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Abstract

Watson-Crick finite automata were first proposed in [2] inspired by formal
language theory, finite states machines and some ingredients from DNA compu-
ting such as working with molecules as double stranded complementary strings.
Here, we define different kinds of local testability in this model. Mainly, we will
explore local testability in the upper (lower) strand and in the double strand.

1 Introduction

Watson-Crick finite automata (WKFA) [2] is a good example of how DNA biological
properties can be adapted to propose computation models in the framework of DNA
computing. A recent survey on WKFA has been published in [1]. The WKFA model
works with double strings inspired by double-stranded molecules with a complemen-
tary relation between symbols (here, inspired by classical complementary relation
between nucleotides A-T and C-G). Different restriction over the model have been
proposed, mainly devoted to restrict the number of final states (i.e., all final and
stateless WKFA) and the way of processing the upper and lower string (i.e., 1-limited
and simple WKFA). Here we propose a different characterization of the model based
on a classical concept of formal language theory such as local testability.

Local testable languages were first defined by McNaughton and Papert [5]. These
languages have been widely studied in the framework of learning systems (i.e., [3,
10]), DNA and protein analysis (i.e., [12, 13]) and formal languages and semigroups
(i.e., [6]), among others.

Here, we will introduce local testability in different ways. First, we will introduce
a representation theorem for languages accepted by WKFA, which allows us to
study WKFA through linear and even linear languages. Then, we will study two
possibilities of defining local testability: in the upper (lower) strand and in the
double strand. Finally, we will give some guidelines for future works.
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2 Basic Concepts and Notation

In this section we will introduce basic concepts from formal language theory accord-
ing to [4, 8] and from DNA computing according to [7].

Formal language theory

An alphabet Σ is a finite nonempty set of elements named symbols. A string defined
over Σ is a finite ordered sequence of symbols from Σ. The infinite set of all the
strings defined over Σ will be denoted by Σ∗. Given a string x ∈ Σ∗ we will denote
its length by |x|. The empty string will be denoted by λ and Σ+ will denote Σ∗−{λ}.
Given a string x we will denote by xr the reversal string of x. A language L defined
over Σ is a set of strings from Σ. Finally, Σ≤k will denote the set of strings with
length less than or equals to k and Σk will denote the set of strings with length
equals to k.

A grammar is a construct G = (N,Σ, P, S) where N and Σ are the alphabets of
auxiliary and terminal symbols with N ∩Σ = ∅, S ∈ N is the axiom of the grammar
and P is a finite set of productions in the form α → β. The language of the grammar
is denoted by L(G) and it is the set of terminal strings that can be obtained from S
by applying symbol substitutions according to P . Formally, w1 ⇒

G
w2 if w1 = uαv,

w2 = uβv and α → β ∈ P . We will denote by
∗
⇒
G

the reflexive and transitive closure

of ⇒
G

.

We will say that a grammar G = (N,Σ, P, S) is right linear (regular) if every
production in P is in the form A → uB or A → w with A,B ∈ N and u,w ∈ Σ∗.
The class of languages generated by right linear grammars coincides with the class
of regular languages and will be denoted by REG. We will say that a grammar
G = (N,Σ, P, S) is linear if every production in P is in the form A → uBv or
A → w with A,B ∈ N and u, v,w ∈ Σ∗. The class of languages generated by linear
grammars will be denoted by LIN . We will say that a grammar G = (N,Σ, P, S)
is even linear if every production in P is in the form A → uBv or A → w with
A,B ∈ N , u, v,w ∈ Σ∗ and |u| = |v|. The class of languages generated by even linear
grammars will be denoted by ELIN . A well known result from formal language
theory is the inclusions REG ⊂ ELIN ⊂ LIN .

A homomorphism h is defined as a mapping h : Σ → Γ∗ where Σ and Γ are
alphabets. We can extend the definition of homomorphisms over strings as h(λ) = λ
and h(ax) = h(a)h(x) with a ∈ Σ and x ∈ Σ∗. Finally, the homomorphism over a
language L ⊆ Σ∗ is defined as h(L) = {h(x) : x ∈ L}.

Local testability

Here, we will introduce the definition of local testability and local testability in the
strict sense. For any string x ∈ Σ∗ and any integer value k > 0, the testability
vector vk(x) is defined by the tuple (ik(x), tk(x), fk(x)) where

ik(x) =

{

x, if |x| < k
u : x = uv, |u| = k − 1 if |x| ≥ k
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fk(x) =

{

x, if |x| < k
v : x = uv, |v| = k − 1 if |x| ≥ k

tk(x) = {v : x = uvw, u,w ∈ Σ∗ ∧ |v| = k}.

We will define the equivalence relation ≡k in Σ∗×Σ∗ as x ≡k y iff vk(x) = vk(y).
It has been proved in [5] that ≡k is a finite index relation and that ≡k covers ≡k+1.

So, we will say that any language L is k-testable iff it is defined as the union
of some equivalence classes of ≡k. In addition, L is local testable iff it is k-testable
for any integer value k > 0. The family of k-testable languages will be denoted by
k − LT while LT will denote the class of testable languages.

A different kind of testability is the so called testability in the strict sense which
was again proposed in [5]. Here, for any alphabet Σ we will take the sets Ik, Fk ⊆
Σ≤k−1 and Tk ⊆ Σk. Then, a language L is said to be k-testable in the strict sense
if the following equation holds

L ∩ Σk−1Σ∗ = (IkΣ
∗) ∩ (Σ∗Fk)− (Σ∗TkΣ

∗).

Observe that, according to the last equation, any word in L with length greater
than or equals to k− 1 begins with a segment in Ik, ends with a segment in Fk and
has no segment from Tk. Any language L is locally testable in the strict sense iff it
is k-testable in the strict sense for any k > 0. The family of k-testable languages in
the strict sense will be denoted by k − LT SS while LT SS will denote the class of
testable languages in the strict sense.

It has been proved that k−LT is the boolean closure of k−LT SS [14]. Finally,
it can be easily proved that both classes k − LT and k − LT SS are subclasses of
REG.

Watson-Crick finite automata

Given an alphabet Σ = {a1, · · · , an}, we will use the symmetric (and injective)
relation of complementarity ρ ⊆ Σ × Σ. For any string x ∈ Σ∗, we will denote by
ρ(x) the string obtained by substituting the symbol a in x by the symbol b such
that (a, b) ∈ ρ (remember that ρ is injective) with ρ(λ) = λ.

Given an alphabet Σ, a sticker over Σ will be the pair (x, y) such that x = x1vx2,

y = y1wy2 with x, y ∈ Σ∗ and ρ(v) = w. The sticker (x, y) will be denoted by

(

x
y

)

.

A sticker

(

x
y

)

will be a complete and complementary molecule if |x| = |y| and

ρ(x) = y. A complementary and complete molecule

(

x
y

)

will be denoted as

[

x
y

]

.

Obviously, any sticker

(

x
y

)

or molecule

[

x
y

]

can be represented by x#yr where

# /∈ Σ. Here, we will use x#yr instead of x#y due to the grammar construction
that we will propose in the following. Furthermore, inspired by DNA structure x#yr

represents the upper and lower nucleotide strings within the same direction 3′ − 5′

(or 5′ − 3′).
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Formally, an arbitrary WK finite automaton is defined by the tuple M = (V, ρ,Q,
s0, F, δ), where Q and V are disjoint alphabets (states and symbols), ρ is a symmetric
(and injective) relation of complementarity between symbols of V , s0 is the initial

state, F ⊆ Q is a set of final states and δ : Q×

(

V ∗

V ∗

)

→ P(Q) (which denotes the

power set of Q, that is the set of all possible subsets of Q).

The language of complete and complementary molecules accepted by M will be
denoted by the set Lm(M), while the upper strand language accepted by M will be
denoted by Lu(M) and defined as the set of strings x such that M , after analyzing

the molecule

[

x
y

]

enters into a final state.

A Representation Theorem

Now, given any WKFA M , we will introduce a representation theorem for the lan-

guages Lm(M) and Lu(M). First, observe that any double string

(

x
y

)

can be

represented by the string x#yr. Then, the following result holds.

Theorem 1 (Sempere, [11]) Let M = (V, ρ,Q, s0, F, δ) be an arbitrary WK finite
automaton. Then there exists a linear language L1 and an even linear language L2

such that Lm(M) = L1 ∩ L2.

The construction for L1 and L2 proposed in the theorem is defined as follows. First,
the grammar G1 = (N,V, P, s0) where N = Q, s0 is the axiom of the grammar and
P is defined as

• If q ∈ F then q → # ∈ P .

• If p ∈ δ(q,

(

x1

x2

)

) then q → x1 p xr
2 ∈ P .

The language L2 is defined by the grammar G2 = ({S}, V, P, S) where P is defined
as follows

• S → # ∈ P .

• For every pair of symbols a, b ∈ V , such that (a, b) ∈ ρ, S → aSb ∈ P .

It can be easily proved that L(G2) = {x1#xr
2 ∈ V ∗ : |x1| = |x2| and ρ(x1) = x2}.

That is, L2 can be established as the set of complete and complementary molecules
[

x1

x2

]

in the form x1#xr
2.

From L1 and L2 it is clear that L1∩L2 is the set of complete and complementary
molecules accepted by M in the form x#yr.

In order to characterize the upper strand language we will provide the following
result.
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Corollary 1 (Sempere, [11]) Let M = (V, ρ,Q, s0, F, δ) be an arbitrary WK finite
automaton. Then Lu(M) can be expressed as g(h−1(L1 ∩ L2) ∩ R) with L1 being
a linear language, L2 an even linear language, R a regular language and g and h
homomorphisms.

3 Local Testability in Watson-Crick Finite Automata

In this section, we will introduce local testability in the upper or lower strand, and
in the double strand of the WKFA model. Given that the languages accepted by
arbitrary WKFA can be represented by linear and even linear languages, we will
introduce two reductions from these language classes to the class REG.

The first transformation, the so called σ operator, was first introduced in [9] and
it was applied for the definition of local testable even linear languages in [10]. It is
defined inductively as follows: σ : Σ∗ → (Σ × Σ)∗(Σ ∪ {λ}) with

1. σ(λ) = λ,

2. (∀a ∈ Σ) σ(a) = a,

3. (∀a, b ∈ Σ) (∀x ∈ Σ∗) σ(axb) = [ab]σ(x).

The operation σ is applied over languages as σ(L) = {σ(x) : x ∈ L}.
The inverse transformation σ−1 can be easily deduced from σ. It has been proved

that for every even linear language L, σ(L) is regular [9].
The second transformation is a grammatical construction that transforms every

linear grammar into an even linear one. It is defined as follows.
Let G1 = (N,Σ, P, S) be a linear grammar. Then G2 = (N,Σ ∪ {∗}, P ′, S) is an

even linear grammar where the productions of P ′ are defined as follows.

• If A → w ∈ P then A → w ∈ P ′.

• If A → uBv ∈ P with |u| = |v|, then A → uBv ∈ P ′.

• If A → uBv ∈ P with |u| < |v|, then A → u ∗|v|−|u| Bv ∈ P ′.

• If A → uBv ∈ P with |u| > |v|, then A → uBv∗|u|−|v| ∈ P ′.

The last grammar is an even linear one and it can be easily proved that
g(L(G2)) = L(G1) where g is a morphism such that g(∗) = λ and g(a) = a for
every a ∈ Σ.

Local testability in the double strand

We will take the representation proposed in theorem 2.1. So, any molecule

[

x
y

]

can

be represented by x#yr. Let us take G1 as the linear grammar proposed in the
theorem and let us take G2 as the transformed even linear grammar corresponding
to G1. Obviously, for any string x#yr of L(G1) we obtain a string u#v in L(G2)
such that g(u)#g(v) = x#yr, where g is the morphism defined before.
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Now, we can work with G2 and we apply the transformation σ over L(G2).
Observe that σ(L(G2)) is regular.

Example 1 Let M = (V, ρ,Q, s0, F, δ) be the WKFA defined by the following tran-
sitions

δ(q0,

(

a
λ

)

) = {qa}, δ(qa,

(

a
λ

)

) = {qa}, δ(qa,

(

b
a

)

) = {qb},

δ(qb,

(

b
a

)

) = {qb}, δ(qb,

(

c
b

)

) = {qc}, δ(qc,

(

c
b

)

) = {qc},

δ(qc,

(

λ
c

)

) = {qf}, δ(qf ,

(

λ
c

)

) = {qf}.

Let us take qf as the final state, q0 as the initial stated and the complementarity
relation ρ = {(a, a), (b, b), (c, c)}. Then, every complete and complementary molecule

accepted by M takes the form

[

anbncn

anbncn

]

with n ≥ 1.

Now, the representation linear grammar GM , according to M is defined by the
following productions (take q0 as the axiom)

q0 → aqa, qa → aqa | bqba,
qb → bqba | cqcb, qc → cqcb | qdc,
qd → qdc | #.

The corresponding even linear grammar is the following

q0 → aqa∗, qa → aqa∗ | bqba,
qb → bqba | cqcb, qc → cqcb | ∗qdc,
qd → ∗qdc | #.

Finally, we can provide the following right linear grammar to obtain the trans-
formation σ over the last grammar

q0 → [a∗]qa, qa → [a∗]qa | [ba]qb,
qb → [ba]qb | [cb]qc, qc → [cb]qc | [∗c]qd,
qd → [∗c]qd | #.

Observe that the last grammar generates the language defined as L =
{[a∗]n[ba]m[cb]p[∗c]q# : n,m, p, q ≥ 1}. Then, if we take the morphism g with
g(∗) = λ and g(d) = d for every d ∈ {a, b, c,#} we can obtain g(σ−1(L)) =
{anbmcp#cqbpam : n,m, p, q ≥ 1} which, together with the complementary relation
ρ, corresponds to the language accepted by M .

So, the definition of local testability (in the strict sense) will be applied over the
regular language obtained by the result σ(L(GM )) for any WKFA M . Observe that
every transformed language in k−LT (k−LT SS) has a corresponding local testable
language defined by the transitions of the WKFA.
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Local testability in the upper and lower strand

Now, we will deal only with the upper (lower) strand. Observe that, the definition of
the WKFA transitions can be transformed into FA transitions by taking the upper

or lower strand (i.e., the transition p ∈ δ(q,

(

x
y

)

) implies that pu ∈ δu(q, x) and

pl ∈ δl(q, y)). So, for every WKFA we can obtain two different finite automata
which control the transitions in the upper and lower strands. Here, we will work
with simple WKFA [7]. We will say that a WKFA is simple if for every transition

δ(q,

(

x
y

)

) x = λ or y = λ. It has been proved that simple WKFA are normal forms

for arbitrary WKFA. That is, for every arbitrary WKFA there exists an equivalent
simple WKFA. Furthermore, we can work with the so called 1limitedWKFA which
are simple WKFA where every transition is performed by analyzing only one symbol
every time.

Now, we will obtain finite automata from arbitrary 1limited WKFA through the
following construction. Let M = (V, ρ,Q, s, F, δ) be an arbitrary 1limitedWKFA.
Then, we can define the finite automaton Au = (Q,V, δu, s, F ), where δu is defined
as follows

1. p ∈ δu(q, a) if and only if p ∈ δ(q,

(

a
λ

)

),

2. p ∈ δu(q, λ) if and only if p ∈ δ(q,

(

λ
a

)

.

We can define the finite automaton Al = (Q,V, δl, s, F ) where δl is defined as
follows

1. p ∈ δl(q, a) if and only if p ∈ δ(q,

(

λ
a

)

),

2. p ∈ δl(q, λ) if and only if p ∈ δ(q,

(

a
λ

)

).

Example 2 Let us take the WKFA of example 3.1. Then Au is defined through the
following transitions

δu(q0, a) = {qa}, δu(qa, a) = {qa}, δu(qa, b) = {qbb},
δu(qbb, λ) = {qb}, δu(qb, b) = {qbbb}, δu(qbbb, λ) = {qb},
δu(qb, c) = {qcc}, δu(qcc, λ) = {qc}, δu(qc, c) = {qccc},
δu(qccc, λ) = {qc}, δu(qc, λ) = {qf}.

In the previous definitions, the states qbb, qbbb, qcc and qccc have been introduced
in order to obtain an equivalent 1limitedWKFA from the one proposed initially. In
this case L(Au) = a+b+c+. The same holds for L(Al).

Observe that, in both automata Au and Al, the empty transitions correspond to the
case that the WKFA is working in the other strand, so the finite automata ignores
all the movements in that way.
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Now, the first definitions for local testability come from a natural way of looking
up to the FA Au and Al. We will say that a 1limitedWKFA is upper (lower) locally
testable (in the strict sense) if the language accepted by Au (resp. Al) is locally
testable (in the strict sense). Observe that this definition implies the existence of
different classes of languages accepted by WKFA which have local testability. These
classes are defined as follows

• the class k−LT u of languages accepted by 1limitedWKFA which have k-local
testability in the upper strand,

• the class k − LT SSu of languages accepted by 1limitedWKFA which have
k-local testability in the strict sense in the upper strand,

• the class k−LT l of languages accepted by 1limitedWKFA which have k-local
testability in the lower strand,

• the class k − LT SSu of languages accepted by 1limitedWKFA which have
k-local testability in the strict sense in the lower strand.

We can make a step further the definition of a new kind of local testability
in every strand by introducing a combination of testability classes considered up
to now in an isolated way. Let us take the finite automata Al and Au proposed
before. Observe that every state in the previous automata defines an equivalence
class according to ≡k defined in section 2. Now, remember that the relation ≡k−1

covers ≡k. So, if L(Al) is in j −LT , then L(Al) belongs to k −LT for every j ≤ k.
The same holds for Au. So, we can combine different equivalence classes in the upper
and the lower strand and they define new classes (k, j)−LT of languages accepted
by 1limitedWKFA which have k-local testability in the upper strand and j-local
testability in the lower strand, and the class (k, j)−LT SS of languages accepted by
1limitedWKFA which have k-local testability in the strict sense in the upper strand
and j-local testability in the strict sense in the lower strand.

4 Conclusions and Future Work

We have presented different ways of introducing local testability in WKFA. The
new definitions come from a previous representation result. The new classes inherit
the properties of local languages defined in a classical way. Anyway, there exist
different relations which should be explored between the language classes defined in
the double strand and in every strand separately. In addition, the relation between
the language classes defined for upper and lower strand simultaneously should be
explored too.

Furthermore, the relation between languages accepted by locally testable WKFA
and arbitrary languages should be explored in order to test the power of local testa-
bility in these models. These issues will be investigated in future works.
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