
Principles of Transforming Communicating X-Machines

to Population P Systems

Petros Kefalas1, Ioanna Stamatopoulou2, and Marian Gheorghe3

1CITY College, Dept. of Computer Science

Tsimiski 13, Thessaloniki 54624, Greece

kefalas@city.academic.gr

2South-East European Research Centre

Mitropoleos 17, Thessaloniki 54624, Greece

istamatopoulou@seerc.org

3University of Sheffield, Dept. of Computer Science

Regent Court, 211 Portobello Str., Sheffield S1 4DP, UK

m.gheorghe@dcs.shef.ac.uk

Abstract

Population P Systems is a class of P Systems in which cells are arranged in a
graph rather than a hierarchical structure. On the other hand, Communicating
X-machines are state-based machines, extended with a memory structure and
transition functions instead of simple inputs, which communicate via message
passing. One could use Communicating X-machines to create system models
built out of components in a rather intuitive way. It is worth investigating how
existing Communication X-machine models can be transformed to Population
P system models so that we could take advantage of the dynamic features of
the latter. In this paper, we attempt to define the principles of transform-
ing Communicating X-machines to Population P Systems. We describe the
rules that govern such transformation and we present an example in order to
demonstrate the feasibility of the transformation and discuss its advantages and
shortcomings.

1 Introduction

In the last years, attempts have been made to devise computational models in the
form of generative devices, such as P systems [13] and its variants. These new
computational paradigms have been used to solve well-known hard problems. Oc-
casionally, some attempts also have been made to use P Systems towards modelling
of swarm-based multi-agent systems [14], in order to take advantage of the recon-
figuration features of P systems, such as cell death, cell division, reconfiguration of
structure etc. The main problem which appears in such modelling activity is that
the model resulting for the object interaction within a cell is not always easy to de-
velop. On the other hand, state-based models provide the necessary “intuitiveness”

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 76 - 89, 2007.

76

to model the behaviour of system components or agents. For instance, communi-
cating X-machines have been used as a suitable paradigm of modelling agent based
specification [11].

As a natural consequence of the above complementary features is to either try
to combine both formalisms [17, 18] or to transform one formalism to another. The
current trend in P system community research shows more interest in connecting
this model with other computational approaches - Petri nets [12], process algebra [3],
cellular automata [4] etc. In the past relationships between some classes of P systems
and communicating X-machines have been investigated. Especially transformations
of P systems into communicating stream X-machines have been particularly consid-
ered [9]. Most of these studies have been interested in translations between these
models in order to make use of various strengths offered by different formalisms -
model checking, for process algebra, invariants, for Petri nets, or testing methods,
for X-machines.

This paper presents some principles for transforming Communicating X-machi-
nes to Population P Systems. Section 2 provides the basic background on X-machine
modelling and Communicating X-Machines accompanied by an example. The defini-
tion and advantages of Population P Systems are presented in Section 3. In Section
4, we demonstrate how a transformation from one model to another is feasible and
apply the guidelines to the particular example. We then discuss how the resulting
model could be enhanced further to take advantage of the dynamic features of Pop-
ulation P Systems. We conclude by discussing the ideas behind the transformation
and the issues that need further consideration.

2 State-Based Modelling with X-Machines

2.1 X-machines

X-machines (XM), a state-based formal method introduced by Eilenberg [5], are
considered suitable for the formal specification of a system’s components. Stream
X-machines, in particular, were found to be well-suited for the modelling of reactive
systems. Since then, valuable findings using the X-machines as a formal notation for
specification, communication, verification and testing purposes have been reported
[6, 7, 10]. An X-machine model consists of a number of states and also has a memory,
which accommodates mathematically defined data structures. The transitions be-
tween states are labelled by functions. More formally, a steam X-machine is defined
as the 8-tuple (Σ ,Γ , Q,M,Φ, F, q0 ,m0) where:

• Σ and Γ are the input and output alphabets respectively;

• Q is the finite set of states;

• M is the (possibly) infinite set called memory;

• Φ is a set of partial functions ϕ that map an input and a memory state to an
output and a possibly different memory state, ϕ : Σ ×M → Γ ×M ;

Principles of transforming communicating X-machines to population P systems

77

• F is the next state partial function, F : Q× Φ → Q, which given a state and
a function from the type Φ determines the next state. F is often described as
a state transition diagram;

• q0 and m0 are the initial state and initial memory respectively.

For the purposes of this work we consider that the memory M is of the form
M = (m1, . . . ,mn), where each mi is a label that refers to any arbitrary value from
a domain set Di.

2.2 Example of XM

Assume a system that consists of two XM models, i.e. one traffic light and one
car. The traffic light XM has a number of states Q = {green, yellow, red, off}
and a set of inputs Σ = {tick, power on, power off} representing a clock tick
and the availability of electricity respectively. The output Γ = {green, red, yel-
low, black} is the colour that the traffic light displays. The memory structure of
this XM holds the display duration (in clock ticks) of each colour and a timer that
counts down the ticks on each colour display. Therefore, M = (time left to change,
duration green, duration yellow, duration red), where time left to change ∈ N0,
and duration green, duration yellow, duration red ∈ N. An instance of the above
model, e.g. TL1, may have m0 = (20, 20, 3, 10) and q0 = green. The state transition
diagram F is depicted in Fig. 1. The set Φ consists of a number of functions, as for
example:

keep green(tick, (time left, dg, dy, dr)) = (green, (time left− 1, dg, dy, dr)),
if time left > 0

change yellow(tick, (0, dg, dy, dr)) = (yellow, (dy, dg, dy, dr))

switch off(power off, (tl, dg, dy, dr)) = (black, (tl, dg, dy, dr))

Similarly the car model (Fig. 1) is defined as follows:

Q = {stopped, accelerating, cruising, breaking}

M = (speed, decrease rate, position) with speed ∈ N0, decrease rate ∈ N and
position ∈ {free road, approaching light(TL)}, where TL is the identifier of the
specific traffic light the car is approaching.

Σ = {traffic light(TL), passed traffic light(TL), push break to stop,
push break, push accpedal, leave break, leave accpedal}

and Γ = N0 having each function output the current speed of the car.
An instance of car, e.g. CAR1, may have m0 = (100, 2, free road) and q0 =

cruising.
Indicatively some of the functions in Φ are:

approaching tl(traffic light(TL), (speed, decrease rate, pos)) =
(speed, (speed, decrease rate, approaching light(TL)))

start breaking(push break, (speed, decrease rate, pos)) =
(speed/decrease rate, (speed/decrease rate, decrease rate, pos))

decrease speed(push break, (speed, dr, pos)) = (speed/dr, (speed/dr, dr, pos))

stop(push break to stop, (speed, dr, pos)) = (0, (0, dr, pos))

start(push accpedal, (0, dr, pos)) = (10, (10, dr, pos))

P. Kefalas, I. Stamatopoulou, M. Gheorghe

78

Figure 1: State Transition Diagrams for two XMs: a traffic light and a car.

2.3 Communicating X-machines

In addition to having stand-alone X-Machine models, communication is feasible by
redirecting the output of one machine’s function to become input to a function of
another machine. The system structure of Communicating X-machines is defined
as the graph whose nodes are the components and edges are the communication
channels among them. A Communicating X-machine System Z is a tuple:

Z = ((Cx
i)i=1,...,n, R)

where:

• Cx
i is the i-th Communicating X-machine Component, and

• R is a relation defining the communication among the components, R ⊆ Cx×
Cx and Cx = {Cx

1 , . . . , Cx
n}. A tuple (Cx

i , Cx
k) ∈ R denotes that the X-machine

component Cx
i can output a message to a corresponding input stream of X-

machine component Cx
k for any i, k ∈ {1, . . . , n}, i 6= k.

A Communicating X-machine Component (CXM for short) can be derived by
incorporating into an X-machine information about how it is to communicate with
other X-machines that participate in the system. Exchange of messages among
the components is achieved by redirecting one component’s function output to be
received as input by a function of another machine. In order to define the commu-
nication interface of an X-machine two things have to be stated: (a) which of its

Principles of transforming communicating X-machines to population P systems

79

functions receive their inputs from which machines, and (b) which of its functions
send their outputs to other machines.

Graphically on the state transition diagram we denote the acceptance of input
from another component by a solid circle along with the name Cx

i of the CXM that
sends it. Similarly, a solid diamond with the name Cx

k denotes that output is sent
to the Cx

k CXM. An abstract example of the communication between two CXMs is
depicted in Fig. 2. It has to be noted that though a function ϕ may only read from
one component at a time, it is possible that it sends its output to more than one
components. A complete formal definition of Communicating X-Machines can be
found in [16].

Figure 2: Abstract example of the communication between two Communicating X-machine
Components.

2.4 Example of CXM

The two instances TL1 and CAR1 may form a communicating system as illustrated
in Fig. 3. Functions of TL1 send messages to CAR1, through the transformation
function T :

T (change yellow) = push break
T (keep yellow) = push break
T (change red) = push break to stop
T (change green) = push accpedal

Functions in CAR1 accept those messages as inputs. The rest of the functions
not annotated with receive (read) or send (write) obtain their input from the envi-
ronment and send their output to the environment as normal.

3 Population P-Systems with Active Cells

A Population P System (PPS) [2] is a collection of different types of cells evolving
according to specific rules and capable of exchanging biological / chemical substances
with their neighbouring cells (Fig. 4). More formally, a PPS with active cells [2] is
defined as a construct P = (V,K, γ, α,wE , C1, C2, . . . , Cn, R) where:

• V is a finite alphabet of symbols called objects;

• K is a finite alphabet of symbols, which define different types of cells;

P. Kefalas, I. Stamatopoulou, M. Gheorghe

80

Figure 3: A CXM system consisting of one traffic light and a car.

• γ = ({1, 2, . . . n}, A), with A ⊆ {{i, j} | 1 ≤ i 6= j ≤ n }, is a finite undirected
graph;

• α is a finite set of bond-making rules of the form (t, x1;x2, p), with x1, x2 ∈ V ∗

(multi-sets of objects represented as strings), and t, p ∈ K meaning that in the
presence of x1 and x2 inside two cells of type t and p respectively, a bond is
created between the two cells;

• wE ∈ V ∗ is a finite multi-set of objects initially assigned to the environment;

• Ci = (wi, ti), for each 1 ≤ i ≤ n, with wi ∈ V ∗ a finite multi-set of objects,
and ti ∈ K the type of cell i;

• R is a finite set of rules dealing with communication, object transformation,
cell differentiation, cell division and cell death.

All rules present in the PPS are identified by a unique identifier, r. More par-
ticularly:

Communication rules are of the form r : (a ; b, in)t, r : (a ; b, enter)t, r :
(b, exit)t, for a ∈ V ∪{λ}, b ∈ V , t ∈ K, where λ is the empty string, and allow the
moving of objects between neighbouring cells or a cell and the environment according
to the cell type and the existing bonds among the cells. The first rule means that
in the presence of an object a inside a cell of type t an object b can be obtained by

Principles of transforming communicating X-machines to population P systems

81

Figure 4: An abstract example of a Population P System; Ci: cells, Ri: sets of rules
related to cells; wi: multi-sets of objects associated to the cells.

a neighbouring cell non-deterministically chosen. The second rule is similar to the
first with the exception that object b is not obtained by a neighbouring cell but by
the environment. Lastly, the third rule denotes that if object b is present it can be
expelled out to the environment.

Transformation rules are of the form r : (a → b)t, for a ∈ V , b ∈ V +, t ∈ K,
where V + is the set of non-empty strings over V , meaning that an object a is
consumed and replaced by an object b within a cell of type t.

Cell differentiation rules are of the form r : (a)t → (b)p, with a, b ∈ V , t, p ∈ K
meaning that consumption of an object a inside a cell of type t changes the cell,
making it become of type p. All existing objects remain the same besides a which
is replaced by b.

Cell division rules are of the form r : (a)t → (b)t (c)t, with a, b, c ∈ V , t ∈ K.
A cell of type t containing an object a is divided into two cells of the same type.
One of the new cell has a replaced by b while the other by c. All other objects of
the originating cell appear in both new cells.

Cell death rules are of the form r : (a)t → †, with a ∈ V , t ∈ K meaning that
an object a inside a cell of type t causes the removal of the cell from the system.

4 Transformation Principles

The question under investigation is whether some generic guidelines or principles
for transforming Communicating X-machines to Population P Systems exist. We
are dealing with two different methods that possess different characteristics. CXMs
provide a straightforward and rather intuitive way for dealing with a component’s
behaviour, however, the structure of a communicating system should be known in
advance and fixed throughout the computation. Additionally, CXM computation is
asynchronous. On the other hand, PPS provide a straightforward way for dealing
with the change of a system’s structure, however, the rules specifying the behaviour
of the individual cells in a PPS are of the simple form of rewrite rules which are not
that intuitive to model. Finally, PPS computation is synchronous.

The rationale behind such transformation is to automatically or semi-automati-
cally produce PPS models that can be later on enhanced with dynamic behaviour

P. Kefalas, I. Stamatopoulou, M. Gheorghe

82

features. This will have the advantage of using existing CXM models whose com-
ponents have been thoroughly verified and tested. The resulting PPS model will
have cells, objects, transformation and communication rules. The model can then
be enriched with cell differentiation, death, birth and bond making rules (see next
section).

4.1 Cells and types

Every CXM component will form a cell with objects, transformation and communi-
cation rules. We will refer to these cells as cells of a communicating type.

4.2 Objects in cells

We consider that all objects in the PPS are of the form (tag : value), tag being
a description that allows us to identify what each object represents. At least the
following objects must be present in a cell to represent:

• the states in Q: objects of the form (state : q), where q ∈ Q

• the memory M = (m1, . . . ,mn): objects of the form (m1 : d1) . . . (mn : dn)
where d1, . . . , dn ∈ D1, . . . ,Dn, with D1, . . . ,Dn being the finite domains of
each memory item

• the inputs in Σ : objects of the form (input : i), where i ∈ Σ

• the outputs in Γ : objects of the form (output : o), where o ∈ Γ

• the messages sent/received: objects of the form
(message : (m, sender, receiver)) where m is the actual message being sent.

4.3 Transformation rules

For every function ϕ : Σ ×M → Γ ×M such that ϕ(σ, (d1, ...dn)) = (γ, (d′

1, ...d
′

n)),
where di, d

′

i ∈ Di, σ ∈ Σ , γ ∈ Γ , for every q, q′ ∈ Q such that q′ ∈ F (ϕ, q) and for
(mi : di), (mi : d′

i) representing old and new values of the memory used by ϕ, a rule

ϕ : ((state : q) (input : σ) (m1 : d1) . . . (mn : dn)
→ (state : q′) (output : γ) (m1 : d′

1) . . . (mn : d′

n))t

is constructed.

4.4 Communication rules

For a function with communication annotations there are three different variations of
conformation rules (read only, write only, both read and write). For the latter, it be-
ing the most general one, we may consider that for every function ϕ : Σ×M → Γ×M
such that ϕ(σ, (d1, ...dn)) = (γ, (d′

1, ...d
′

n)), where di, d
′

i ∈ Di, σ ∈ Σ , γ ∈ Γ , for every
q, q′ ∈ Q such that q′ ∈ F (ϕ, q), for (mi : di), (mi : d′

i) representing old and new
values of the memory used by ϕ and for incoming ∈ Σ , T (ϕ) = outgoing a rule

Principles of transforming communicating X-machines to population P systems

83

ϕ : ((state : q) (mi : di) . . . (mj : dj)
(message : (incoming, sender, ∗this))

→ (state : q′) (output : γ) (mi : d′

i) . . . (mj : d′

j)

(message : (outgoing′, ∗this, receiver)))t

is constructed where ∗this denotes the identity of the cell containing the rule.
incoming is a message received from another cell (sender) therefore it is of type
Σ . outgoing is a message to be received by another cell (receiver) and thus must
be of the input type Σ of the receiver (this being accomplished by T (ϕ) = outgoing
which transforms the standard output of the function ϕ into something understand-
able for the receiver).

Every transformation rule for a function with communication annotations must
also be accompanied by a communication rule that will be responsible for importing
the message from a neighbouring cell (receiver) when a bond exists between them.
The communication rule resides always on the receiver side and it is of the form:
cr : (λ; (message : (incoming, sender, ∗this)), in)t

4.5 Main result

The constructions described by the previous subsections lead to the following:

Theorem 4.1 For any communicating X-machine working in a synchronous mode,
with all sets Di finite and a given input multi-set there is an equivalent Population
P System (produces the same output as the communicating X-machine).

4.6 Example transformation

The above example of a CXM system consisting of a traffic light TL1 and a car
CAR1 can be transformed according to the above principles as follows:

So far, we need two types of cells, therefore K = {cTL, cCAR} (‘c’ standing
for ‘communicating’). There will be two cells, namely CTL1

= (wTL1
, cTLTL1

) and
CCAR1

= (wCAR1
, cCARCAR1

).

The objects which appear during computation in cell CTL1
will be:

• (state : q), where q ∈ {green, yellow, red, off}

• (time left to change : d1), (duration green : d2), (duration yellow : d3),
(duration red : d4) where d1 ∈ N0, and d2, d3, d4 ∈ N

• (input : i), where i ∈ {tick, power on, power off}

• (output : o), where o ∈ {green, red, yellow, black}

• (message : (push break, TL1, CAR1)), (message : (push break to stop,
TL1, CAR1)) and (message : (push accpedal, TL1, CAR1)).

Initially the objects wTL1
are: (state : green), (time left to change : 20),

(duration green : 20), (duration yellow : 3), (duration red : 10), which correspond
to the initial state and memory values.

P. Kefalas, I. Stamatopoulou, M. Gheorghe

84

The transformation rules for non-communicating functions are indicatively as
follows:

keep green : ((state : green) (input : tick) (time left to change : tl)
→ (state : green) (time left to change : tl − 1)

(output : green))cTL, if tl > 0

switch off : ((state : X) (input : power off)
→ (state : off) (output : black))cTL

The objects which appear during computation in cell CCAR1
will be:

• (state : q), where q ∈ {stopped, accelerating, cruising, breaking}

• (speed : d1), (decrease rate : d2), (position : d3) where d1 ∈ N0, d2 ∈ N and
d3 ∈ {free road, approaching light(TL)}

• (input : i), where i ∈ {traffic light(TL), passed traffic light(TL), pu-
sh break, push break to stop, push accpedal, leave break, leave accpedal}

• (output : o), where o ∈ N0 (speed).

• (message : (push break, TL1, CAR1)), (message : (push break to stop, TL1,
CAR1)) and (message : (push accpedal, TL1, CAR1)).

Initially the objects wCAR1
are: (state : cruising), (speed : 100), (decrease rate :

2), (position : free road).

Indicatively a transformation rule for the corresponding non-communicating
function is:
approaching tl : ((state : cruising) (input : traffic light(TL1))

(speed : sp) (position : pos)
→ (state : cruising) (output : sp)

(speed : sp) (position : traffic light(TL1)))cCAR

As far as communication is concerned, in the cells CTL1
and CCAR1

there will
be some transformation rules that correspond to the communicating functions. For
example:
change yellow : ((state : green) (input : tick)

(time left to change : 0) (duration yellow : dy)
→ (state : yellow) (message : (push break, TL1, CAR1))

(output : yellow) (time left to change : dy))cTL

start breaking : ((state : cruising) (decrease rate : dr)
(speed : sp) (message : (push break, TL1, CAR1))

→ (state : breaking) (output : sp/dr)
(decrease rate : dr))cCAR

In addition, cell CCAR1
will have a the communication rules:

cr1 : (λ; (message : (push break, TL1, CAR1)), in)cCAR

cr2 : (λ; (message : (push break to stop, TL1, CAR1)), in)cCAR

cr3 : (λ; (message : (push accpedal, TL1, CAR1)), in)cCAR

in order to receive messages that appear in CTL1
.

Principles of transforming communicating X-machines to population P systems

85

5 Enhancing the model

So far, a set of guidelines have been presented to transform a (static) CXM model
to a (static) PPS model. One could enhance the PPS model with features that deal
with a potential dynamic structure of the system. For instance:

• if the traffic light malfunctions then it should be removed from the PPS model,

• if the car leaves the traffic light, the bond between the two cells ceases to exist,

• if another car arrives, a new cell should be generated,

• if the new car approaches the traffic light, a bond should be generated, etc.

All the above issues can be dealt with by features of PPS, such as cell death,
bond making rules, cell division etc. For the first example, a cell death rule such as
r : ((state : off))cTL → † will do.

For the rest of the examples, we need to introduce another type of cell which
corresponds to the non-communicating counterparts (XMs). This is because two
cells that are not connected with a bond should not really have communication rules
or transformation rules that correspond to communicating functions. Therefore, it
is necessary to introduce two new types in K, namely genericTL and genericCAR,
which are basically equivalent to the corresponding non-communicating XMs.

So, for example, after a car passes a traffic light, a differentiation rule should
change a cell from cCAR type to genericCAR type:
diffrule1 : ((input : passed traffic light(TL)))cCAR

→ ((input : passed traffic light(TL)))genericCAR

diffrule2 : ((state : green))cTL

→ ((state : green))genericTL

The opposite is also feasible:
diffrule3 : ((input : traffic light(TL)))genericCAR

→ ((input : traffic light(TL)))cCAR

diffrule2 : ((state : yellow))genericTL

→ ((state : yellow))cTL

A bond making rule such as:
(cTL, (state : yellow); (input : traffic light(TL)), cCAR)

will produce a bond between a traffic light and an approaching car.

6 Discussion and Conclusion

We presented a set of principles that guide the transformation of CXM models
into PPS models. One of the motives behind this attempt lies in the fact that the
resulting PPS model can be further enriched with PPS features that deal with the
dynamic nature of the system’s structure. There are a few more issues for discussion
and further consideration.

Firstly, the objects in the environment wE in the PPS have not been modelled.
In X-machines an environment model per se does not exist. The “environment” pro-
vides the inputs in a steam and they are consumed by the functions of the machines

P. Kefalas, I. Stamatopoulou, M. Gheorghe

86

in a timely fashion. In a PPS, we need to consider an equivalent environment. More
particularly:

• either the input objects appear in the environment during the computation,
or

• input objects are generated by a generator device in an appropriate order.

In both cases, an input object is not as simple as presented in the previous sec-
tions. Instead, input objects should be of the form (input : (σ, cell identity))
where cell identity is the cell that the input is for. An additional communica-
tion rule in both generic and communicating types of cells is required r : (λ; (input :
(σ, ∗this)), enter)t in order for the cells to import the input from the environment.
Outputs may be treated in a similar way, i.e. exported to the environment.

Secondly, the direct sending of messages between cells has not been addressed.
In a CXM model, a CXM component function sends a message to another CXM
component function. In a PPS, a cell cannot directly send a message but instead
import a message from another cell as long as they are connected with a bond (due
to the bond making rule). For two cells, as presented in the example, this does not
appear to be a problem. However, if more than two cells are neighbours, then the
transformation rule responsible for producing a messages should be able to produce
multiple copies of it. In turn, this would mean that each cell should be aware of the
identities of each of its neighbours and therefore it is implied that the identity needs
to be communicated once a bond is established.

Finally, we did not deal with the different types of computation, which in CXM is
asynchronous whereas in PPS is synchronous. For the specific example, this did not
matter much, because the clock ticks and the connectivity of the machines imposes
some kind of synchronisation in the CXM model. However, the consequences of the
different types of computation in other cases should be further investigated. We
anticipate that future work will deal with all these issues.

The current work will facilitate the development of algorithms to automatically
translate from a specification to another one. That implies that the tools that have
been developed for both methods [1, 8, 15] and their animators, could be linked
together to form an integrated environment where transformations are made easy
from one model to another and vice-versa.

References

[1] J. Auld, F. Romero-Campero, and M. Gheorghe. P system modelling frame-
work. http://www.dcs.shef.ac.uk/˜marian/PSimulatorWeb/P Systems appli-
cations.htm, November 2006.

[2] F. Bernandini and M. Gheorghe. Population P Systems. Journal of Universal
Computer Science, 10(5):509–539, 2004.

[3] G. Ciobanu and B. Aman. On the relationship between membranes and ambi-
ents. BioSystems, 2007. To appear.

Principles of transforming communicating X-machines to population P systems

87

[4] D. Corne and P. Frisco. Dynamics of HIV infection studied with cellular au-
tomata and conformon-P systems. BioSystems, 2007. To appear.

[5] S. Eilenberg. Automata, Languages and Machines. Academic Press, 1974.

[6] G. Eleftherakis. Formal Verification of X-machine Models: Towards Formal
Development of Computer-based Systems. PhD thesis, Department of Computer
Science, University of Sheffield, 2003.

[7] M. Holcombe and F. Ipate. Correct Systems: Building a Business Process
Solution. Springer-Verlag, London, 1998.

[8] E. Kapeti and P. Kefalas. A design language and tool for X-machines specifica-
tion. In D. I. Fotiadis and S. D. Spyropoulos, editors, Advances in Informatics,
pages 134–145. World Scientific Publishing Company, 2000.

[9] P. Kefalas, G. Eleftherakis, M. Holcombe, and M. Gheorghe. Simulation and
verification of P systems through communicating X-machines. BioSystems,
70(2):135–148, 2003.

[10] P. Kefalas, G. Eleftherakis, and E. Kehris. Communicating X-machines: A
practical approach for formal and modular specification of large systems. Jour-
nal of Information and Software Technology, 45(5):269–280, 2003.

[11] P. Kefalas, M. Holcombe, G. Eleftherakis, and M. Gheorghe. A formal method
for the development of agent-based systems. In V. Plekhanova, editor, Intel-
ligent Agent Software Engineering, pages 68–98. Idea Publishing Group Co.,
2003.

[12] J. Klein and M. Koutny. Synchrony and asynchrony in membrane systems.
In H. J. Hoogeboom, G. Paun, G. Rozenberg, and A. Salomaa, editors, Mem-
brane Computing, 7th International Workshop, Leiden, Holland, number 4361
in Lecture Notes in Computer Science, pages 66–85. Springer, 2007.

[13] G. Păun. Computing with membranes. Journal of Computer and System Sci-
ences, 61(1):108–143, 2000. Also circulated as a TUCS report since 1998.

[14] I. Stamatopoulou, M. Gheorghe, and P. Kefalas. Modelling dynamic configura-
tion of biology-inspired multi-agent systems with Communicating X-machines
and Population P Systems. In G. Mauri, G. Păun, M. J. Pérez-Jiménez,
G. Rozenberg, and A. Salomaa, editors, Membrane Computing: 5th Interna-
tional Workshop, volume 3365 of Lecture Notes in Computer Science, pages
389–401. Springer-Verlag, Berlin, 2005.

[15] I. Stamatopoulou, P. Kefalas, G. Eleftherakis, and M. Gheorghe. A modelling
language and tool for Population P Systems. In Proceedings of the 10th Pan-
hellenic Conference in Informatics, Volos, Greece, November 11-13, 2005.

[16] I. Stamatopoulou, P. Kefalas, and M. Gheorghe. Modelling the dynamic struc-
ture of biological state-based systems. BioSystems, 87(2-3):142–149, February
2007.

P. Kefalas, I. Stamatopoulou, M. Gheorghe

88

[17] I. Stamatopoulou, P. Kefalas, and M. Gheorghe. OPERAS for space: Formal
modelling of autonomous spacecrafts. In T. Papatheodorou, D. Christodoulakis,
and N. Karanikolas, editors, Current Trends in Informatics, volume B of Pro-
ceedings of the 11th Panhellenic Conference in Informatics (PCI’07), pages
69–78, Patras, Greece, May 18-20, 2007.

[18] I. Stamatopoulou, P. Kefalas, and M. Gheorghe. OPERASCC : An instance of a
formal framework for MAS modelling based on Population P Systems. In The
8th Workshop on Membrane Computing (WMC’07), pages 551–566, 2007.

Principles of transforming communicating X-machines to population P systems

89

