
Colonies of Synchronizing Agents:

An Abstract Model of Intracellular and Intercellular

Processes

Matteo Cavaliere, Radu Mardare, and Sean Sedwards

Microsoft Research – University of Trento
Centre for Computational & Systems Biology
{cavaliere, mardare, sedwards}@cosbi.eu

Abstract

We present a modelling framework and computational paradigm called Col-
onies of Synchronizing Agents (CSAs), which abstracts intracellular and inter-
cellular mechanisms of biological tissues. The model is based on a multiset
of agents (cells) in a common environment. Each agent has a local contents,
stored in the form of a multiset of atomic objects, updated by multiset rewriting
rules which may act on individual agents (intracellular action) or synchronize
the contents of pairs of agents (intercellular action). Using tools from formal
language and temporal logic we investigate dynamic properties of CSAs, includ-
ing robustness and safety of synchronization. We also identify classes of CSAs
where such dynamic properties can be algorithmically decided.

1 Motivations

Inspired by biological tissues and populations of cells, we present and investigate an
abstract distributed model of computation which we call Colonies of Synchronizing
Agents (in short, CSAs). Our intention is to create a framework to model, analyse
and simulate complex biological systems in the context of formal language theory
and multiset rewriting.

The model is based on a population of agents (e.g., corresponding to cells or
molecules) in a common environment, able to modify their contents and to synchro-
nize with other agents in the same environment. Each agent has a contents repre-
sented by a multiset of atomic objects (e.g., corresponding to chemical compounds
or the characteristics of individual molecules) with some of the objects classified
as terminals (e.g., corresponding to properties or chemicals visible to an external
observer). An agent’s contents may be modified independently of other agents by
means of multiset rewriting rules (called internal rules)1 which can mimic chemistry
or other types of intracellular mechanisms. Moreover, the agents can influence each
other by synchronously changing their contents using pairwise synchronization rules.

1In [5] internal rules are called evolution rules, adopting a standard terminology from the P
systems area. We prefer here a more general term.

Proceedings of the International Workshop, Automata for Cellular and Molecular
Computing, MTA SZTAKI, Budapest, pages 35 - 51, 2007.

35

This models, in a deliberately abstract way, the various signalling mechanisms and
intercellular mechanisms present in biological systems. The rules are global, so all
agents obey the same rules: the only feature which may distinguish the agents is
their contents. Evolutions of CSAs are defined as sequences of transitions obtained
by applying the rules to the agents. These transitions thus mark the passage of the
system from one configuration to another.

In this paper we search for classes of CSAs where relevant dynamic properties
can be algorithmically checked. We interpret CSAs as computational devices and
can thus study CSAs by applying tools from classical fields of computer science,
such as formal language, automata theory and temporal logic. For this reason we
define as computations of CSAs the evolutions that reach halting configurations, i.e.
configurations where the contents of the agents can no longer be changed because
no rules may be applied. This situation can be interpreted as a particular kind of
steady state of the system. We are interested in the configuration of the colony when
a halting condition is reached and we may take the precise contents of the agents
as the output (the result) produced by the CSA. Alternatively, we can use the
magnitude of the agents (the total amount of contents irrespective of composition)
in the halting configuration as the result produced by a CSA.

We can then investigate the robustness of CSAs by considering the ability of a
CSA to generate a particular core result despite the failure (i.e., removal) of some of
the agents or rules. The core result can be seen as a specific configuration in which
the colony must be when the system halts. We show that for an arbitrary CSA,
robustness cannot be algorithmically decided when the core result is represented by
specific contents of agents, while it can be algorithmically decided in an efficient way
when the core result is represented by agents’ magnitudes.

In Section 4 we are interested in dynamic properties concerning the application
of the rules. To check these properties we propose a decidable temporal logic. We
show that the proposed logic can be used to specify and check whether or not, during
any evolution of a CSA, an agent can apply a synchronization whenever it needs (if
it can we say that the agent is safe on synchronization). We conclude the present
section by comparing our model with other models based on abstractions of cell
tissues which use rewriting and multisets.

The introduced model of Colonies of Synchronizing Agents has similarities and
significant differences with other models inspired by cell tissues investigated, for in-
stance, in the area of membrane computing (a.k.a. P systems, [15]). Specifically, it
can be considered a generalization of P colonies [11], which is also based on inter-
acting agents but has agents with limited contents (two objects) which change by
means of restricted rewriting rules. Moreover, in P colonies no direct communication
between agents is allowed.

Our model also has similarities with population P systems [3], which is a class
of tissue P systems [13] where links may exist between agents and these can be
modified by means of a set of bond making rules.

The main differences with population P systems is that in our case agents do not
have types; rules are global and only the agents’ contents differentiate them. This
latter characteristic makes CSAs similar to the model of self-assembly of graphs
presented in [2], however in that case; (i) a graph is constructed from an initial

M. Cavaliere, R. Mardare, S. Sedwards

36

seed using multiset-based aggregation rules to enlarge the structure, (ii) there is
no internal rewriting of the agent’s contents and (iii) there is no synchronization
between the agents.

Another computational formalism widely used to simulate and model biological
tissues is cellular automata (CAs, e.g., see [19]). In particular, CAs have been used
to model the immune systems (e.g., [14]). In CAs, cells exist on a regular grid,
where each cell has a finite number of possible states and where cells react to or
with a defined neighbourhood. In our model, because of the multiset-based contents
and because of the arbitrary multiset rewriting rules, the possible different states
of a cell may be infinite. Although the initial definition of CSAs does not include
an explicit description of space, the extensions we propose include agents located at
arbitrary positions and with the potential to interact with any other agent in the
colony.

A specific limitation of cellular automata that use synchronous update is that
many such models are computational complete (i.e., equivalent to Turing machines
[19]), even when employing simple rules (e.g., rule 110, [19]). This makes it impos-
sible to algorithmically analyse such systems. Precisely, non-trivial problems are
undecidable for Turing machines.

2 Formal Language Preliminaries

This Section is a brief introduction to some basic notions of formal language theory
needed in the paper. Further information regarding formal language and automata
theory is available from the many monographs in this area, starting with [10, 4] and
ending with the handbook [17].

Given the set A we denote by |A| its cardinality and by ∅ the empty set. We
denote by N the set of natural numbers.

An alphabet V is a finite set of symbols. By V ∗ we denote the set of all strings
over V . By V + we denote the set of all strings over V excluding the empty string.
The empty string is denoted by λ. The length of a string v is denoted by |v|. The
concatenation of two strings u, v ∈ V ∗ is written uv. The number of occurrences of
the symbol a in the string w is denoted by |w|a.

Each subset of V ∗ is called a language.
The boolean operations (with languages) of union and intersection are denoted

∪ and ∩, respectively. Concatenation of the languages L1, L2 is L1L2 = {xy | x ∈
L1, y ∈ L2}.

A generative grammar is a finite device generating in a well-specified sense the
strings of a language. Chomsky grammars are particular cases of rewriting systems
where the operation used in processing the strings is the rewriting (replacement of
a substring of the processed string by another substring). A (Chomsky) grammar
is a quadruple G = (N,T, S, P) where N and T are disjoint alphabets, N being a
set of non-terminals and T a set of terminals, S is the axiom and P is a finite set of
productions (rewriting rules). A production is usually written in the form r : u→ v
with u ∈ (N ∪ T)∗ with u containing at least a non-terminal (so, it cannot be the
empty string).

Colonies of synchronizing agents

37

For x, y ∈ (N ∪ T)∗ we write x =⇒ y iff x = x1ux2, y = x1vx2 for some x1, x2 ∈
(N ∪ T)∗ and u → v ∈ P . One says that x directly derives y. The language
generated by G denoted by L(G) is defined by L(G) = {x ∈ T ∗ | S =⇒∗ x}, where
=⇒∗ denotes the reflexive and transitive closure of =⇒. So the language L(G)
consists of all terminal strings that can be obtained starting from S by applying
iteratively the productions in P .

A grammar is called regular if each production is of the form a→ v with a ∈ N
and v ∈ T ∪TN ∪{λ}. A grammar is called context-free if each production is of the
form a→ v with a ∈ N .

Languages generated by context-free and regular grammars are called context-
free and regular languages, respectively. We denote by CF and REG the families
of context-free and regular languages, respectively. Regular languages are those
accepted by finite state automata.

In general, when we want to specify a terminal alphabet we add a subscript to
the name of the family; e.g., REGA is the family of all regular languages over the
alphabet A.

A matrix grammar without appearance checking is a devices with matrices of
context-free productions and where productions are applied according to the order
given in the chosen matrix (for details see [6]).

Formally, a matrix grammar without appearance checking (in short, without a.c.)
is a construct G = (N,T, S,M), where N and T are disjoint alphabets of non-
terminal and terminal symbols, S ∈ N is the axiom, M is a finite set of matrices
which are sequences of context-free productions of the form (A1 → x1, . . . , An → xn),
n ≥ 1 (with Ai ∈ N,xi ∈ (N ∪ T)∗ in all cases).

For w, z ∈ (N ∪T)∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . An → xn)
in M and strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1, such that w = w1, z = wn + 1
and, for all 1 ≤ i ≤ n, wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i , for some w′

i, w
′′
i ∈ (N ∪ T)∗.

The reflexive and transitive closure of =⇒ is denoted by =⇒∗. Then the language
generated by G is L(G) = {w ∈ T ∗ | S =⇒∗ w}.

In other words, the language L(G) is composed of all the strings of terminal
symbols that can be obtained starting from S and applying iteratively the matrices
in M .

For a language L ⊆ V ∗, the set length(L) = {|x| |x ∈ L}} is called the length
set of L, denoted by NL.

If FL is an arbitrary family of languages then we denote by NFL the family of
length sets of languages in FL (i.e., it is a family of sets of natural numbers). For
instance, NREG is the family of length sets of regular languages.

The Parikh vector associated with a string x ∈ V ∗ with respect to the alphabet
V = {a1, a2, . . . , an} is PsV (x) = (|x|a1 , |x|a2 , . . . , |x|an). For L ⊆ V ∗ we define
PsV (L) = {PsV (x)|x ∈ L}. This is called the Parikh image of the language L. The
null vector is denoted by 0.

If FL is an arbitrary family of languages then we denote by PsFL the family
of Parikh images of languages in FL (i.e., it is a family of sets of vectors of natural
numbers).

For instance, PsREG is the family of Parikh images of regular languages in
REG.

M. Cavaliere, R. Mardare, S. Sedwards

38

For instance, V = {a, b, c} is an alphabet, x = aaabbbcaa = a3b3ca2 is a string
over V , L = {anbn | n ≥ 1} is a language over V . We have |x| = 9, |x|a = 5,
length(L) = {2n | n ≥ 1}. The Parikh vector of x with respect to V is PsV (x) =
(5, 3, 1) and for the language L we have PsV (L) = {(n, n, 0) | n ≥ 1}.

A multiset is a set where each element may have a multiplicity. Formally, a
multiset over a set V is a map M : V → N, where M(a) denotes the multiplicity
(i.e., number of occurrences) of the symbol a ∈ V in the multiset M . Note that the
set V can be infinite.

For instance M = {a, b, b, b}, also written as {(a, 1), (b, 3)}, is a multiset with
M(a) = 1 and M(b) = 3.

For multisets M and M ′ over V , we say that M is included in M ′ (M ⊆ M ′) if
M(a) ≤M ′(a) for all a ∈ V . Every multiset includes the empty multiset, defined as
M where M(a) = 0 for all a ∈ V .

The sum of multisets M and M ′ over V is written as the multiset (M + M ′),
defined by (M +M ′)(a) = M(a) +M ′(a) for all a ∈ V . The difference between M
and M ′ is written as (M−M ′) and defined by (M−M ′)(a) = max{0,M(a)−M ′(a)}
for all a ∈ V . We also say that (M +M ′) is obtained by adding M to M ′ (or vice
versa) while (M −M ′) is obtained by removing M ′ from M .

For example, given the multisetsM = {a, b, b, b} andM ′ = {b, b}, we can say that
M ′ is included in M , that (M +M ′) = {a, b, b, b, b, b} and that (M −M ′) = {a, b}.

The support of a multiset M is defined as the set supp(M) = {a ∈ V |M(a) > 0}.
A multiset with finite support is usually presented as a set of pairs (x,M(x)), for
x ∈ supp(M).

The cardinality of a multiset M is denoted by card(M) and it indicates the num-
ber of objects in the multiset. It is defined in the following way. card(M) is infinite if
M has infinite support. If M has finite support then card(M) =

∑
ai∈supp(M)M(ai),

i.e., all the occurrences of the elements in the support are counted.
We denote by M(V) the set of all possible multisets over V and by Mk(V) the

set of all multisets over V having cardinality k.
For the case that the alphabet V is finite we can use a compact string notation

to denote multisets: if M = {(a1,M(a1)), (a2,M(a2)), . . . , (an,M(an))} then the
string w = a

M(a1)
1 a

M(a2)
2 · · · aM(an)

n (and all its permutations) precisely identify the
symbols in M and their multiplicities. Hence, given a string w ∈ V ∗, we can say that
it identifies the multiset {(a, |w|a) | a ∈ V }. For instance, the string bab represents
the multiset {b, a, b} = {(a, 1), (b, 2)} which has cardinality 3. The empty multiset
is represented by the empty string, λ.

3 Colonies of Synchronizing Agents

In this section we formalize the notions of colonies discussed in the Introduction. A
Colony of Synchronizing Agents (a CSA) of degree m is a construct Π = (A, T,C,R).
• A is a finite alphabet of symbols (its elements are called objects). T ⊆ A is the set
of terminal objects.
• An agent over A is a multiset over the alphabet A (an agent can be represented
by a string w ∈ A∗, since A is finite). C is the initial configuration of Π and it is a

Colonies of synchronizing agents

39

multiset of agents, with card(C) = m. 2

• R is a finite set of rules over A. We have internal rules of type u→ v, with u ∈ A+

and v ∈ A∗, and synchronization rules of the type 〈u, v〉 → 〈u′, v′〉 with uv ∈ A+

and u′, v′ ∈ A∗.

An occurrence γ of an internal rule r : u → v can be applied to an agent w by
taking a multiset u from w (hence, u ⊆ w) and assigning it to γ (i.e., assigning the
occurrences of the objects in u to γ). The application of an occurrence of rule r to
the agent w consists of removing from w the multiset u and then adding the multiset
v to the resulting multiset.

An occurrence γ of a synchronization rule r : 〈u, v〉 → 〈u′, v′〉 can be applied to
the pair of agents w and w′ by: (i) taking from w a multiset u (hence, u ⊆ w) and
assigning it to γ; (ii) taking from w′ a multiset v (hence, v ⊆ w′) and assigning it
to γ. The application of an occurrence of rule r to the agents w and w′ consists of:
(i) removing the multiset u from w and then adding the multiset u′ to the resulting
multiset; (ii) removing the multiset v from w′ and then adding the multiset v′ to
the resulting multiset.

We assume the existence of a global clock which marks the passage of units of
time for all agents present in the colony.

A configuration of a CSA, Π, consists of the agents present in the colony at a
given time. We denote by C(Π) the set of all possible configurations of Π. Therefore,
using the notation introduced in Section 1, C(Π) is exactly Mm(H) with H = M(A).

A single asynchronous transition (in short, asyn-transition) 3 of Π from an arbi-
trary configuration c of Π to the next one lasts exactly one time unit and is obtained
by applying the rules in the set R to the agents present in c in an asynchronous way.
This means that, for each agent w and each pair of agents w′ and w′′ present in
c, the occurrences of the objects of w,w′ and w′′ are either assigned to occurrences
of the rules, with the occurrences of the objects and the occurrences of the rules
chosen in a non-deterministic way, or left unassigned. A single occurrence of an
object may only be assigned to a single occurrence of a rule. In other words, in
an asyn-transition any number of occurrences of rules (zero, one, or more) can be
applied to the agents in the configuration c.

A sequence (possibly infinite) 〈C0, C1, · · · , Ci, Ci+1, · · ·〉 of configurations of Π,
where Ci+1 is obtained from Ci, i ≥ 0, by an asyn-transition is called an asyn-
evolution of Π. An asyn-evolution of Π is said to be halting if it halts, that is if it
is finite and the last configuration of the sequence is a halting configuration, i.e., a
configuration containing only agents for which no occurrences of rules from R can
be applied.

An asyn-evolution of Π that is halting and that starts with the initial config-
uration of Π is called an asyn-computation of Π. The result/output of an asyn-
computation is the set of vectors of natural numbers, one vector for each agent w
present in the halting configuration with the vector describing the multiplicities of
terminal objects present in w. More formally, the result of an asyn-computation

2Formally, C is a multiset of degree m over the set of all possible agents over A. Hence, C ∈
Mm(M(A)).

3We specify asyn-transitions to distinguish them from the synchronous maximal parallel transi-
tions often adopted in models coming from P systems and cellular automata.

M. Cavaliere, R. Mardare, S. Sedwards

40

(a) Internal rule r1 applied to C (b) Synchronization rule r2 applied to C

Figure 1: Alternative application of rules r1 and r2 to configuration C from Exam-
ple 1.

which stops in the halting configuration Ch is the set of vectors of natural numbers
{PsT (w) | w is an agent present in Ch}.

Because of the non-determinism in applying the rules, several possible asyn-
computations of Π may exist. Taking the union of all the results for all possible asyn-
computations of Π, we get the set of vectors generated by Π, denoted by Psasyn

T (Π).
We may also consider the total number of objects comprising the agent (the

agent’s magnitude), without considering the internal composition. In this case the
result of an asyn-computation is the set of natural numbers, one number for each
agent w present in the halting configuration and each number being the length of
w. More formally, in this case the result of an asyn-computation that stops in the
halting configuration Ch is then the set of numbers {|w| | w is an agent present in
Ch}. Again, taking the union of all the results for all possible asyn-computations of
Π, we get the set of numbers generated by Π, denoted by Nasyn(Π).

In what follows we indicate by CΠ the initial configuration of Π.

Example 1 A CSA with degree 3 is defined by the following.
Π = (A, T,C,R) with A = {a, b, c}, T = {a}, C = {(abcba, 1), (abbcc, 1), (bab, 1)}

= {abcba, abbcc, bab}.
The rules R = {r1 : abca→ ba, r2 : 〈abc, cc〉 → 〈aa, cb〉}.
The application of an occurrence of internal rule r1 to the agent abcba in the

configuration C is shown diagrammatically in Figure 1(a).
The application of an occurrence of the synchronization rule r2 to the pair of

agents abcba and abbcc in the configuration C is shown diagrammatically in Fig-
ure 1(b).

A more complex example of part of an asynchronous evolution is presented in
Figure 2(a): Π′ = (A′, T ′, C ′, R′) with the initial configuration C ′ = {(ac, 2), (a, 1)}
and rules R′ = {ac→ aa, a→ b, 〈aa, aa〉 → 〈ab, ab〉, 〈ab, d〉 → 〈bb, d〉, b→ d}.

In the next Example we show how the output/result produced by a CSA is obtained.

Colonies of synchronizing agents

41

Example 2 Consider a CSA Π = (A, T,C,R) with A = {a, b, c, d, e, f}, T = {e, f},
C = {(ab, 1), (bc, 1), (bd, 1), (a, 1)}.

The rules in R are {r1 : 〈ab, bc〉 → 〈eff, eff〉, r2 : 〈ab, bd〉 → 〈eff, eff〉}.

(a) Asynchronous evolutions of Π′ of (b) The two possible asynchronous
Example 1 computations of Π of Example 2

Figure 2: Asynchronous evolutions and computations.

There are only two possible asynchronous computations of Π and these are rep-
resented diagrammatically in Figure 2(b).

We have that Psasyn
T (Π) = {(1, 2), 0}.

In fact, we have two possible halting configurations (for the two computations).
In the first halting configuration we have the agent (in two copies) eff whose as-
sociated Parikh vector (with respect to T) is (1, 2) and the agents bd and a, whose
associated Parikh vectors (with respect to T) are null vectors 0 (these agents do not
contain any terminal object from T). Then the result of this computation is the set
of vectors {(1, 2)} ∪ {(1, 2)} ∪ {0} ∪ {0} = {(1, 2), 0} with each vector describing the
multiplicities of the terminal objects in the agents in the halting configuration.

In the second halting configuration we have the agent (in two copies) eff whose
associated Parikh vector (with respect to T) is (1, 2) and the agents bc and a, whose
associated Parikh vectors (with respect to T) are null vectors. Then, also in this
case, the result of the computation is the set of vectors {(1, 2), 0}

Taking the union of the results for the (two) possible computations we get
Psasyn

T (Π) = {(1, 2), 0} ∪ {(1, 2), 0} = {(1, 2), 0}.
We can also collect the result in terms of magnitude (size) of the agents present

in the halting configurations, thus collecting Nasyn(Π). In this case we obtain

M. Cavaliere, R. Mardare, S. Sedwards

42

Nasyn(Π) = {3, 2, 1}. In fact, in the two halting configurations we have agents
of size 3, 2 and 1 (counting their objects). Then for both computations the result is
the set of numbers {3, 3, 2, 1} = {3, 2, 1} with each number being the magnitude of
an agent in the halting configuration.

Taking the union of the results for the (two) possible computations we obtain
Nasyn(Π) = {3, 2, 1} ∪ {3, 2, 1} = {3, 2, 1}.

4 Dynamic Properties of CSAs

The goal of this Section is to investigate dynamic properties of CSAs, in particular
robustness and safety on synchronization. We try to individuate classes of CSAs
where such properties can be checked with algorithms and for this we employ tools
from formal language theory and from temporal logic. Because of lack of space
we omit the proofs, however complete proofs of all the results can be found in the
technical report [5].

4.1 Robustness of CSAs

Before investigating robustness of CSAs we state the result that CSAs are equivalent
(in terms of Parikh images) to matrix grammars without a.c. (hence to partially
blind counter machines, [9]).

In particular, for an arbitrary CSA, Π = (A, T,C,R), there exists a matrix gram-
mar without a.c., G, with terminal alphabet T , such that Psasyn

T (Π) = PsT (L(G)),
and vice-versa. Matrices can indeed simulate the application of the rules of the CSA
because the rules are applied in an asynchronous manner. On the other hand, a
CSA with a single agent can simulate a matrix grammar. The detailed proof of the
result can be found in [5] (Theorem 8).

Theorem 3 For an arbitrary CSA, Π, with terminal alphabet T , there exists a
matrix grammar without a.c., G, with terminal alphabet T such that Psasyn

T (Π) =
PsT (L(G)) and vice versa.

We are now ready to define and to investigate robustness of CSAs against pertur-
bations of some of the features of the colony. For this purpose we use a similar idea
of robustness as employed in [12] in the framework of grammar systems, adapted
here to the proposed CSAs. We want to investigate situations where either some
of the agents (i.e., cells) or some of the rules (i.e., intra or intercellular actions) of
the colony do not function. We would like to know the consequences to the result
of the colony. We will investigate CSAs that are robust, e.g. where the produced
result does not change critically if one or more agents cease to exist in the colony or
if one or more rules stop working. As discussed in the Motivations, this can model
the fact that CSAs always stop in a “correct steady state”, independently of agents
or rules failure.

We can formalize these notions in the following way.
Let Π = (A, T,C,R) be an arbitrary CSA.

Colonies of synchronizing agents

43

We say that Π′ is an agent-restriction of Π if Π′ = (A, T,C ′, R) with C ′ ⊆ C. Π′

is a CSA where some of the agents originally present in Π no longer work, i.e., as
though they are absent from the colony.

We consider a rule-restriction of Π obtained by removing some or possibly all of
the rules. Then, Π′ = (A, T,C,R′) is a rule-restriction of Π if R′ ⊆ R. In this case
some of the rules do not work, as if, once again, they are absent from the colony.

We say that a CSA, Π, is robust when a core result, i.e., the minimally acceptable
result, is preserved when considering proper restrictions of it. Formally, by a core
result of Π we mean part of the result produced by Π, hence a subset of the set of
vectors generated by Π. We define these subsets by making an intersection with
a regular set of vectors taken from PsREG. The intersection selects the regular
property of the core result we are interested in. Note that the core result may be
infinite.

Questions about robustness can then be formalized as follows.
Consider an arbitrary CSA, Π, an arbitrary agent- or rule - restriction Π′ of

Π and an arbitrary set S from PsREG. Is it possible to check whether or not
Psasyn(Π) ∩ S ⊆ Psasyn(Π′), i.e., whether Π is robust against the restriction Π′ in
the sense that Π′ will continue to generate at least the core result defined by the
intersection of Psasyn(Π) and S)?

Example 4 We produce a small example that clarifies the introduced notion of
robustness in the case of agent-restriction, considering as core result specific contents
of the agents (the other cases are similar).

Consider Π given in Example 2. Suppose we fix as core result the set of vectors
{(1, 2)}, where it can be clearly obtained by intersection of Psasyn

T (Π) and {(1, 2)}.
Π is robust when an occurrence of agent bc is deleted from its initial configuration.
In fact, if we consider Π′ = (A, T,C ′, R) with C ′ = {(ab, 1), (bd, 1), (a, 1)} we have
that Psasyn

T (Π′) = {(1, 2), 0}, which still contains the defined core result. The single
computation of Π′ is represented in Figure 3(a).

(a) Π′: agent bc removed from C (b) Π′′: agent ab removed from C

Figure 3: The robustness and lack of robustness of (a) Π′ and (b) Π′′ from Example
4 when agents bc and ab, respectively, are removed from C.

M. Cavaliere, R. Mardare, S. Sedwards

44

On the other hand, Π is not robust when an occurrence of ab is deleted from
its initial configuration. In fact, if we consider Π′′ = (A, T,C ′′, R) with C ′′ =
{(bd, 1), (bc, 1), (a, 1)} we have that Psasyn

T (Π′′) = {0}, which does not contain the
core result. The single computation of Π′′, i.e., the one halting in the initial config-
uration (no rule can be applied), is represented in Figure 3(b).

We now analyse the case of agent-restrictions, producing a negative result.

Theorem 5 It is undecidable whether or not for an arbitrary CSA, Π, with arbitrary
terminal alphabet T , arbitrary agent restriction Π′ of Π and arbitrary set S from
PsREGT , Psasyn

T (Π) ∩ S ⊆ Psasyn
T (Π′).

The proof of the above Theorem is based on Theorem 3 and that, given two arbitrary
matrix grammars without a.c. M and M ′, it is undecidable whether or not L(M) ⊆
L(M ′) (see, e.g., [6], [8] and [9]).

Informally, Theorem 5 says that there is no algorithm to check whether or not
a CSA is robust against arbitrary deletion of agents from the initial configuration.
This result depends critically on the fact that the core result corresponds to a specific
internal contents that the agents must have in the halting configurations. In fact,
when we consider weaker core results we can get a positive result. For instance,
suppose we take as core result a specific magnitude that the agents must have in the
halting configurations. This means that we collect, for a CSA Π the set of numbers
Nasyn(Π). In this case the robustness problem can be rephrased in the following
manner.

Consider an arbitrary CSA, Π, with an arbitrary agent- or rule-restriction Π′

of Π and an arbitrary set S from NREG. Is it possible to decide whether or not
Nasyn(Π) ∩ S ⊆ Nasyn(Π′), i.e., whether Π is robust against the restriction Π′

such that Π′ can still generate at least the core result defined by the intersection
Nasyn(Π) ∩ S? Based on the fact that every language over a one letter alphabet
produced by a matrix grammar without a.c. is regular (see [6]), on the equality of
Theorem 3 we obtain the following corollary.

Corollary 1 For an arbitrary CSA, Π, there exists a regular language L such that
Nasyn(Π) = NL and vice versa.

Because containment of regular languages is algorithmically decidable (see, e.g.,
[10]), we obtain the following result.

Theorem 6 It is decidable whether or not, for an arbitrary CSA, Π, arbitrary agent
restriction Π′ of Π and arbitrary set S from NREG, Nasyn(Π) ∩ S ⊆ Nasyn(Π′).

Informally, the above result says that it is possible to check in an efficient way
whether or not a CSA is robust against arbitrary deletion of agents, subject to the
core result being defined in terms of magnitudes of agents.

We can also investigate the case when rule-restrictions are considered and we
obtain similar results. With a similar idea to that of Theorem 5, we obtain the
following negative result.

Colonies of synchronizing agents

45

Theorem 7 It is undecidable whether or not, for an arbitrary CSA, Π, with arbi-
trary terminal alphabet T , arbitrary rule restriction Π′ of Π and arbitrary set S from
PsREGT , Psasyn

T (Π) ∩ S ⊆ Psasyn
T (Π′).

However, using the same ideas as those in Theorem 6 we get a positive result.

Theorem 8 It is decidable whether or not, for an arbitrary CSA, Π, arbitrary rule
restriction Π′ of Π and arbitrary set S from NREG, N(Π) ∩ S ⊆ N(Π′).

Note, however, that even if robustness against rule absence is in many cases unde-
cidable, it is still possible to decide whether a rule (internal or synchronization) is
used or not by a CSA. So, if a rule is not used we can remove it and the colony will
be robust against such deletion.

Theorem 9 It is decidable whether or not, for an arbitrary CSA, Π =
(A,C, T,R), and an arbitrary rule r from R, there exists at least one asynchronous
computation for Π containing at least one configuration obtained by applying at least
one occurrence of rule r.

The proof is based on the result stated by Theorem 3 and on the fact that member-
ship and emptiness for matrix grammars without a.c. can be algorithmically decided
([6]). The idea of the proof is to reduce the problem to decide if the language pro-
duced by a matrix grammar without a.c. is the empty one.

4.2 A computational tree logic for CSAs

In this section we continue the investigation of the dynamic properties of CSAs and
for this purpose we introduce a computational tree logic (CTL temporal logic) to
formally specify, verify and model-check properties of CSAs. An introduction to the
basic notions and results of temporal logics can be found in [1, 18].

Temporal logics are the most used logics in model-checking analysis: efficient al-
gorithms and tools having already been developed for them, e.g. NuSMV [20]. They
are devised with operators for expressing and quantifying on possible evolutions or
configurations of systems. For instance, for an arbitrary system it is possible to
specify properties such as ‘for any possible evolution, φ is fulfilled’, ‘there exists an
evolution such that φ is not true’, ‘in the next state φ will be satisfied’, ‘eventually
φ will be satisfied’ and ‘φ happens until ψ is satisfied’, with φ and ψ properties of
the system. We show how to use these operators to formally specify and verify com-
plex properties of CSAs, such as ‘the agent will always eventually reach a certain
configuration’, or ‘rule r is not applicable until rule r′ is used’, etc.

In what follows we denote by CSAA,T,R
m the class of all CSAs having the alphabet

A, terminal alphabet T , set of rules R over A and degree m.

Definition 4.1 (Preconditions) Let A be an arbitrary alphabet and R an arbi-
trary set of rules over A. We define the mapping prec : R→ 2M(A) by

• if r ∈ R is the evolution rule u→ v then prec(r) = {u}.

M. Cavaliere, R. Mardare, S. Sedwards

46

• if r ∈ R is a synchronization rule 〈u, v〉 → 〈u′, v′〉 then prec(r) = {u} ∪ {v}.
We define prec(R) =

⋃
r∈R prec(r).

We now extend the definition of asyn-evolutions for a given CSA by introducing the
notion of asyn-complete evolution defined for arbitrary classes of CSAs.

In what follows, let C = CSAA,T,R
m be a class of all the CSAs having alphabet A,

terminal alphabet T , set of rules R over A, degree m, with A, T , R and m arbitrarily
chosen.

Definition 4.2 (asyn-complete evolutions) A sequence of CSAs 〈Π0,Π1, Π2,
. . . ,Πi, . . .〉 with Πi = (A, T,Ci, R) ∈ C, i ≥ 0, is called asyn-complete evolu-
tion in C starting in Π0 if 〈C0, C1, C2, . . . Ci, . . .〉, i ≥ 0, is a halting or an infinite
asyn-evolution of Π0.

We denote by Easyn
C (Π0) the set of all asyn-complete evolutions in C starting at

Π0.
Let e = 〈Π0,Π1, . . . ,Πi,Πi+1 . . .〉 be an arbitrary asyn-complete evolution in C

starting in Π0. We call 〈Πi,Πi+1, . . .〉, i ≥ 0, an i-suffix evolution4 of e and we
denote it by ei.

Definition 4.3 (Syntax of LC) The set AP (C) is defined by:

• > ∈ AP (C).

• prec(R) ⊆ AP (C).

• if w1, w2, . . . , wi ∈ prec(R) ∪ {>}, i ≤ m, then w1 ⊕ . . .⊕ wi ∈ AP (C).

We call the elements of AP (C) atomic formulas of the logic LC.
We define the configuration formulas of LC and the evolution formulas of LC in the
following way.

• any atomic formula of LC is a configuration formula of LC.

• if φ, ψ are configuration formulas of LC then ¬φ and φ ∧ ψ are configuration
formulas of LC.

• if φ is an evolution formula of LC then Eφ is a configuration formula of LC.

• if φ, ψ are configuration formulas of LC then Xφ and φUψ are evolution for-
mulas of LC.

The configuration formulas and evolution formulas of LC form the language of LC.

The meanings of >,¬,∧ are those from classical logic and we consider the derived
operators for implication ⇒ and disjunction ∨ defined as in classical propositional
logic. In addition, we have the temporal operators: Eφ that expresses an existential
quantification on evolutions, Xφ which means “at the next configuration φ is sat-
isfied” and φUψ which means “φ is satisfied until ψ is satisfied”. In what follows,
the properties we can express by using these operators are checked for some models
called temporal structures.

4Observe that for an arbitrary asyn-complete evolution e in C, for each i ≥ 0, ei is also a
asyn-complete evolution in C.

Colonies of synchronizing agents

47

Definition 4.4 (Temporal structures) We define the structure T asyn
C = (S,R)

as follows:

• S ⊆ C, such that if Π0 ∈ S then {Π1,Π2, . . . | 〈Π0,Π1,Π2, . . .〉 ∈ Easyn
C (Π0)} ⊆

S.

• R ⊆ S × S, such that (Π1,Π2) ∈ R iff there exists 〈Π1,Π2, . . .〉 ∈ Easyn
C (Π1).

We call T asyn
C a temporal structure in C.

Definition 4.5 (CSA-Semantics) Let T asyn
C = (S,R) be a temporal structure

in C. For an arbitrary Π ∈ S, an arbitrary e ∈ Easyn
C (Π) and an arbitrary for-

mula φ from the language of LC, we define coinductively the satisfiability relations
T asyn
C ,Π |= φ and T asyn

C , e |= φ by:
T asyn
C ,Π |= > always.
T asyn
C ,Π |= w for w ∈ prec(R) iff CΠ = {(w′, 1)} and w ⊆ w′.
T asyn
C ,Π |= w1 ⊕ w2 ⊕ . . . ⊕ wi for wj ∈ prec(R) ∪ {>}, 1 ≤ j ≤ i iff CΠ =

C1 + C2 + . . . + Ci s.t. for any wj 6= >, 1 ≤ j ≤ i, Cj = {(wj + uj , 1)} for some
uj ∈ M(A).

T asyn
C ,Π |= φ ∧ ψ iff T asyn

C ,Π |= φ and T asyn
C ,Π |= ψ.

T asyn
C ,Π |= ¬φ iff T asyn

C ,Π 6|= φ.
T asyn
C ,Π |= Eφ iff there exists e ∈ Easyn

C (Π) such that T asyn
C , e |= φ.

T asyn
C , e |= φUψ iff there exists i ≥ 0 such that T asyn

C , ei |= ψ and for all j ≤ i
T asyn
C , ej |= φ.
T asyn
C , e |= Xφ iff T asyn

C , e1 |= φ.

Definition 4.6 (Validity and satisfiability) A configuration formula φ (evolu-
tion formula φ) from LC is valid iff for every temporal structure T asyn

C = (S,R) in
C and any Π ∈ S (any e ∈ Easyn

C (Π), resp.) we have T asyn
C ,Π |= φ (T asyn

C , e |= φ,
resp.). A configuration formula φ (evolution formula φ) is satisfiable iff there exists
a temporal structure T asyn

C = (S,R) and a Π ∈ S (an e ∈ Easyn
C (Π), resp.) such

that T asyn
C ,Π |= φ (T asyn

C , e |= φ, resp.).

Definition 4.7 (Derived formulas) We define the following derived formulas for
LC.

Aφ = ¬E¬φ.
Fφ = >Uφ.
Gφ = ¬F¬φ.

The semantics of the derived formulas are the following.

T asyn
C ,Π |= Aφ iff for any e ∈ Easyn

C (Π) we have T asyn
C , e |= φ.

T asyn
C , e |= Fφ iff there exists i ≥ 0 such that T asyn

C , ei |= φ.

T asyn
C , e |= Gφ iff for any i ≥ 0 we have T asyn

C , ei |= φ.

Aφ is a universal quantification on evolutions. Fφ means “eventually φ is sat-
isfied” (i.e., Fφ is satisfied by an evolution that contains at least one configuration
that has the property φ). Gφ means “globally φ is satisfied” (i.e., Gφ is satisfied by
an evolution that contains only configurations satisfying φ).

M. Cavaliere, R. Mardare, S. Sedwards

48

Theorem 10 (Decidability) The satisfiability, validity and model-checking prob-
lems for LC against the CSA-semantics are decidable.

Proof. The result derives from the fact that CTL logic is decidable (see, e.g., [18, 1])
and from the fact that AP (C), the set of atomic formulas, is a finite set. �

To show the potential of the introduced logic we give a small example of properties
that can be specified. We pose the question whether or not during any evolution
the agents can always synchronize when they are ready to do so.

In other words, given an arbitrary CSA, Π, and an arbitrary rule r : 〈u, v〉 →
〈u′, v′〉, we would like to check whether or not it is true that, whenever during an
evolution of Π, a configuration with an agent w1, where u ⊆ w1, is reached, then in
the same configuration there is also an agent w2 with v ⊆ w2 (so rule r can actually
be applied). If this is true we say that Π is safe on synchronization of rule r.

This property can be expressed in the proposed temporal logic by the following
formula.

AG((u⊕>) ⇒ (u⊕ v ⊕>)).

Taking a CSA, Π0, from C. If we consider the introduced CSA-semantics we have
that:

T asyn
C ,Π0 |= AG((u⊕>) ⇒ (u⊕ v ⊕>))

iff for any e ∈ Easyn
C (Π0) we have T asyn

C , e |= G((u⊕>) ⇒ (u⊕ v ⊕>))
iff for any e = 〈Π0,Π1, . . . ,Πi, . . .〉 ∈ Easyn

C (Π0) and any i ≥ 0 we have
T asyn
C ,Πi |= (u⊕>) ⇒ (u⊕ v ⊕>).

This means that if any configuration present in a asyn-evolution of Π0 satisfies u⊕>
then it will also satisfy u⊕ v ⊕>.

In fact, we know that T asyn
C ,Πi |= u⊕> iff CΠi = C1 + C2, C1, C2 ∈ M(M(A))

and C1 = {(u+u′, 1)}, i.e., the configuration of Πi contains an agent w that contains
u.

Similarly, T asyn
C ,Πi |= u⊕ v ⊕> iff CΠi = C ′

1 +C ′
2 +C ′

3, C
′
1, C

′
2, C

′
3 ∈ M(M(A))

and C ′
1 = {(u+ u′′, 1)}, C ′

2 = {(v+ v′, 1)}, i.e., the configuration of Πi contains two
agents w1 and w2 such that u ⊆ w1 and v ⊆ w2, which precisely indicates that Π0

is safe on synchronization of rule r : 〈u, v〉 → 〈u′, v′〉.

5 Prospects

In this paper we have defined a basic model of Colonies of Synchronizing Agents,
however several enhancements to this are already in prospect. Primary among these
is the addition of space to the colony. Precisely, each agent will have a triple of
co-ordinates corresponding to its position in Euclidean space and the rules will be
similarly endowed with the ability to modify an agent’s position. A further extension
of this idea is to give each agent an orientation, i.e. a rotation relative to the spatial
axes, which may also be modified by the application of rules.

Colonies of synchronizing agents

49

The idea is to make the application of a rule dependent on either an absolute
position (thus directly simulating a chemical gradient) or on the relative distance
between agents in the case of synchronization. Moreover, in the case of the applica-
tion of a synchronization rule, the ensuing translation and rotation of the two agents
may be defined relative to each other. In this way it will be possible to simulate
reaction-diffusion effects, movement and local environments.

Some additional biologically-inspired primitives are also planned, such as agent
division (one agent becomes two) and agent death (deletion from the colony). These
primitives can simulate, for example, the effects of mitosis, apoptosis and morpho-
genesis. In combination with the existing primitives, it will be possible (and is
planned) to model, for example, many aspects of the complex multi-scale behaviour
of the immune system.

With the addition of the features just mentioned, it will also be interesting to
extend the investigation and proofs given above to identify further classes of CSAs
demonstrating robustness and having decidable properties. It is hoped that this
approach will then provide insight in challenging areas of systems biology.

References

[1] M. Ben-Ari, A. Pnueli, Z. Manna. The Temporal Logic of Branching Time. Acta
Inf., 20, 1983.

[2] F. Bernardini, R. Brijder, G. Rozenberg, C. Zandron. Multiset-Based Self-
Assembly of Graphs. Fundamenta Informaticae, 75, 2007.

[3] F. Bernardini, M. Gheorghe. Population P Systems. Journal of Universal Com-
puter Science, 10(5), 2004.

[4] C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, editors. Multiset Processing:
Mathematical, Computer Science, and Molecular Computing Point of View,
LNCS 2235, Springer-Verlag, 2001.

[5] M. Cavaliere, R. Mardare, S. Sedwards. Colonies of Synchronizing Agents. Tech-
nical Report CoSBi 11/2007. Available at www.cosbi.eu/Rpty Tech.php

[6] J. Dassow, Gh. Păun. Regulated Rewriting in Formal Language Theory.
Springer-Verlag, Berlin, 1989.

[7] A. Ilachinski. Cellular Automata - A Discrete Universe. World Scientific Pub-
lishing, 2001.

[8] R. Freund, Gh. Păun, O.H. Ibarra, H.-C.Yen. Matrix Languages, Register Ma-
chines, Vector Addition Systems. In Proc. Third Brainstorming on Membrane
Computing. RGCN Report 01/2005, Sevilla, 2005. Available at www.gcn.us.es

[9] S. Greibach. Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science, 7(3), 1978.

M. Cavaliere, R. Mardare, S. Sedwards

50

[10] J.E. Hopcroft, J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[11] J. Kelemen, A. Kelemenová, Gh. Păun. Preview of P Colonies - A Biochemically
Inspired Computing Model. Proceedings of Workshop on Artificial Chemistry,
ALIFE9, Boston, USA, 2004.

[12] J. Kelemen, Gh. Păun. Robustness of Decentralized Knowledge Systems: A
Grammar-Theoretic Point of View. Journal Expt. Theor. Artificial Intelligence,
12, 2000.

[13] C. Mart́ın-Vide, Gh. Păun, J. Pazos, A. Rodŕıguez-Patón. Tissue P Systems.
Theoretical Computer Science, 296(2), 2003.

[14] J. Mata, M. Cohn. Cellular Automata-Based Modelling Program: Synthetic
Immune Systems. Immunol Rev, 207, 2007.

[15] Gh. Păun. Membrane Computing - An Introduction. Springer-Verlag, Berlin,
2002.

[16] Gh. Păun. Introduction to Membrane Computing. In G. Ciobanu, Gh. Păun,
M.J. Pérez-Jiménez, editors, Applications of Membrane Computing. Springer-
Verlag, Berlin, 2006.

[17] G. Rozenberg, A. Salomaa, editors. Handbook of Formal Languages. Springer-
Verlag, Berlin, 1997.

[18] J. Van Benthem. Temporal logic. In Handbook of Logic in Artificial Intelligence
and Logic Programming: Epistemic and Temporal reasoning. Oxford University
Press, 1995.

[19] S. Wolfram. A New Kind of Science. Wolfram Media, 2002.

[20] http://nusmv.irst.itc.it/

[21] http://psystems.disco.unimib.it

Colonies of synchronizing agents

51

