be denoted as

[

x
y

]

.

Obviously, any sticker

(

x
y

)

or molecule

[

x
y

]

can be represented by x#yr where

/∈ Σ. Here, we will use x#yr instead of x#y due to the grammar construction
that we will propose in the following. Furthermore, inspired by DNA structure x#yr

represents the upper and lower nucleotide strings within the same direction 3′ − 5′

(or 5′ − 3′).

J. Sempere

122

Formally, an arbitrary WK finite automaton is defined by the tuple M = (V, ρ,Q,
s0, F, δ), where Q and V are disjoint alphabets (states and symbols), ρ is a symmetric
(and injective) relation of complementarity between symbols of V , s0 is the initial

state, F ⊆ Q is a set of final states and δ : Q×

(

V ∗

V ∗

)

→ P(Q) (which denotes the

power set of Q, that is the set of all possible subsets of Q).

The language of complete and complementary molecules accepted by M will be
denoted by the set Lm(M), while the upper strand language accepted by M will be
denoted by Lu(M) and defined as the set of strings x such that M , after analyzing

the molecule

[

x
y

]

enters into a final state.

A Representation Theorem

Now, given any WKFA M , we will introduce a representation theorem for the lan-

guages Lm(M) and Lu(M). First, observe that any double string

(

x
y

)

can be

represented by the string x#yr. Then, the following result holds.

Theorem 1 (Sempere, [11]) Let M = (V, ρ,Q, s0, F, δ) be an arbitrary WK finite
automaton. Then there exists a linear language L1 and an even linear language L2

such that Lm(M) = L1 ∩ L2.

The construction for L1 and L2 proposed in the theorem is defined as follows. First,
the grammar G1 = (N,V, P, s0) where N = Q, s0 is the axiom of the grammar and
P is defined as

• If q ∈ F then q → # ∈ P .

• If p ∈ δ(q,

(

x1

x2

)

) then q → x1 p xr
2 ∈ P .

The language L2 is defined by the grammar G2 = ({S}, V, P, S) where P is defined
as follows

• S → # ∈ P .

• For every pair of symbols a, b ∈ V , such that (a, b) ∈ ρ, S → aSb ∈ P .

It can be easily proved that L(G2) = {x1#xr
2 ∈ V ∗ : |x1| = |x2| and ρ(x1) = x2}.

That is, L2 can be established as the set of complete and complementary molecules
[

x1

x2

]

in the form x1#xr
2.

From L1 and L2 it is clear that L1∩L2 is the set of complete and complementary
molecules accepted by M in the form x#yr.

In order to characterize the upper strand language we will provide the following
result.

On local testability in Watson-Crick finite automata

123

Corollary 1 (Sempere, [11]) Let M = (V, ρ,Q, s0, F, δ) be an arbitrary WK finite
automaton. Then Lu(M) can be expressed as g(h−1(L1 ∩ L2) ∩ R) with L1 being
a linear language, L2 an even linear language, R a regular language and g and h
homomorphisms.

3 Local Testability in Watson-Crick Finite Automata

In this section, we will introduce local testability in the upper or lower strand, and
in the double strand of the WKFA model. Given that the languages accepted by
arbitrary WKFA can be represented by linear and even linear languages, we will
introduce two reductions from these language classes to the class REG.

The first transformation, the so called σ operator, was first introduced in [9] and
it was applied for the definition of local testable even linear languages in [10]. It is
defined inductively as follows: σ : Σ∗ → (Σ × Σ)∗(Σ ∪ {λ}) with

1. σ(λ) = λ,

2. (∀a ∈ Σ) σ(a) = a,

3. (∀a, b ∈ Σ) (∀x ∈ Σ∗) σ(axb) = [ab]σ(x).

The operation σ is applied over languages as σ(L) = {σ(x) : x ∈ L}.
The inverse transformation σ−1 can be easily deduced from σ. It has been proved

that for every even linear language L, σ(L) is regular [9].
The second transformation is a grammatical construction that transforms every

linear grammar into an even linear one. It is defined as follows.
Let G1 = (N,Σ, P, S) be a linear grammar. Then G2 = (N,Σ ∪ {∗}, P ′, S) is an

even linear grammar where the productions of P ′ are defined as follows.

• If A → w ∈ P then A → w ∈ P ′.

• If A → uBv ∈ P with |u| = |v|, then A → uBv ∈ P ′.

• If A → uBv ∈ P with |u| < |v|, then A → u ∗|v|−|u| Bv ∈ P ′.

• If A → uBv ∈ P with |u| > |v|, then A → uBv∗|u|−|v| ∈ P ′.

The last grammar is an even linear one and it can be easily proved that
g(L(G2)) = L(G1) where g is a morphism such that g(∗) = λ and g(a) = a for
every a ∈ Σ.

Local testability in the double strand

We will take the representation proposed in theorem 2.1. So, any molecule

[

x
y

]

can

be represented by x#yr. Let us take G1 as the linear grammar proposed in the
theorem and let us take G2 as the transformed even linear grammar corresponding
to G1. Obviously, for any string x#yr of L(G1) we obtain a string u#v in L(G2)
such that g(u)#g(v) = x#yr, where g is the morphism defined before.

J. Sempere

124

Now, we can work with G2 and we apply the transformation σ over L(G2).
Observe that σ(L(G2)) is regular.

Example 1 Let M = (V, ρ,Q, s0, F, δ) be the WKFA defined by the following tran-
sitions

δ(q0,

(

a
λ

)

) = {qa}, δ(qa,

(

a
λ

)

) = {qa}, δ(qa,

(

b
a

)

) = {qb},

δ(qb,

(

b
a

)

) = {qb}, δ(qb,

(

c
b

)

) = {qc}, δ(qc,

(

c
b

)

) = {qc},

δ(qc,

(

λ
c

)

) = {qf}, δ(qf ,

(

λ
c

)

) = {qf}.

Let us take qf as the final state, q0 as the initial stated and the complementarity
relation ρ = {(a, a), (b, b), (c, c)}. Then, every complete and complementary molecule

accepted by M takes the form

[

anbncn

anbncn

]

with n ≥ 1.

Now, the representation linear grammar GM , according to M is defined by the
following productions (take q0 as the axiom)

q0 → aqa, qa → aqa | bqba,
qb → bqba | cqcb, qc → cqcb | qdc,
qd → qdc | #.

The corresponding even linear grammar is the following

q0 → aqa∗, qa → aqa∗ | bqba,
qb → bqba | cqcb, qc → cqcb | ∗qdc,
qd → ∗qdc | #.

Finally, we can provide the following right linear grammar to obtain the trans-
formation σ over the last grammar

q0 → [a∗]qa, qa → [a∗]qa | [ba]qb,
qb → [ba]qb | [cb]qc, qc → [cb]qc | [∗c]qd,
qd → [∗c]qd | #.

Observe that the last grammar generates the language defined as L =
{[a∗]n[ba]m[cb]p[∗c]q# : n,m, p, q ≥ 1}. Then, if we take the morphism g with
g(∗) = λ and g(d) = d for every d ∈ {a, b, c,#} we can obtain g(σ−1(L)) =
{anbmcp#cqbpam : n,m, p, q ≥ 1} which, together with the complementary relation
ρ, corresponds to the language accepted by M .

So, the definition of local testability (in the strict sense) will be applied over the
regular language obtained by the result σ(L(GM)) for any WKFA M . Observe that
every transformed language in k−LT (k−LT SS) has a corresponding local testable
language defined by the transitions of the WKFA.

On local testability in Watson-Crick finite automata

125

Local testability in the upper and lower strand

Now, we will deal only with the upper (lower) strand. Observe that, the definition of
the WKFA transitions can be transformed into FA transitions by taking the upper

or lower strand (i.e., the transition p ∈ δ(q,

(

x
y

)

) implies that pu ∈ δu(q, x) and

pl ∈ δl(q, y)). So, for every WKFA we can obtain two different finite automata
which control the transitions in the upper and lower strands. Here, we will work
with simple WKFA [7]. We will say that a WKFA is simple if for every transition

δ(q,

(

x
y

)

) x = λ or y = λ. It has been proved that simple WKFA are normal forms

for arbitrary WKFA. That is, for every arbitrary WKFA there exists an equivalent
simple WKFA. Furthermore, we can work with the so called 1limitedWKFA which
are simple WKFA where every transition is performed by analyzing only one symbol
every time.

Now, we will obtain finite automata from arbitrary 1limited WKFA through the
following construction. Let M = (V, ρ,Q, s, F, δ) be an arbitrary 1limitedWKFA.
Then, we can define the finite automaton Au = (Q,V, δu, s, F), where δu is defined
as follows

1. p ∈ δu(q, a) if and only if p ∈ δ(q,

(

a
λ

)

),

2. p ∈ δu(q, λ) if and only if p ∈ δ(q,

(

λ
a

)

.

We can define the finite automaton Al = (Q,V, δl, s, F) where δl is defined as
follows

1. p ∈ δl(q, a) if and only if p ∈ δ(q,

(

λ
a

)

),

2. p ∈ δl(q, λ) if and only if p ∈ δ(q,

(

a
λ

)

).

Example 2 Let us take the WKFA of example 3.1. Then Au is defined through the
following transitions

δu(q0, a) = {qa}, δu(qa, a) = {qa}, δu(qa, b) = {qbb},
δu(qbb, λ) = {qb}, δu(qb, b) = {qbbb}, δu(qbbb, λ) = {qb},
δu(qb, c) = {qcc}, δu(qcc, λ) = {qc}, δu(qc, c) = {qccc},
δu(qccc, λ) = {qc}, δu(qc, λ) = {qf}.

In the previous definitions, the states qbb, qbbb, qcc and qccc have been introduced
in order to obtain an equivalent 1limitedWKFA from the one proposed initially. In
this case L(Au) = a+b+c+. The same holds for L(Al).

Observe that, in both automata Au and Al, the empty transitions correspond to the
case that the WKFA is working in the other strand, so the finite automata ignores
all the movements in that way.

J. Sempere

126

Now, the first definitions for local testability come from a natural way of looking
up to the FA Au and Al. We will say that a 1limitedWKFA is upper (lower) locally
testable (in the strict sense) if the language accepted by Au (resp. Al) is locally
testable (in the strict sense). Observe that this definition implies the existence of
different classes of languages accepted by WKFA which have local testability. These
classes are defined as follows

• the class k−LT u of languages accepted by 1limitedWKFA which have k-local
testability in the upper strand,

• the class k − LT SSu of languages accepted by 1limitedWKFA which have
k-local testability in the strict sense in the upper strand,

• the class k−LT l of languages accepted by 1limitedWKFA which have k-local
testability in the lower strand,

• the class k − LT SSu of languages accepted by 1limitedWKFA which have
k-local testability in the strict sense in the lower strand.

We can make a step further the definition of a new kind of local testability
in every strand by introducing a combination of testability classes considered up
to now in an isolated way. Let us take the finite automata Al and Au proposed
before. Observe that every state in the previous automata defines an equivalence
class according to ≡k defined in section 2. Now, remember that the relation ≡k−1

covers ≡k. So, if L(Al) is in j −LT , then L(Al) belongs to k −LT for every j ≤ k.
The same holds for Au. So, we can combine different equivalence classes in the upper
and the lower strand and they define new classes (k, j)−LT of languages accepted
by 1limitedWKFA which have k-local testability in the upper strand and j-local
testability in the lower strand, and the class (k, j)−LT SS of languages accepted by
1limitedWKFA which have k-local testability in the strict sense in the upper strand
and j-local testability in the strict sense in the lower strand.

4 Conclusions and Future Work

We have presented different ways of introducing local testability in WKFA. The
new definitions come from a previous representation result. The new classes inherit
the properties of local languages defined in a classical way. Anyway, there exist
different relations which should be explored between the language classes defined in
the double strand and in every strand separately. In addition, the relation between
the language classes defined for upper and lower strand simultaneously should be
explored too.

Furthermore, the relation between languages accepted by locally testable WKFA
and arbitrary languages should be explored in order to test the power of local testa-
bility in these models. These issues will be investigated in future works.

On local testability in Watson-Crick finite automata

127

References

[1] E. Czeizler, E. Czeizler. A Short Survey on Watson-Crick Finite Automata.
Bulletin of the EATCS No. 88, pages 104-119. February, 2006.

[2] R. Freund, G. Păun, G. Rozenberg, A. Salomaa. Watson-Crick finite automata
In Proceedings of DNA Based Computers III DIMACS Workshop (June, 1997),
pages 297-327. The American Mathematical Society. 1999.

[3] T. Head, S. Kobayashi, T. Yokomori. Locality, Reversibility, and Beyond:
Learning Languages from Positive Data. In Proceedings of 9th International
Conference ALT98 (October, 1998), pages 191-204. LNCS 1501, Springer, 1998

[4] J. Hopcroft, J. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison Wesley Publishing Co.,1979.

[5] R. McNaughton, S. Papert. Counter-free automata. MIT Press, 1971.

[6] J.E. Pin. Varieties of Formal Languages. Plenum Publishing Co., 1986.

[7] Gh. Păun, G. Rozenberg, A. Salomaa. DNA Computing. New computing
paradigms. Springer, 1998

[8] G. Rozenberg, A. Salomaa, editors. Handbook of Formal Languages, Vol. 1.
Springer, 1997.

[9] J. M. Sempere, P. Garćıa. A Characterization of Even Linear Languages and its
Application to the Learning Problem. In Proceedings of the Second International
Colloquium on Grammatical Inference, ICGI-94 (September, 1994), pages 28-
44. LNAI 862, Springer-Verlag, 1994.

[10] J. M. Sempere, P. Garćıa. Learning Locally Testable Even Linear Languages
from Positive Data. In Proceedings of the 6th International Colloquium on
Grammatical Inference ICGI 2002 (September, 2002), pages 225-236. LNAI
2484, Springer-Verlag, 2002.

[11] J. M. Sempere. A Representation Theorem for Languages accepted by Watson-
Crick Finite Automata. Bulletin of the EATCS No. 83, pages 187-191. 2004.

[12] T. Yokomori, N. Ishida, S. Kobayashi. Learning local languages and its appli-
cation to protein α-chain identification. In Proceedings of the Twenty-Seventh
Hawaii International Conference on System Sciences (January, 1994), Vol.5:
Biotechnology Computing, pages 113-122. IEEE, 1994.

[13] T. Yokomori, S. Kobayashi. Learning local languages and their application to
DNA sequence analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(10):1067-1079, 1998.

[14] Y. Zalcstein. Locally Testable Languages. Journal of Computer and System
Sciences, 6:151-167, 1972.

J. Sempere

128

Properties of Eco-colonies

Šárka Vavrečková, Alica Kelemenová

Institute of Computer Science, Faculty of Philosophy and Science

Silesian University in Opava

Bezručovo nám. 13, Opava, Czech Republic

{sarka.vavreckova,alica.kelemenova}@fpf.slu.cz

Abstract

Eco-colonies are new grammar systems with very simple grammars called
agents placed in a common dynamic environment. Every agent generates its
own finite language, all agents cooperate on the shared environment. The envi-
ronment is developing not only by the action of agents, but also using its own
developmental rules.

The generative power of eco-colonies was discussed in several papers, eco-
colonies were compared especially with various types of colonies, but not all
relations were proved. In this paper we summarize previous results and present
some new results about the generative power of eco-colonies.

1 Introduction

Colonies were introduced in [5] as collections of simple grammars (called compo-
nents) working on a common environment. A component is specified by its start
symbol and by its finite language. This language determines actions to do with the
start symbol, it is usually a list of words, the component substitutes its start symbol
by some of these words. The environment is static itself, only the components can
modify it.

There exist several variants of colonies with various types of derivation. The
original model was sequential (only one component works in one derivation step),
the other basic types of derivation are sequential with parallely working components
or parallel. Parallel colonies were introduced in [4], the parallel behavior of a colony
means the working of all the components that can work (the components whose start
symbols are in the environment and no other component is occupying this symbol
for the actual derivation step), one component processes one occurrence of its start
symbol.

Eco-colonies were first studied in [10], their E0L form in [11] and [12]. Eco-
colonies are colonies with developing environment. The concept of developing of the
environment is inspired by another type of grammar systems, eco-grammar systems
([3]). The environment of eco-colonies is specified not only by its alphabets but
as 0L or E0L scheme. Every symbol of the environment not processed by agents
(components) is overwritten by some of the developing rules of this scheme.

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 129 - 143, 2007.

129

In [1] there is defined a related system, e-colonies (extended colonies). Similarly
as eco-colonies are based on parallel colonies and their environment is 0L- or E0L-
scheme, e-colonies in [1] are based on sequential colonies and their environment is
T0L-scheme.

The presented paper consists of four parts. In Section 2 preliminaries are men-
tioned, than in Section 3 we introduce eco-colonies with two different derivation
modes and illustrate these systems on the examples.

In Section 4 we deal with the derivation power of eco-colonies. We compare them
mutually, and we compare the generative power of various types of colonies with the
generative power of the both types of eco-colonies. We will discuss the systems with
single alphabet and also the systems with terminal alphabets.

Section 5 is devoted to the conclusions.

2 Preliminaries

In this section we define colonies and the types of derivation in colonies, and we
preface lemmas used in the next sections. For other prerequisites from the theory
of formal languages and grammars we refer to [9], related information about theory
of grammar systems can be found in [2]. L-systems, 0L-, E0L-, ET0L- and T0L-
systems are defined in [8]. For definitions of some properties of languages (e.g.
logarithmically clustered, pump-generated) see the paper [7].

In this paper we denote by |w|S the number of occurrences of S in w for a word
w and a symbol S.

Definition 1 A colony is a (n+3)-tuple C = (V, T,A1, . . . An, w0), where

• V is a total (finite and non-empty) alphabet of the colony,

• T is a non-empty terminal alphabet of the colony, T ⊂ V,

• Ai = (Si, Fi), 1 ≤ i ≤ n, is a component, where

– Si ∈ V is the start symbol of the component,

– Fi ⊆ (V − {Si})
∗, Fi is the finite language of this component,

• w0 is the axiom.

The derivations for colonies were introduced in several ways. Basic of them are
following modes:

b-mode is sequential type of derivation, one component is active in one derivation
step, the active component replaces one occurrence of its start symbol by some
word of its finite language F ,

t-mode is sequentially-parallel – one component is active in one derivation step
and this component rewrites all occurrences of its start symbol by words of its
language,

Š. Vavrečková, A. Kelemenová

130

wp-mode is parallel mode, where every component which can work must work in
the following sense: each component rewrites at most one occurrence of its
start symbol, a component is active if its start symbol is in the environment
and no other component with the same start symbol occupies this occurrence
of the symbol,

sp-mode is parallel mode similar to wp, but if there is an occurrence of a symbol
in the environment, every component with this start symbol has to be active
– if all occurrences of this symbol are occupied by another components with
the same start symbol, the derivation is blocked.

Definition 2 We define a basic derivation step (b mode) in a colony C,

C = (V, T,A1, . . . , An, w0) as the relation
b
⇒ – α directly derives β in b mode of

derivation (written as α
b
⇒ β) if

• α = v1Sv2, β = v1fv2, where v1, v2 ∈ V ∗, S ∈ V, f ∈ (V − {S})∗,

• there exists a component (S,F) in C such as f ∈ F.

Definition 3 We define a terminal derivation step (t mode) in a colony C,

C = (V, T,A1, . . . , An, w0) as the relation
t
⇒ – α directly derives β in t mode of

derivation (written as α
t
⇒ β) if

• α = v0Sv1Sv2 . . . vn−1Svk,

• β = v0f1v1f2v2 . . . vn−1fkvk,

• where vi ∈ (V − {S})∗, 0 ≤ i ≤ k, S ∈ V, fi ∈ (V − {S})∗,

• there exists a component (S,F) in C such as for all strings fi, 1 ≤ i ≤ k, is
fi ∈ F.

Definition 4 We define a strongly parallel derivation step (sp mode) in a colony

C = (V, T,A1, . . . , An, w0) as the relation
sp

=⇒ – α directly derives β in sp mode of

derivation (written as α
sp

=⇒ β) if

• α = v0Si1v1Si2v2 . . . vk−1Sikvk,

• β = v0fi1v1fi2v2 . . . vk−1fikvk,

• where vj ∈ V ∗, 0 ≤ j ≤ k, Sij ∈ V, 1 ≤ j ≤ k, fij ∈
(

V − {Sij}
)

∗

, 1 ≤ j ≤ k,

• there exist components (Sij , Fij) in C such as fij ∈ Fij , 1 ≤ j ≤ k,

• it 6= is for all t 6= s, 1 ≤ t, s ≤ k (one component can rewrite at most one
occurrence of its start symbol),

• if |α|S > 0 for some symbol S ∈ V, then for every component (St, F), where
St = S, is t = ij for some j, 1 ≤ j ≤ k (if some symbol occurs in environment,
then all components with this symbol as the start symbol must work).

Definition 5 We define a weakly parallel derivation step (wp mode) in a colony

C = (V, T,A1, . . . , An, w0) as the relation
wp
=⇒ – α directly derives β in wp mode of

derivation (written as α
wp
=⇒ β) if

Properties of eco-colonies

131

• α = v0Si1v1Si2v2 . . . vk−1Sikvk,

• β = v0fi1v1fi2v2 . . . vk−1fikvk,

• where vj ∈ V ∗, 0 ≤ j ≤ k, Sij ∈ V, 1 ≤ j ≤ k, fij ∈
(

V − {Sij}
)

∗

, 1 ≤ j ≤ k,

• there exist components (Sij , Fij) in C such as fij ∈ Fij , 1 ≤ j ≤ k,

• it 6= is for all t 6= s, 1 ≤ t, s ≤ k (one component can rewrite at most one
occurrence of its start symbol),

• for every S ∈ V, if the number of agents with the start symbol S is denoted
by t, then

r
∑

j=1
Sij

=S

|α|Sij
= min (|α|S , t)

(all components which can work – their start symbol is in the environment and
some of the occurrences of this symbol is not occupied by any other agent –
they must work; the left side of the equation means the number of components
with the start symbol S which work in the given derivation step).

The formal definitions of an eco-grammar system and its type of derivation are in
[3].

For all the relations
x

=⇒, x ∈ {b, t, wp, sp}, we define the reflexive and transitive

closure
x

=⇒
∗

.

Definition 6 Let C be a colony and C = (V, T,A1, . . . An, w0). The language gener-
ated by the derivation step x, x ∈ {b, t, wp, sp} in C is

L(C, x) = {w ∈ T ∗ : w0
x ∗

=⇒ w}.

For more information about languages of colonies see [6].
We use the notations for colonies with various types of derivation:

COLx for class of languages generated by colonies with x type of derivation,
x ∈ {b, t, wp, sp},

COLT
x for class of languages generated by colonies with T = V and x type of

derivation, x ∈ {b, t, wp, sp}.

Lemma 1
COLT

x ⊆ COLx

where x ∈ {b, t, wp, sp}.

Proof. Colonies generating the class COLT
x are colonies with only one alphabet

(T = V), it is a special type of colonies generating COLx. �

Let C be a colony, C = (V, T,A1, . . . An, w0), with n components. Denote by m the
length of the longest word in the languages of components, over the all components
A1, . . . , An:

m = max {|u| : u ∈ Fi, Ai = (Si, Fi), 1 ≤ i ≤ n} .

Š. Vavrečková, A. Kelemenová

132

Lemma 2 (Pumping lemma for parallel colonies) Let L be an infinite lan-
guage generated by a colony C with x ∈ {wp, sp} derivation mode. Then the length
set of L contains infinite linearly dependent subsets, i.e.

{a · i + b : i ≥ 0} ⊆ {|w| : w ∈ L}

for some natural numbers a, b > 0.

Proof. Let C = (V, T,A1, . . . An, w0) be a colony with x ∈ {wp, sp} derivation mode
and L(C, x) = L for some infinite language L. Let m be length of the longest word
in the languages of components A1, . . . , An,

m = max {|u| : u ∈ Fi, Ai = (Si, Fi), 1 ≤ i ≤ n} .

Let us choose some w in L, |w| ≥ |w0| ·m · n · 2n, the derivation of word w from
the axiom consists of at least 2n steps. Since in one derivation step wi

x
=⇒ wi+1 we

have |wi+1| − |wi| ≤ m ·n. Therefore there are indices i, j, i < j, such that the same
set of agents is active in the derivation steps wi

x
=⇒ wi+1 and wj

x
=⇒ wj+1.

We split this derivation to the parts

w0
x

=⇒
∗

wi
x

=⇒
∗

wj
x

=⇒
∗

w

Denote by

• n0 number of terminal symbols generated in the subderivation w0
x

=⇒
∗

wi,
which are not rewritten in any next derivation step,

• ni the same for the subderivation wi
x

=⇒
∗

wj,

• nj the same for the subderivation wj
x

=⇒
∗

w.

Now we transform the derivation as follows:

• in the derivation step wj
x

=⇒ . . . we use the same components and words of

languages of these components as in the derivation step wi
x

=⇒ . . .,

• in this way we link up a copy of processing the sets of symbols from the
subderivation wi

x
=⇒

∗

w to the subderivation wj
x

=⇒ . . . (we link up only the
way of rewriting symbols, the other symbols stay in the word),

• we apply the previous operation z-times, z ≥ 0,

• the word derived using the described method of “pumping” the derivation is
denoted by w′

z.

The described derivations for the numbers z generate the words with the follow-
ing length:

|w| = |w′

1| = n0 + ni + nj, (1)

|w′

z| = n0 + z · ni + nj. (2)

We can construct the derivation of w′

z for any z ≥ 0, so w′

z ∈ L. Linear depen-
dence is obvious. �

Properties of eco-colonies

133

The following theorems are used in the proof of Theorem 7.

Theorem 1 ([7]) If K is an infinite ET0L[1] language1 then either K contains an
infinite logarithmically clustered language or K contains a pump-generated language.

Theorem 2 ([4])
COLt = ET0L[1].

3 Eco-Colonies

In this section we define two types of eco-colonies and then two types of derivation
in eco-colonies.

Definition 7 An E0L eco-colony of degree n, n ≥ 1, is an (n + 2)-tuple
Σ = (E,A1, A2, . . . , An, w0), where

• E = (V, T, P) is E0L scheme, where

– V is an alphabet,

– T is a terminal alphabet, T ⊆ V,

– P is a finite set of E0L rewriting rules over V,

• Ai = (Si, Fi), 1 ≤ i ≤ n, is the i-th agent, where

– Si ∈ V is the start symbol of the agent,

– Fi ⊆ (V −{Si})
∗ is a finite set of action rules of the agent (the language

of the agent),

• w0 is the axiom.

An 0L eco-colony is defined similarly, the environment is 0L scheme E = (V, P), P
is a finite set of 0L rewriting rules over V .

As we can see, agents are defined in the same way as components in colonies, an
environment is determined by the alphabets in colonies, and by E0L or 0L scheme
in eco-colonies.

We define two derivation modes for eco-colonies – the first one, wp, is inspired
by the wp mode for colonies, we only add the possibility of developing for the
environment. In every derivation step each agent (S,F) looks for its start symbol
S. If it finds some occurrence of this symbol not occupied by any other agent, the
agent becomes active, occupies this symbol and rewrites it by some of words of its
language F .

Definition 8 We define a weakly competitive parallel derivation step in an eco-
colony Σ = (E,A1, A2, . . . , An, w0) as the relation

wp
=⇒ – α directly derives β in wp

mode of derivation (written as α
wp
=⇒ β) if

1ET0L[1] languages are languages generated by 1-restricted ET0L systems: 1-restricted ET0L

system is ET0L system G = (Σ,P , S, ∆) such that for every table P ∈ P there exists a letter b ∈ Σ
such that if c ∈ Σ− {b} and (c → α) ∈ P then α = c (in every table only one rule is not static).

Š. Vavrečková, A. Kelemenová

134

• α = v0Si1v1Si2v2 . . . vr−1Sirvr, r > 0,

• β = v′0fi1v
′

1fi2v
′

2 . . . v′r−1firv
′

r, for Aik = (Sik , Fik), fik ∈ Fik , 1 ≤ k ≤ r,

• ik 6= im for every k 6= m, 1 ≤ k,m ≤ r (the agent Aik is active in this
derivation step),

• {i1, i2, . . . , ir} ⊆ {1, 2, . . . , n},

• for every S ∈ V , if the number of agents with the start symbol S is denoted by
t, then

r
∑

j=1
Sij

=S

|α|Sij
= min (|α|S , t)

(all agents which can work – their start symbol is in the environment and some
of the occurrences of this symbol is not occupied by any other agent – they must
work; the left side of the equation means the number of agents with the start
symbol S which work in the given derivation step),

• vk
E

=⇒ v′k, vk ∈ V ∗, 0 ≤ k ≤ r, is the derivation step of the scheme E.

The second type of derivation step, ap, means that all agents must work in every
derivation step and if some agent is not able to work (there is not any free occurrence
of its start symbol), the derivation is blocked. This type of derivation is inspired by
the basic type of derivation in eco-grammar systems.

Definition 9 We define a derivation step ap (all are working parallely) in an eco-

colony Σ = (E,A1, A2, . . . , An, w0) as the relation
ap

=⇒ – α directly derives β in ap

mode of derivation (written as α
ap

=⇒ β) if

• α = v0Si1v1Si2v2 . . . vn−1Sinvn,

• β = v′0fi1v
′

1fi2v
′

2 . . . v′n−1finv′n, for Aik = (Sik , Fik), fik ∈ Fik , 1 ≤ k ≤ n,

• {i1, i2, . . . , in} = {1, 2, . . . , n} (every agent works in every derivation step),

• vk
E

=⇒ v′k, vk ∈ V ∗, 0 ≤ k ≤ n, is the derivation step of the scheme E.

For the relations
x

=⇒, x ∈ {wp, ap}, we define the reflexive and transitive closure
x

=⇒
∗

.

Definition 10 Let Σ be an 0L eco-colony, Σ = (E,A1, A2, . . . , An, w0). The lan-
guage generated by the derivation step x, x ∈ {wp, ap}, in Σ is

L(Σ, x) = {w ∈ V ∗ : w0
x ∗

=⇒ w}.

Let Σ be an E0L eco-colony, Σ = (E,A1, A2, . . . , An, w0). The language gener-
ated by the derivation step x, x ∈ {wp, ap}, in Σ is

L(Σ, x) = {w ∈ T ∗ : w0
x ∗

=⇒ w}.

Properties of eco-colonies

135

Example 1 Let Σ = (E,A1, A2, AbB) be an E0L eco-colony, where

E = ({A,B, a, b}, {a, b}, {a → a, b → bb,A → A,B → B}),

A1 = (A, {aB, ε}), A2 = (B, {aA, ε}).

Let us construct derivations with ap and wp types of derivations:

AbB
ap

=⇒ aBb2aA
ap

=⇒ a2Ab4a2B
ap

=⇒ . . .
ap

=⇒ anAb2n

anB
ap

=⇒ anb2(n+1)
an,

AbB
wp
=⇒ aBb2aA

wp
=⇒ a2Ab4a2B

wp
=⇒ a2b8a3A

wp
=⇒ a2b16a4B

wp
=⇒ . . .

The wp derivation allows “resting” of non-active agents. If we use the ap type of
derivation, a terminal word is generated only if the both agents use the ε-rule in the
same derivation step, otherwise the derivation is blocked without creating the final
word.

The generated languages are:

L(Σ, ap) =
{

anb2(n+1)
an : n ≥ 0

}

,

L(Σ, wp) =
{

aib2n

aj : 0 ≤ i, j < n
}

.

4 Generative Power of Eco-Colonies

We compare the generative power of eco-colonies and colonies, for systems with
terminal alphabets as well as for special systems with the terminal alphabet equal
to the alphabet of the system. For eco-colonies we use the notations:

0ECx for the class of languages generated by 0L eco-colonies with x type of
derivation, x ∈ {wp, ap},

EECx for the class of languages generated by E0L eco-colonies with x type of
derivation, x ∈ {wp, ap}.

Theorem 3

COLwp ⊂ EECwp. (3)

Proof. The relation COLwp ⊆ EECwp is trivial, colonies with wp derivation are a
special version of E0L eco-colonies with a static environment (with rules a → a for
every letter from V). To prove the proper inclusion we use the language

L1 =
{

a2n

: n ≥ 0
}

.

The language L1 is generated by the eco-colony Σ = (E,A, b), where

E = ({a, b}, {a}, {a → aa, b → b}), A = (b, {a}).

The language L1 does not include infinite subsets of words with linearly depen-
dent length so according to Lemma 2 there is no colony C with wp derivation which
generates the language L1. �

Š. Vavrečková, A. Kelemenová

136

Corollary 1

COLb ⊂ EECwp, (4)

COLT
b ⊂ EECwp, (5)

COLT
wp ⊂ EECwp. (6)

Proof. Equation (4) follows from COLb ⊂ COLwp ([4]) and from Equation (3).
Equations (5) and (6) follow from Lemma 1 and from Equations (3) and (4). �

Theorem 4

0ECwp ⊂ EECwp. (7)

Proof. The relation 0ECwp ⊆ EECwp is trivial, 0L eco-colonies are the special type
of E0L eco-colonies with the terminal alphabet T = V .

We can find a language L2 ∈ EECwp − 0ECwp:

L2 =
{

a2i

: i ≥ 0
}

∪
{

b3i

: i ≥ 0
}

.

This language is generated by the E0L eco-colony Σ = (E,A, S), where

E = ({S, a, b}, {a, b}, {a → aa, b → bbb, S → S}),

A = (S, {a, b}) (this agent is active only in the first derivation step),

S
wp
=⇒ a

wp
=⇒ a2 wp

=⇒ a4 wp
=⇒ a8,

S
wp
=⇒ b

wp
=⇒ b3 wp

=⇒ b9 wp
=⇒ b27.

Assume that some 0L eco-colony Σ0 = (E,A1, A2, . . . , An, w0), E = (V, P),
generates the language L2. Every state in the environment including the axiom is
one of the elements of the language of Σ0.

Let the rule a → ε is in P (the case for b is analogous). If we have only the ε-
rule for a there, the exponential growing would be carried by agents, but the agents
work similarly to the components in colonies. Components are not able to ensure
exponential growing (see Lemma 2), nor agents in this eco-colony.

If there are some non-ε-rules in the environment, the ε-rule is not allowed, be-
cause the random application of this rule would mean random disappearing of sym-
bols in the environment, so some words not contained in L2 could be generated.
That is why the axiom is one of the two shortest words – a or b.

Suppose the axiom a. We need to generate every word of the language L2

including the words b3i

, so the rule a → b is in the language of some agent or it is a
rule of the 0L scheme in the environment.

If this rule is used by some agent, the eco-colony can generate only the words
a ∪ b3i

, because the agent must work whenever it can work. If some another agent
rewrites symbols b to a, it is able to do it in the next derivation step, but every state
of the environment belongs to the language generated by Σ0, including the states
before and after application of this derivation step. In this case only one derivation
is possible, a

wp
=⇒ b

wp
=⇒ a

wp
=⇒ b

wp
=⇒ . . ., it generates the language {a, b}.

Properties of eco-colonies

137

The superior indexes 2 and 3 in the definition of L2 have not any common divisor,
so the alternate rewriting of all the symbols a to b and then b to a with the growing
length of the words by the environment is not possible.

So if the rule a → b (or some rule rewriting a to more than one b) is in the 0L
scheme of the environment and the 0L scheme is deterministic, the eco-colony is not
able to generate any word of the form a2i

longer than the power of the number of
agents in this system, because the deterministic 0L scheme does not contain any
rule rewriting a to a sequence of a. The rules rewriting b to a sequence of a are not
usable as suggested in the previous paragraph.

If the 0L scheme is not deterministic, this situation allows to have more than
one rule for rewriting the symbol a – one rule a → b and some rule rewriting a to a
sequence of a. But in this case the eco-colony can generate some words containing
both the symbols a and b, and these words are not elements of the language L2.

The case of the axiom b can be solved similarly, so any 0L eco-colony cannot
generate the language L2. �

Theorem 5

0ECap ⊂ EECap. (8)

Proof. 0L eco-colonies are special types of E0L eco-colonies where T = V , so the
relation 0ECap ⊆ EECap is trivial.

To prove the proper subset we use language

L3 = L1 − {a} =
{

a2n

: n ≥ 1
}

.

This language is generated by the E0L eco-colony Σ = (E,A1, A2, UV a), where
E = ({a,U, V }, {a}, {a → aa,U → U, V → V }), A1 = (U, {V, ε}), A2 = (V, {U, ε}).

UV a
ap

=⇒ V Ua2 ap
=⇒ UV a4 ap

=⇒ . . .
ap

=⇒ UV a2n−1 ap
=⇒ a2n

.

Each agent generates the empty word only and using the ap derivation agents
A1 and A2 are active in every derivation step and they alternate symbols U, V until
the terminal word is generated.

Suppose that the language L3 can be generated by some 0L eco-colony Σ with
ap derivation. Σ contains at least one agent, which is active in every derivation
step. V = {a}, so the start symbol of each agent is a. The agent generates a finite
language over V − {a}, so we have A = (a, {ε}) for each agent in Σ.

P is deterministic, it contains exactly one rule for a. (Otherwise the system
generates an infinite set of pairs of words with the constant difference of their length
and there is no such an infinite subset in L3.)

The language generated with the 0L eco-colony where P = {a → as} with n
agents A = (a, {ε}) using the ap mode from the axiom am is equal to

{

a2n
: n ≥ 1

}

for no parameters m,n, s and L3 /∈ EECap. �

Theorem 6 The classes of languages 0ECwp and 0ECap are incomparable.

Š. Vavrečková, A. Kelemenová

138

Proof. 1) 0ECwp − 0ECap 6= ∅:
In Theorem 5 we proved that the language L3 =

{

a2n
: n ≥ 1

}

is not generated
by any 0L eco-colony with ap derivation. This language is generated by the following
0L eco-colony with wp derivation: Σ = (E,A, a), where E = ({a, b}, {a}, {a →
aa, b → b}), A = (b, {a}).

We need at least one agent, but using wp derivation this agent does not work if
its start symbol is not in the environment.

2) 0ECap − 0ECwp 6= ∅:
To prove this we use language

L4 =
{

a15−2nbncbnd : 0 ≤ n < 7, n is even
}

∪
{

a15−2nbndbnc : 0 < n ≤ 7, n is odd
}

.

This language is generated by the 0L eco-colony Σ = (E,A1, A2, A3, A4, a
15cd) with

ap derivation, where

E = ({a, b, c, d}, {a → a, b → b, c → c, d → d}),

A1 = (a, {ε}), A2 = (a, {ε}), A3 = (c, {bd}), A4 = (d, {bc}).

This language consists only of eight words derived as follows:

a15cd
ap

=⇒ a13bdbc
ap

=⇒ a11b2cb2d
ap

=⇒ a9b3db3c
ap

=⇒ a7b4cb4d
ap

=⇒ a5b5db5c
ap

=⇒

ap
=⇒ a3b6cb6d

ap
=⇒ ab7db7c.

Assume that there exists an 0L eco-colony Σ0 with wp derivation generating L4.
Suppose that the axiom is a15−2ibicbid for some i, 0 ≤ i ≤ 7, i is even (the proof for
the axiom with odd number i is analogous). Σ0 generates all words of the language
for n > i and/or n < i.

a) Words for n < i : a15−2ibicbid
wp
=⇒

+
a15dc . . .

The number of a-s increases, the number of b-s decreases. But with using the
wp type of derivation the system is not able to stop growing of a-s, so it is
possible to generate words not included in L4 such as a19cd.

b) Words for n > i : a15−2ibicbid
wp
=⇒

+
a13−2ibi+1dbi+1c . . .

The number of a-s decreases, the number of b-s increases. As in the previous
part of this proof, the system is not able to stop growing of b-s, the words
b8cb8d, etc. not included in L4 are generated.

The outcome is identical for growing by agents as well as by the environment. �

Theorem 7

xECy − COLz 6= ∅ (9)

where x ∈ {0, E}, y ∈ {wp, ap}, z ∈ {b, t, wp, sp}.

Properties of eco-colonies

139

Proof. In this proof we use language

L5 =
{

cda22n

b22n

: n ≥ 0
}

∪
{

dca22n+1
b22n+1

∣

∣

∣
n ≥ 0

}

.

This language can be generated by the eco-colony Σ = (E,A1, A2, cdab), where
E = ({a, b, c, d}, {a → aa, b → bb, c → c, d → d}), A1 = (c, {d}), A2 = (d, {c}).

cdab ⇒ dca2b2 ⇒ cda4b4 ⇒ dca8b8 ⇒ cda16b16 ⇒ . . .

Considering T = V this is 0L as well as E0L eco-colony. Both agents are active
for all words, i.e. in every derivation step so wp and ap coincide in it.

The language L5 is not context-free, so L5 /∈ COLb and it grows exponentially
so L5 /∈ COLwp and L5 /∈ COLsp according to Lemma 2.

L5 /∈ COLt according to the results of Kleijn and Rozenberg, see Theorems 1
and 2 in Preliminaries. �

Corollary 2

xECy − COLT
z 6= ∅ (10)

where x ∈ {0, E}, y ∈ {wp, ap}, z ∈ {b, t, wp, sp}.

Proof. Follows from Theorem 7 and Lemma 1. �

Corollary 3

COLT
wp ⊂ 0ECwp, (11)

COLT
b ⊂ 0ECwp. (12)

Proof. Colonies COLT
wp are a special type of eco-colonies 0ECwp with the static

environment (only rules of type a → a), so COLT
wp ⊆ 0ECwp. Equation (11) follows

from this fact and from Corollary 2.
Colonies COLT

b can be simulated by colonies COLT
wp where every possible pair

of components has different start symbols, so COLT
b ⊆ COLT

wp. This gives inclusion
(12). �

Theorem 8

COLx − 0ECwp 6= ∅, x ∈ {b, t, wp, sp}. (13)

Proof. In Theorem 6 we proved that the language

L4 =
{

a15−2nbncbnd : 0 ≤ n < 7, n is even
}

∪
{

a15−2nbndbnc : 0 < n ≤ 7, n is odd
}

is not in 0ECwp. It is a finite language, so L4 ∈ COLx for x ∈ {b, t, wp, sp}. �

Theorem 9

COLx − 0ECap 6= ∅, x ∈ {b, t, wp, sp}. (14)

Š. Vavrečková, A. Kelemenová

140

Proof. The finite language
L6 = {a, aa}

is produced by a colony with one component (S, {a, aa}) and axiom S for any deriva-
tion mode x, x ∈ {b, t, wp, sp}, therefore L6 ∈ COLx.

In an 0L eco-colony we have only one alphabet. So all active agents have the
start symbol a and the form (a, {ε}). The axiom is one of the words of the language
– a or aa.

Assume that the axiom is a. There exists at least one agent rewriting a to ε, so
the generated language is {a, ε}. But the empty word ε /∈ L6.

Suppose that the axiom is aa. There exists some agent rewriting one of the both
a-s to ε, so the word a can be generated. But this agent works in the next derivation

step (or steps) too: aa
ap

=⇒
∗

a
ap

=⇒
∗

ε, and the word not contained in L6 is generated.
So L6 /∈ 0ECap. �

Theorem 10
COLb ⊂ EECap. (15)

Proof. We have a colony with the b mode of derivation C = (V, T,A1, . . . An, w0),
and we create an equivalent E0L eco-colony Σ = (E,A1, A2, BCw0) with the ap
derivation and agents A′

1 = (B, {C, ε}), A′

2 = (C, {B, ε}).
We create rules of the environment from the components A1, . . . An. We can

suppose that all these components have different start symbols.
For each component (a, {α1, α2, . . . , αk}) we create developing rules for the en-

vironment:
a → a | α1 | α2 | . . . | αk

and for every symbol b which is not the start symbol in any component we create
one rule b → b.

So the environment simulates the action of the components in the colony. The
simulation of a sequential derivation is possible using the identical rules rewriting
symbol to itself for all but one letter of the word.

From the construction it follows that w0
b
⇒

∗

w implies BCw0
ap

=⇒
∗

w and

BCw0
ap

=⇒
∗

w implies w0
b
⇒

∗

w.
The proper subset comes from Theorem 5. �

Example 2 We demonstrate the construction of the proof on the colony generating
the language

L7 =
{

wawRai : w ∈ {0, 1}∗, i > 0
}

.

We have a colony C = ({S,H,H ′, A,A′, 0, 1, a}, {0, 1, a}, A1 , A2, A3, A4, A5, S)
generating the language L7 where

A1 = (S, {HA}), A2 = (H, {0H ′0, 1H ′1, a}),
A3 = (H ′, {H}),

A4 = (A, {aA′, a}),
A5 = (A′, {A}).

Now we create an E0L eco-colony with ap derivation Σ = (E,A1, A2, BCS), E =
({B,C, S,H,H ′, A,A′, 0, 1, a}, {0, 1, a}, P), A1 = (B, {C, ε}), A2 = (C, {B, ε}), the
set of rules P in the environment is

Properties of eco-colonies

141

P = { H → H | 0H ′0 | 1H ′1 | A,
A → A | aA′ | a,

H ′ → H ′ | H,
A′ → A′ | A,

1 → 1,
0 → 0,

a → a,
S → S | HA }.

One of the derivations in C:

S
b
⇒ HA

b
⇒ 1H ′1A

b
⇒ 1H1A

b
⇒ 10H ′01A

b
⇒ 10H01A

b
⇒ 10a01A

b
⇒

b
⇒ 10a01aA′ b

⇒ 10a01aA
b
⇒ 10a01aa.

Two of possible derivations of the same word in Σ:

BCS
ap

=⇒ CBHA
ap

=⇒ BC1H ′1A
ap

=⇒ CB1H1A
ap

=⇒ BC10H ′01A
ap

=⇒

ap
=⇒ CB10H01A

ap
=⇒ BC10a01A

ap
=⇒ CB10a01aA′

ap
=⇒ BC10a01aA

ap
=⇒

ap
=⇒ 10a01aa, and

BCS
ap

=⇒ CBHA
ap

=⇒ BC1H ′1aA′
ap

=⇒ CB1H1aA
ap

=⇒ BC10H ′01aa
ap

=⇒

ap
=⇒ CB10H01aa

ap
=⇒ 10a01aa.

Corollary 4
COLT

b ⊂ EECap. (16)

Proof. Follows from Theorem 10 and Lemma 1. �

5 Conclusions

In this paper we study the type of grammar systems, eco-colonies based on colonies
and eco-grammar systems. We summarize the results in the table 1. The symbol
T<number> means Theorem with the referred number, the symbol C<number>
means Corollary with the referred number. The symbol ©© in the table means
incomparable classes of languages.

References

[1] E. Csuhaj-Varjú. Colonies – A Multi-agent Approach to Language Generation.
In Proc. ECAI’96 Workshop on Finite State Models of Languages, pages 12–16.
NJSZT, Budapest, 1996.

[2] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Păun. Grammar Systems. A
Grammatical Approach to Distribution and Cooperation. Gordon & Beach, Lon-
don, 1994

[3] E. Csuhaj-Varjú, J. Kelemen, A. Kelemenová, Gh. Păun. Eco-grammar Sys-
tems. Grammatical Framework for Studying Lifelike Interactions. Artificial Life,
3:1–28, 1997.

Š. Vavrečková, A. Kelemenová

142

0ECwp 0ECap EECwp EECap

COLb ©© T7,T8 ©© T7,T9 ⊂ C1 ⊂ T10

COLt ©© T7,T8 ©© T7,T9 6⊇ T7 6⊇ T7

COLwp ©© T7,T8 ©© T7,T9 ⊂ T3 6⊇ T7

COLsp ©© T7,T8 ©© T7,T9 6⊇ T7 6⊇ T7

COLT
b ⊂ C3 6⊇ C2 ⊂ C1 ⊂ C4

COLT
t 6⊇ C2 6⊇ C2 6⊇ C2 6⊇ C2

COLT
wp ⊂ C3 6⊇ C2 ⊂ C1 6⊇ C2

COLT
sp 6⊇ C2 6⊇ C2 6⊇ C2 6⊇ C2

0ECwp = ©© T6 ⊂ T4

0ECap ©© T6 = ⊂ T5

EECwp ⊃ T4 =

EECap ⊃ T5 =

Table 1: Results from theorems and corollaries

[4] J. Dassow, J. Kelemen, Gh. Păun. On Parallelism in Colonies. Cybernetics and
Systems, 24:37–49, 1993.

[5] J. Kelemen, A. Kelemenová. A Grammar-theoretic Treatment of Multiagent
Systems. Cybernetics and Systems, 23:621–633, 1992.

[6] A. Kelemenová, E. Csuhaj-Varjú. Languages of Colonies. Theoretical Computer
Science, 134:119–130, 1994.

[7] H. C. Kleijn, G. Rozenberg. A Study in Parallel Rewriting Systems. Information
and Control, 44:134–163, 1980.

[8] G. Rozenberg, A. Salomaa. The Mathematical Theory of L Systems. Academic
Press, New York, 1980.

[9] A. Salomaa.Formal Languages. Academic Press, New York, 1973.

[10] Š. Vavrečková. Eko-kolonie. In J. Kelemen, V. Kvasnička, J. Posṕıchal, editors,
Kognice a umělý život V, pages 601–612. Silesian University, Opava, 2005.

[11] Š. Vavrečková. Eco-colonies. In L. Matyska, A. Kučera, T. Vojnar, Y. Kotásek,
D. Antoš, editors, MEMICS 2006, Proceedings of the 2nd Doctoral Workshop,
pages 253–259. University of Technology, FIT, Brno, 2006.

[12] Š. Vavrečková. Properties of Eco-colonies. In A. Kelemenová, D. Kolář,
A. Meduna, J. Zendulka, editors, Information Systems and Formal Models 2007,
pages 235–242. Silesian University, Opava, 2007.

Properties of eco-colonies

143

On Stateless Automata and P Systems ∗

Linmin Yang1, Zhe Dang1, and Oscar H. Ibarra2

1 School of Electrical Engineering and Computer Science

Washington State University

Pullman, WA 99164, USA

lyang1@eecs.wsu.edu, zdang@eecs.wsu.edu

2 Department of Computer Science

University of California

Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu

Abstract

We introduce the notion of stateless multihead two-way (respectively, one-
way) NFAs and stateless multicounter systems and relate them to P systems
and vector addition systems. In particular, we investigate the decidability of
the emptiness and reachability problems for these stateless automata and show
that the results are applicable to similar questions concerning certain variants
of P systems, namely, token systems and sequential tissue-like P systems.

1 Introduction

There has been a flurry of research activities in the area of membrane computing
(a branch of molecular computing) initiated seven years ago by Gheorghe Paun
[8]. Membrane computing identifies an unconventional computing model, namely
a P system, from natural phenomena of cell evolutions and chemical reactions. It
abstracts from the way living cells process chemical compounds in their compart-
mental structures. Thus, regions defined by a membrane structure contain objects
that evolve according to given rules. The objects can be described by symbols or by
strings of symbols, in such a way that multisets of objects are placed in regions of the
membrane structure. The membranes themselves are organized as a Venn diagram
or a tree structure where one membrane may contain other membranes. By using
the rules in a nondeterministic and maximally parallel manner, transitions between
the system configurations can be obtained. A sequence of transitions shows how the
system is evolving. At a high-level, a P system has the following key features:

∗The work of Zhe Dang and Linmin Yang was supported in part by NSF Grant CCF-0430531.

The work of Oscar H. Ibarra was supported in part by NSF Grants CCF-0430945 and CCF-0524136,

and a Nokia Visiting Fellow scholarship at the University of Turku.

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 144 - 157, 2007.

144

• Objects are typed but addressless (i.e., without individual identifiers),

• Objects can transfer between membranes,

• Membranes themselves form a structure (such as a tree),

• Object transferring rules are in (either maximally or locally) parallel, and

• The system is stateless.

Biologically inspired computing models like P systems [9] are often stateless.
This is because it is difficult and even unrealistic to maintain a global state for a
massively parallel group of objects. Naturally, a membrane in a P system, which
is a multiset of objects drawn from a given finite type set {a1, . . . , ak}, can be
modeled as having counters x1, . . . , xk to represent the multiplicities of objects of
types a1, . . . , ak, respectively. In this way, a P system can be characterized as a
counter machine in a nontraditional form; e.g., without states, and with parallel
counter increments/decrements, etc. The most common form of stateless counter
machines are probably the Vector Addition Systems (VASs), which are well-studied.
Indeed, VASs have been shown intimately related to certain classes of P systems [5].
However, with new applications of P systems in mind [10], the investigation of other
classes of stateless automata deserve further investigation.

In this paper, we present some results in this direction, with applications to
reachability problems for variants of P systems, namely, token systems and sequential
tissue-like P systems.

2 Preliminaries

A nondeterministic multicounter automaton is a nondeterministic automaton with
a finite number of states, a one-way input tape, and a finite number of integer coun-
ters. Each counter can be incremented by 1, decremented by 1, or stay unchanged.
Besides, a counter can be tested against 0. It is well-known that counter machines
with two counters have an undecidable halting problem. Thus, to study decidable
cases, we have to restrict the behaviors of the counters. One such restriction is to
limit the number of reversals a counter can make. A counter is n-reversal-bounded
if it changes mode between nondecreasing and nonincreasing at most n times. For
instance, the following sequence of counter values:

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 3, 2, 1, 1, 1, 1, . . .

demonstrates only one counter reversal. A counter is reversal-bounded if it is n-
reversal-bounded for some fixed number n independent of computations. A reversal-
bounded nondeterministic multicounter automaton is a nondeterministic multicoun-
ter automaton in which each counter is reversal-bounded.

Let Y be a finite set of variables over integers. For all integers ay, with y ∈ Y , b

and c (with b > 0),
∑

y∈Y ayy < c is an atomic linear relation on Y and
∑

y∈Y ayy ≡b

c is a linear congruence on Y . A linear relation on Y is a Boolean combination
(using ¬ and ∧) of atomic linear relations on Y . A Presburger formula on Y is the

On stateless Automata and P systems

145

Boolean combination of atomic linear relations on Y and linear congruences on Y .
A set P of tuples of nonnegative integers is Presburger-definable or a Presburger
relation if there exists a Presburger formula F on Y such that P is exactly the set
of the solutions for Y that make F true. It is well known that Presburger formulas
are closed under quantification.

Let N be the set of nonnegative integers and n be a positive integer. A subset
S of Nn is a linear set if there exist vectors v0, v1, . . . , vt in Nn such that S = {v |
v = v0 + a1v1 + . . . + atvt,∀1 ≤ i ≤ t, ai ∈ N}. S is a semilinear set if it is a
finite union of linear sets. It is known that S is a semilinear set if and only if S is
Presburger-definable [2].

Let Σ be an alphabet consisting of n symbols a1, . . . , an. For each string (word)
w in Σ∗, we define the Parikh map of w, denoted by p(w), as follows:

p(w) = (i1, . . . , in), where ij is the number of occurrences of aj in w.

If L is a subset of Σ∗, the Parikh map of L is defined by p(L) = {p(w) | w ∈ L}. L

is a semilinear language if its Parikh map p(L) is a semilinear set.
The following result is known [4]:

Theorem 1 p(L(M)) is an effectively computable semilinear set when M is a re-
versal-bounded nondeterministic multicounter automaton.

Consider a reversal-bounded nondeterministic multicounter machine (which is a
reversal-bounded nondeterministic multicounter automaton without input). Let
(j, v1, . . . , vk) denote the configuration of M when it is in state j and counter i

has value vi for 1 ≤ i ≤ k. Define R(M) = {(α, β) | configuration α can reach
configuration β in 0 or more moves }, which is called the reachability relation of M .
Using Theorem 1, one can easily show that R(M) is Presburger definable.

Theorem 2 The reachability relation of a reversal-bounded nondeterministic mul-
ticounter machine is Presburger definable.

An n-dimensional vector addition system (VAS) is specified by W , a finite set of
vectors in Z

n, where Z is the set of all integers (positive, negative, zero). For two
vectors x and z in N

n, we say that x can reach z if for some j, z = x + v1 + . . . +
vj , where, for all 1 ≤ i ≤ j, each vi ∈ W and x+ v1 + . . .+ vi ≥ 0. The Presburger
reachability problem for VAS is to decide, given two Presburger formulas P and Q,
whether there are x satisfying P and z satisfying Q such that x can reach z. The
following theorem follows from the decidability of the reachability problem for VASs
(which are equivalent to Petri nets) [7].

Theorem 3 The Presburger reachability problem for VAS is decidable.

3 Stateless Multihead Two-way (One-way) NFAs/DFAs
and Token Systems

Let Σ and Π be two alphabets. An object of some type in Σ (resp., Π) is called
a standard object (resp., a token). Consider a chain (with length n) of membranes

L. Yang, Z. Dang, O. H. Ibarra

146

(i.e., membranes are organized as a linear structure)

A1, . . . , An (1)

for some n. The chain is called initial if the following conditions are met:

1 Each Ai holds exactly one standard object,

2 A1 contains one token of each type in Π; the rest of the Ai’s do not contain
any tokens,

3 The standard object on the first membrane A1 is of type � ∈ Σ and the
standard object on the last membrane An is of type � ∈ Σ; the membranes in
between A1 and An do not contain any �-objects and �-objects.

Let Π′ ⊆ Π be given. The chain is called halting if we change the condition 2 in above
into “An contains one token of each type in Π′.” A rule specifies how objects are
transferred between two neighboring membranes (i.e., Ai and Ai+1 for 1 ≤ i ≤ n−1)
and is in one of the following two forms:

• (a, p)→,

• (a, p)←,

where a ∈ Σ and p ∈ Π. For instance, when (a, p)→ is applied on Ai, the Ai must
contain a standard a-object and a p-token. The result is to move the token from Ai

to Ai+1 (where 1 ≤ i ≤ n− 1). The semantics of (a, p)← is defined similarly but the
token p moves from Ai+1 back to Ai. We are given a set of rules R which are applied
sequentially; i.e., each time, a rule and an i are nondeterministically picked and the
rule is applied on Ai. We are interested in studying the computing power of such
token systems. Specifically, we focus on decision algorithms solving the following
reachability problem: whether there is an n and an initial chain with length n such
that, after a certain number of applications of rules in R, the initial chain evolves
into a halting chain. Notice that an instance of a chain in the form of (1) is a special
instance of tissue-like P systems [6] and in the future we will further study more
general intra-membrane structures (such as graphs) than linear structures in (1).
Also note that, in the reachability problem, the chain is not given. Instead, we are
looking for a desired chain. This is different from the case for a tissue-like P system
where a concrete instance (with the n in (1) given) is part of the system definition.

One can generalize the aforementioned token systems by allowing some of the
rules synchronized; i.e., a synchronized rule in the form of

[r1, r2, . . . , rk]

for some k and distinct rules r1, . . . , rk. The semantics of the synchronized rule is to
apply each ri at the same time. For instance, a synchronized rule [(a, p)→, (b, q)←],
when applied, is to nondeterministically pick an Ai and Aj (where i could be the
same as j) and apply the rule (a, p)→ on Ai and the rule (b, q)← on Aj (whenever
both are applicable). Such systems with synchronized rules are called generalized

On stateless Automata and P systems

147

token systems and we can raise the same reachability problem for generalized token
systems.

We first observe that the (generalized) token systems are essentially the same
as stateless multihead two-way NFAs M studied in the following, where each input
tape cell corresponds to a membrane in (1) and each token corresponds to a two-way
head. The stateless NFA M is equipped with an input on alphabet Σ and heads
H1, . . . ,Hk for some k. The heads are two-way, the input is read-only, and there
are no states. An Hi-move (also called a local move) MOVEi of the NFA can be
described as a triple (Hi, a,D), where Hi is the head involved in the move, a is the
input symbol under the head Hi, and D ∈ {+1,−1, 0} meaning that, as a result of
the move, the head Hi goes to the right, goes to the left, or simply stays. When a
head Hi tries to execute a local move (Hi, a,D), it requires that the symbol under
Hi must be a, otherwise M just crashes. A generalized move is in the form of
(Hi,S,D), where S is a set of symbols, and D is a set of directions (i.e., +1, −1, 0).
When executing a generalized move (Hi,S,D), the symbol Hi reads must belong to
S, and Hi nondeterministically picks a direction from D.

Note that a local move is a special case of a generalized move. An instruction
of M is a sequence of local or general moves, in the form of [MOVEi1 , MOVEi2 ,
. . ., MOVEim], for some m, 1 ≤ m ≤ k, and i1 < . . . < im. (If m = 1, the
instruction is simply called a local instruction.) When the instruction is executed,
the heads Hi1, . . . ,Him perform the moves MOVEi1 , . . ., MOVEim , respectively and
simultaneously. Any head falling off the tape will cause M to crash. The NFA M

has a finite set of such instructions. At each step, it nondeterministically picks a
maximally parallel set of instructions to execute. M has a set of accepting heads
F ⊆ {H1, ...,Hk}. For most constructions in this paper, F consists of all the heads.
Initially, all heads are at the leftmost cell of the input tape. M halts and accepts
the input when the accepting heads are all at the rightmost cell. We assume that
the input tape of M has a left end marker � and a right end marker �. Thus, for
any input a1...an, n ≥ 2, a1 = �, an = �, and for 2 ≤ i ≤ n− 1, each ai is different
from the end markers.

We emphasize that in a stateless multihead one-way (two-way) NFA, at each
step, the application of the instructions is “maximally parallel”, i.e., all instructions
that can be applied to the heads must be applied. Note that, in general, the set of
instructions that can be applied maximally parallel need not be unique. If at most
m instructions are applicable at each step, then we say the machine is m-maxpar.

A stateless one-way (two-way) DFA is one in which at each step of the compu-
tation, at most one maximally parallel set of instructions is applicable.

Our first result is the following:

Theorem 4 The reachability problem for generalized token systems is undecidable.
The problem is decidable for token systems.

The first part of Theorem 4 is a direct consequence of the next theorem. The second
part follows from the fact that the emptiness problem for two-way NFAs is decidable.

Theorem 5 The emptiness problem for stateless (1-maxpar) 3-head one-way DFAs
is undecidable.

L. Yang, Z. Dang, O. H. Ibarra

148

Proof. Given a deterministic TM Z, let AZ = C1#C2#...#Cn be the halting com-
putation of Z starting on blank tape. Hence C1 is the initial configuration (on blank
tape), Cn is the halting configuration, and Ci+1 is the direct successor of Ci. We
assume that n ≥ 2. Let Γ and QZ be the tape alphabet and state set, respectively,
of Z.

Clearly, from Z, we can construct a 2-head one-way DFA M0 (with states) with
heads H1 and H2 and input alphabet Σ = Γ∪QZ ∪{#}, which accepts a nonempty
language (actually only the string AZ) iff Z halts. Because from configuration Ci the
next step of Z that results in configuration Ci+1 may move its read-write head left,
H2 may not always move to the right at every step in M0’s computation. However,
we can modify M0 into another two-head one-way DFA M by putting “dummy”
symbols α’s on the tape so that H2 can read these symbols instead of not moving
right. H1, of course, ignores these dummy symbols. M has now the property that
H2 always moves to the right at every step in the computation until M accepts.
Clearly, L(M0) = ∅ if and only if L(M) = ∅, and if and only if Z does not halt on
blank tape. We may assume that M accepts with H2 falling off the right end of the
tape in a unique accepting state f . (This assumption on H2 falling off the right end
of the tape should not be confused with the condition that in a stateless automaton,
a head falling off the tape will cause the machine to crash.) We also assume that
there are no transitions from state f . Let QM be the state set of M .

Thus, if δ(q, a1, a2) = (p, d1, d2), then d2 = +1. This transition is applicable
if M is currently in the state q and the heads H1 and H2 are reading a1 and a2,
respectively. When the transition is applied, H2 moves right, H1 moves right or
remains stationary depending on whether d1 is +1 or 0, and M enters state p.

We construct a stateless 3-head one-way DFA M ′ to simulate M . The heads of
M ′ are H1, H2, and H3. The input alphabet of M ′ is (Σ ×QM ∪ {�,�}) (� and
� are left and right end markers for the input to M ′.) The instructions of M ′ are
as follows:

1. [(H1,�, 0), (H2,�, 0), (H3,�,+1)].

2. [(H1,�,+1), (H2,�,+1), (H3, (a, q),+1)] for every a ∈ Σ and every q ∈ QM .

3. Suppose δ(q, a1, a2) = (p, d1, d2) and p 6= f , then
[(H1, (a1, s), d1), (H2, (a2, q),+1), (H3, (b, p),+1)] is a rule for every s ∈ QM

and every b ∈ Σ.

4. Suppose δ(q, a1, a2) = (f, d1,+1), then
[(H1, (a1, s), d1), (H2, (a2, q),+1), (H3,�, 0)] is a rule for every s ∈ QM .

5. [(H1, (a, q),+1), (H2, (b, p),+1), (H3,�, 0)] is a rule for every a, b ∈ Σ and
q, p ∈ QM .

6. [(H1, (a, q),+1), (H2,�, 0), (H3,�, 0)] is a rule for every a ∈ Σ and q ∈ QM .

M ′ accepts if and only if all three heads are on �. From the construction, it is clear
that M ′ is a stateless 3-head one-way DFA, and L(M) = ∅ if and only if Z does
not halt on blank tape. The result follows from the undecidability of the halting
problem for TMs on blank tape. ⊓⊔

On stateless Automata and P systems

149

It is an interesting open question whether the 3 heads in the above theorem can
be reduced to 2, even if the 2 heads are allowed to be two-way. Note that in the
theorem, all 3 heads are involved in every instruction. We can strengthen this result
by a more intricate construction. Define a stateless k-head one-way 2-move NFA
(DFA) to be one where in every instruction, at most two heads are involved. Then
we have:

Theorem 6 The emptiness problem for stateless 3-head one-way 2-move DFAs is
undecidable.

Proof. Let M be the 2-head one-way DFA with states constructed in the previous
proof. The transition δ(q, a, b) = (p, d1,+1) of M can be represented by the tuple

[q, (H1, a, d1), (H2, b,+1), p]

Suppose M has n such transitions, and we number them as 1, . . . , n. We may assume
that M starts its computation with rule number 1.

Note that H2 moves to the right at every step, and that M accepts with H2

falling off the right end of the tape in a unique accepting state f and there are no
transitions from state f .

We say that transition numbers i and j are compatible if they correspond to tran-
sition instructions [q, (H1, a, d1), (H2, b,+1), p] and [p, (H1, a

′, d′1), (H2, b
′,+1), r], re-

spectively, for some states q, p, r, symbols a, a′, b, b′, and directions d1, d
′
1.

The input alphabet of M ′ is (Σ×N ×∆)∪{�,�}, where N = {1, . . . , n} (set of
transition numbers of M) and ∆ = {δ1, δ2} (� and � are the end markers of M ′).
The heads of M ′ are H1,H2,H3. The instructions of M ′ are defined as follows:

1. [(H1,�,+1)]

2. [(H3,�, 0), (H2,�,+1)]

3. [(H3,�,+1), (H2, (c, 1, δ1), 0)] for every c ∈ Σ.

Suppose transition number k corresponds to [q, (H1, a, d1), (H2, b,+1), p]. Then
the following instructions are in M ′:

4. [(H3, (b, k, δ1), 0), (H2, (b, k, δ1),+1]

5. [(H3, (c, i, δ1),+1), (H2, (d, i, δ2), 0)], for every 1 ≤ i ≤ n and every c, d ∈ Σ.

6. [(H1, (a, i, δ), d1), (H2, (c, k, δ2), 0)], for every 1 ≤ i ≤ n, every c ∈ Σ, and every
δ ∈ ∆.

7. [(H3, (c, i, δ2), 0), (H2, (c, i, δ2),+1)], for every 1 ≤ i ≤ n and every c ∈ Σ.

8. [(H3, (c, i, δ2),+1), (H2, (d, j, δ1), 0)], for every 1 ≤ i, j ≤ n with i and j com-
patible, and every c, d ∈ Σ.

9. [(H3, (c, i, δ2),+1), (H2,�, 0)], every c ∈ Σ and for every 1 ≤ i ≤ n, with
i corresponding to a transition of the form [q, (H1, a

′, d1), (H2, b
′,+1), f] for

every state q and a′, b′ in Σ. (Note that f is the unique accepting state of M .)

L. Yang, Z. Dang, O. H. Ibarra

150

10. [(H1, (c, i, δ),+1), (H3 ,�, 0)], for every 1 ≤ i ≤ n, every c ∈ Σ, and every
δ ∈ ∆.

Define a homomorphism h that maps each symbol (α, i, δ) to (i, δ). Then we require
that the homomorphic image of the input tape of M ′ (excluding the end markers)
is a string in

(1, δ1)(1, δ2){(1, δ1)(1, δ2), ..., (n, δ1)(n, δ2)}
∗

so that a sequence of valid transitions can be executed properly. H2 and H3 are
used for this purpose (i.e., to check the format).

M ′ accepts if and only if all heads are on the right end marker. From the
construction, it is clear that L(M ′) = ∅ iff L(M) = ∅. The undecidability follows.

⊓⊔

Next, we will study the emptiness problem when the inputs are restricted. Recall
that a language is bounded if it is a subset of a∗1a

∗
2 . . . a∗k for some given symbols

a1, . . . , ak.

It is known [3] that if M is a multihead one-way NFA with states but with
bounded input, the language it accepts is a semilinear set effectively constructable
from M . In fact, this result holds, even if M has two-way heads, but the heads
can only reverse directions from right to left or from left to right at most r times,
for some fixed r independent of the input. It follows that Theorem 5 can not be
strengthened to hold for one-way machines accepting bounded languages. However,
for two-way machines, we can prove the following:

Theorem 7 The emptiness problem for stateless 5-head two-way NFAs over
bounded input is undecidable.

Proof. We show how a stateless 5-head two-way NFA M ′ can simulate a 2-counter
machine M . Suppose M has states q1, ..., qn, where we assume that n ≥ 3, q1 is the
initial state, and qn is the unique halting state. Assume that both counters are zero
upon halting, and the number of steps is odd. The transition of M is of the form
δ(qi, s1, s2) = (qj , d1, d2) where sr (sign of counter r) = 0 or + and dr (change in
counter r) = +1, 0, -1 for r = 1, 2.

A valid input to M ′ is a string of the form �q1q2...qnad
� for some d ≥ 1. We

construct a stateless 5-head two-way NFA M ′ (with heads H1,H2,H3, C1, C2) to
simulate M . We begin with the following instructions:

[(H1,�, 0), (H2,�,+1)]

[(H1,�,+1), (H2, q1,+1)]

[(H1, q1,+1), (H2, q2,+1)]

...

...

[(H1, qn−1,+1), (H2, qn,+1)]

On stateless Automata and P systems

151

[(H1, qn,+1), (H2, a,+1)]

[(H1, a,+1), (H2, a,+1)]

[(H1, a,+1), (H2,�, 0)]

The instructions above check that the input is of the form �q1q2...qnad
� for some

d ≥ 1. At the end of the process H1 and H2 are on the right end marker �. Next
add the following instructions:

[(H1,�,−1), (H2,�,−1), (H3,�,+1)]

[(H1, t,−1), (H2, t,−1), (H3, q1, 0)] for all t 6= q1

[(H1, q1, 0), (H2, q1, 0), (H3, q1,+1)]

[(H2, qk,+1), (H3, q2, 0)] for 1 ≤ k ≤ n− 1

[(H2, qk,−1), (H3, q2, 0)] for 2 ≤ k ≤ n

[(H1, qk,+1), (H3, q3, 0)] for 1 ≤ k ≤ n− 1

[(H1, qk,−1), (H3, q3, 0)] for 2 ≤ k ≤ n

In the instructions above, if the symbol under H3 is q2 (resp., q3) , the machine
positions H2 (resp., H1) to some nondeterministically chosen state (for use below).

Let C1 and C2 be the counters of M . Initially they are set to zero. In the instructions
below, we use heads C1 and C2 to correspond to the counters.

If δ(qi, s1, s2) = (qj, d1, d2) where sr = 0 or + and dr = +1, 0,−1, then add the
following instructions:

[(H1, qi, 0), (H2, qj , 0), (H3, q2,+1), (C1, t1, d1), (C2, t2, d2)]

[(H1, qj , 0), (H2, qi, 0), (H3, q3,−1), (C1, t1, d1), (C2, t2, d2)]

where tr = � if sr = 0 and tr 6= � if sr = +

If δ(qi, 0, 0) = (qn, 0, 0) (i.e., the 2-counter machine M halts in the unique state
qn with both counters zero after an odd number of steps), then add the following
instructions:

[(H1, qi, 0), (H2, qn, 0), (C1,�,+1), (C2,�,+1)]

[(H1, qi, 0), (H2, qn, 0), (C1, t,+1), (C2, t,+1)] for all t 6= �

[(Hr, t,+1), (C1,�, 0), (C2,�, 0)] for all t 6= � and for r = 1, 2, 3

M ′ accepts if all heads (H1,H2,H3, C1, C2) are on the right end marker. It is easily
verified that M ′ accepts the empty set if and only if M does not halt. ⊓⊔

The above theorem says that the emptiness problem is undecidable if the number of
heads is 5 (i.e., fixed) but the size of the input alphabet is arbitrary. The next result
shows that the emptiness problem is also undecidable if the size of input alphabet
is fixed (in fact, can be unary) but the number of heads is arbitrary.

L. Yang, Z. Dang, O. H. Ibarra

152

Theorem 8 The emptiness problem for stateless multihead two-way NFAs is unde-
cidable even when the input is unary but with the left end marker (resp., right end
marker).

Proof. We only show the case with the left end marker. (The construction can easily
be modified for the case with the right end marker.) We assume that the input has
length at least 1, excluding the left end marker. We use a stateless NFA M ′ (whose
input is unary with a left end marker) to simulate a two-counter machine M with
counters C1 and C2, and states q0, q1, . . . , qn. The idea is to use ⌈log2(n+1)⌉ heads,
H1, . . . ,H⌈log

2
(n+1)⌉, to control the states, and another two heads H⌈log

2
(n+1)⌉+1 and

H⌈log
2
(n+1)⌉+2 to control the value of counters C1 and C2. The two-counter machine

M starts in state q0, and C1 = C2 = 0. Initially, all heads of M ′ are at the leftmost
cell (i.e., �). If Hi, 1 ≤ i ≤ ⌈log2(n + 1)⌉, is at �, we consider it as 0; if Hi is at
the first a, we consider it as 1. Hence H⌈log

2
(n+1)⌉ . . . H1 is a binary string (with

H⌈log
2
(n+1)⌉ as its most significant bit), which is used to encode the index of a state

of M . Note that during the computation, Hi, 1 ≤ i ≤ ⌈log2(n + 1)⌉, only moves
between the left end marker and the first a. We omit the details of the simulation
of the instructions of M . ⊓⊔

Theorems 7 and 8 are best possible, since we can not fixed both the number of heads
and the size of the input alphabet and get undecidability. This is because for fixed
k and n, there are only a finite number of such stateless machines (also observed by
Artiom Alhazov). Hence, the emptiness problem has a finite number of instances
and therefore decidable.

A special case of Theorem 8 is when the input is unary and without end markers.
In this case, the heads are initially at the leftmost input cell and the automaton
accepts when the heads are all at the rightmost cell (we assume that there are
at least two cells on the input). Using a VAS to simulate the multihead position
changes,we have:

Theorem 9 The emptiness problem for stateless multihead two-way NFAs is decid-
able when the input is unary and without end markers.

Proof. Suppose we have a stateless NFA M with H1, . . . ,Hk for some k, and with
unary input

a . . . a,

of length B for some B. We can construct a corresponding VAS G = 〈x,W 〉, where
x ∈ N

k is the start vector, and W is a finite set of vectors in Z
k. Furthermore, we

require that the maximal entry of any vector in G can not exceed B − 1; otherwise,
G crashes. In other words, G is a bounded vector addition system. Since initially
in M , all heads are at the leftmost cell, we set x = (0, . . . , 0) in G. If in M , there is
an instruction I =[MOVEi1 , MOVEi2 , . . ., MOVEim], for some m, 1 ≤ m ≤ k, and
MOVEij=(Hij , a,D), 1 ≤ j ≤ m, then in G we have v ∈ W . For all j, 1 ≤ j ≤ m,
the ithj entry of v is 0 if D = 0. The entry is 1 if D = +1. And, the entry is −1 if
D = −1. All other entries are 0.

Clearly, M accepts a nonempty language iff, for some B, (B − 1, . . . , B − 1) is
reachable in G; directly from Theorem 3, the result follows. ⊓⊔

On stateless Automata and P systems

153

4 Sequential Tissue-Like P Systems and Stateless Mul-

ticounter Systems

We now generalize the rules in a token system by allowing multiple objects to transfer
from one membrane to another in (1); the result is a variant of a tissue-like P system
[6] with sequential applications of rules [1]. More precisely, let Σ = {a1, . . . , am}.
A sequential tissue-like P system G is a directed graph with n nodes (for some
n), where each node i is equipped with a membrane Ai which is a multiset of
objects in Σ. In particular, we use m counters ~Xi = (xi1, . . . , xim) to denote the
multiplicities of objects of types a1, . . . , am in Ai, respectively. Each membrane
Ai is also associated with a Presburger formula Pi, called a node constraint, over
the m counters. Each edge (say, from node i to node j) in G is labeled with an
addition vector ~∆ij in Nm. Essentially, G defines a stateless multicounter system
whose semantics is as follows. Intuitively, G specifies a multicounter system with
n groups of counters with each group ~Xi of m counters. In the system, there are
no states. Each instruction is the addition vector ~∆ij specified on an edge. The

semantics of the instruction, when applied, is to decrement counters in group ~Xi by
~∆ij and increment counters in group ~Xj by ~∆ij (we emphasize the fact that each

component in the vector ~∆ij is nonnegative by definition). When the system runs,
an instruction is nondeterministically chosen and applied. Additionally, we require
that at any moment during a run, for each i, the constraint Pi is true when evaluated
on the counter values on group ~Xi. Formally, a configuration is a tuple of n vectors
(~V1, . . . , ~Vn) with each ~Vi ∈ Nm satisfying the node constraint Pi(~Vi). Given two
configurations C = (~V1, . . . , ~Vn) and C′ = (~V ′1 , . . . , ~V ′n), we say that C can reach C′

in a move, written C →G C′, if there is an edge from node i to node j (for some
i and j) such that C and C′ are exactly the same except that ~Vi − ~∆ij = ~V ′i and
~Vj + ~∆ij = ~V ′j . We say that C can reach C′ in G, written

C ;G C′

if, for some t,
C0 →G C1 . . . →G Ct

where C = C0, C1, . . . , Ct = C′ are configurations. We now study the following reach-
ability problem: given a G and two Presburger formulas P and Q, whether there are
C and C′ such that C ;G C′ and, C and C′ satisfy P and Q, respectively.

One can show that the reachability problem is undecidable even under a special
case:

Theorem 10 The reachability problem for sequential tissue-like P systems G is
undecidable even when G is a DAG.

We now consider the case when G is atomic; i.e., each node constraint Pi in G is a
conjunction of atomic linear constraints, i.e., Pi is in the form of

∧
(
∑

j

aijxij # ci),

where # ∈ {≤,≥}, aij and ci are integral constants. Using a VAS to simulate an
atomic sequential tissue-like P system, one can show:

L. Yang, Z. Dang, O. H. Ibarra

154

Theorem 11 The reachability problem for atomic sequential tissue-like P systems
is decidable.

In fact, the converse of Theorem 11 can be shown, i.e., atomic sequential tissue-
like P systems and VAS are essentially equivalent, in the following sense. Consider
a VAS M with k counters (x1, . . . , xk) and a sequential tissue-like P system G

with a distinguished node on which the counters are (z1, . . . , zl;x1, . . . , xk). We fur-
ther abuse the notation ;G as follows. We say that (z1, . . . , zl;x1, . . . , xk) reaches
(z′1, . . . , z

′
l;x
′
1, . . . , x

′
k) in G if there are C and C′ such that C ;G C′ and, C

and C′, when projected on the distinguished node, are (z1, . . . , zl;x1, . . . , xk) and
(z′1, . . . , z

′
l;x
′
1, . . . , x

′
k), respectively. We say that M can be simulated by G if, for

all (x1, . . . , xk) and (x′1, . . . , x
′
k) in Nk, (x1, . . . , xk) reaches (x′1, . . . , x

′
k) in M iff

(0, ..., 0;x1 , . . . , xk) reaches (0, ..., 0;x′1 , . . . , x
′
k) in G. We say that G is simple if each

constraint Pi in G is a conjunction of xij ≥ c (open constraint) or xij ≤ c (closed
constraint), for some constant c and every j, where xij is a counter in node i . Notice
that if G is simple then G must be atomic also. One can show:

Theorem 12 Every VAS can be simulated by a sequential tissue-like P system G

that is a DAG and simple.

For a sequential tissue-like P system G, a very special case is that there is only one
counter in each node, and the instruction on an edge (i, j) is I = 1, which means
that when I is executed, counter i is decremented by 1, and counter j is incremented
by 1. We call such a G single. One can show that the reachability relation ;G is
Presburger definable if G is a DAG and single. The proof technique is to “regulate”
the reachability paths in G and use reversal-bounded counter machine arguments,
and then appeal to Theorem 2.

Theorem 13 The reachability relation ;G is Presburger definable when sequential
tissue-like P system G is a DAG and single.

Currently, we do not know whether Theorem 13 still holds when the condition of G

being a DAG is removed.
As we pointed out, sequential tissue-like P systems are essentially stateless. To

conclude this section, we give an example where some forms of sequential tissue-like
P systems become more powerful when states are added, and hence states matter
(In contrast to this, VAS and VASS (by adding states to VAS) are known to be
equivalent).

Consider a sequential tissue-like P system G where each node contains only one
counter and, furthermore, G is a DAG. From Theorem 13, its reachability relation
;G is Presburger definable. We now add states to G and show that the reachability
relation now is not necessarily Presburger definable. G with states is essentially a
multicounter machine M with k counters (x1, . . . , xk) and each counter is associated
with a simple constraint defined earlier. Each instruction in M is in the following
form:

(sp, xi, xi+1, sq)

where 1 ≤ i < k and, sp and sq are the states of M before and after executing
the instruction. When the instruction is executed, xi is decremented by 1, xi+1

On stateless Automata and P systems

155

is incremented by 1, and the simple constraint on each counter should be satisfied
(before and after the execution).

Now, we show that an M can be constructed to “compute” the inequality x∗y ≥
z, which is not Presburger definable. We need 8 counters, x1, . . . , x8 in M . The idea
is that we use the initial value of x3, x5 and x7 to represent x, y and z, respectively,
and the remaining counters are auxiliary. In particular, x1 acts as a “warehouse”
for supplying counter values. The constraint upon every counter is simply xi ≥ 0,
1 ≤ i ≤ 8. Initially, the state is s0, x2 = 0, and all the other counters store some
values. We have the following instructions:

I1 = (s0, x3, x4, s1);

I2 = (s1, x1, x2, s2);

I3 = (s2, x7, x8, s0);

I4 = (s0, x5, x6, s3);

I5 = (s3, x2, x3, s0);

I6 = (s0, x2, x3, s0).

Note that s3 is the accepting state. I1, I2 and I3 mean that, when x3, which repre-
sents x, is decremented by 1, x2 will record the decrement, and x7, which represents
z, will also be decremented by 1. I4 says that during the decrement of x3, x5, which
represents y, will be nondeterministically decremented by 1. I5 and I6 will restore
the value of x3, and after the restoration, the value of x3 can never surpass the initial
one (i.e., x). One can show that x ∗ y ≥ z iff M can reach state s3 (the accepting
state) and, at the moment, x7 = 0.

5 Conclusion

We introduced the notion of stateless multihead two-way (respectively, one-way)
NFAs and stateless multicounter systems and related them to P systems and vector
addition systems. In particular, we investigated the decidability of the emptiness
and reachability problems for these stateless automata and showed that the results
are applicable to similar questions concerning certain variants of P systems, namely,
token systems and sequential tissue-like P systems. Many issues (e.g., the open
problems mentioned in the previous sections) remain to be investigated, and we
plan to look at some of these in future work.

References

[1] Z. Dang and O. H. Ibarra. On one-membrane P systems operating in sequential
mode. Int. J. Found. Comput. Sci., 16(5):867–881, 2005.

[2] S. Ginsburg and E. Spanier. Semigroups, Presburger formulas, and languages.
Pacific J. of Mathematics, 16:285–296, 1966.

L. Yang, Z. Dang, O. H. Ibarra

156

[3] O. H. Ibarra. A note on semilinear sets and bounded-reversal multihead push-
down automata. Inf. Processing Letters, 3(1): 25-28, 1974.

[4] O. H. Ibarra. Reversal-bounded multicounter machines and their decision prob-
lems. Journal of the ACM, 25(1):116–133, 1978.

[5] O. H. Ibarra, Z. Dang, and Ö. Egecioglu. Catalytic P systems, semilinear sets,
and vector addition systems. Theor. Comput. Sci., 312(2-3):379–399, 2004.

[6] C. Mart́ın-Vide, Gh. Păun, J. Pazos, and A. Rodŕıguez-Patón. Tissue P sys-
tems. Theor. Comput. Sci., 296(2):295–326, 2003.

[7] E. Mayr. An algorithm for the general Petri net reachability problem. Proc.
13th Annual ACM Symp. on Theory of Computing, 238–246, 1981.

[8] Gh. Păun. Computing with membranes. Journal of Computer and System
Sciences, 61(1):108–143, 2000.

[9] Gh. Păun. Membrane Computing, An Introduction. Springer-Verlag, 2002.

[10] L. Yang, Z. Dang, and O.H. Ibarra. Bond computing systems: A biologically
inspired and high-level dynamics model for pervasive computing. Proceedings
of the 6th International Conference on Unconventional Computation (UC’07),
Lecture Notes in Computer Science, 2007.

On stateless Automata and P systems

157

Author Index

Bernardini F., 11
Borrego-Ropero R., 23

Cavaliere M., 35
Ciobanu G., 52

Dang Z., 144
Dı́az-Peril D., 23

Freund R., 64

Gheorghe M., 11, 76
Gontineac M. 52

Ibarra O. H., 144
Ionescu M., 64

Kefalas P., 76
Kelemenová A., 129

Mardare R., 35
Margenstern M., 11, 90

Oswald M., 64

Pérez-Jiménez M. J., 23

Sakthi Balan M., 108
Sedwards S., 35
Sempere J., 120
Stamatopoulou I., 76

Vavrečková Š., 129

Yang L., 144

159

