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Abstract

Peptide computer is a formal model for peptide computing. It involve reactions
between various multiset of symbols and sequences. We study three kinds of non-
determinism in peptide computer – global, locally-global and local. We show
that (local) locally-global is a restrictive version of (locally-global) global. We
also characterize conditions for a (locally-global) global system to be a system
which is not (local) locally-global system.

1 Introduction

Peptide computing introduced by H. Hug and R. Schuler [6], takes interaction be-
tween peptides and antibodies as the basic frame work for computing. A formal
model for this computing, called peptide computer, was proposed in [2]. This pa-
per continues that study with an investigation of various kinds of non-determinism
present in a peptide computer.

Peptide, a sequence of amino acids attached by covalent bonds called peptide
bonds, consists of recognition sites, called epitopes, for the antibodies. A peptide
can contain more than one epitope for the same or different antibodies. With each
antibody, which attaches to a specific epitope, a binding power is associated, called
its affinity. When antibodies compete for recognition sites – which may overlap in
the given peptide – then the antibodies with greater affinity have higher priority.
For further information regarding the bio-chemical processes themselves we refer
to, for example, [5]. Dynamic global computing models for the immune system are
presented in [7, 9].

Peptide computing refers to computational processes based on the elementary
operations such as binding of antibodies to peptide sequences and removal of anti-
bodies from peptide sequences.

In [6] it was shown how to solve the satisfiability problem using peptide comput-
ing and in the subsequent paper [3] it was shown to solve two further NP-complete
problems – Hamiltonian circuit and exact cover by 3-set . Moreover in [3], a simula-
tion of Turing machine by peptide computing is presented to show peptide computing
is computationally complete. Towards formalizing the peptide computing model in
a rigorous way a formal model called as peptide computer was proposed in [1, 2].
Peptide computer defines the notion of a step and it was also shown in [2] that it
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can be simulated by a Turing machine under some conditions. A survey on peptide
computing depicting the state-of-the-art at its time is presented in [4].

A peptide computer, informally, consists of some symbols and sequences and
the processing take place through reactions between symbols and sequences or be-
tween sequences. The presence of many symbols and sequences together with their
multiple occurrences (multiset) brings in non-determinism to the system. Hence non-
determinism can be studied in two ways: one, due to interactions between multiple
occurrence of a sequence or a symbol and the other one where non-determinism
happens when interactions occur between different sequences and different symbols.
Non-determinism is an essential one for unconventional computing like peptide com-
puting. Hence a study of non-determinism existing in a peptide computer would help
us to understand how processing take place.

Our paper is organized as follows: in the following section we give some prelimi-
nary on peptide computer and introduce the basic notations that are necessary for
the paper. In Section 3 we define three kinds of non-determinism in peptide com-
puter and in Section 4 we study some of the properties of non-determinism. The
paper concludes with some remarks in Section 5.

2 Preliminaries

For a set S, |S| denotes the cardinality of S. When S is a singleton set, S = {x} say,
we often omit the set brackets, that is, we write x instead of {x}. For sets S and T ,
consider a relation ̺ ⊆ S × T . Then ̺−1 is the relation ̺−1 = {(t, s) | (s, t) ∈ ̺}

and, for s ∈ S, ̺(s) = {t | (s, t) ∈ ̺}. We use the notation ̺ : S
◦
→ T to denote

a partial mapping of S into T . In that case dom ̺ is the subset of S on which ̺ is
defined. The notation ̺ : S → T means that ̺ is a total mapping of S into T , hence
dom ̺ = S in this case. In addition to the standard symbols for operations on sets,
we use the symbol ⊎ to denote disjoint union.

Let S be a non-empty set. A multiset on S is a pair M = (I, ι) where I is a
set, the index set, and ι is a mapping of I into S, the index mapping. A multiset
M is non-empty, if I is non-empty; it is finite if I is finite. For s ∈ S, the number
mult(s) = |{i | i ∈ I, ι(i) = s}| is the multiplicity of s. When I is countable, we write
M = {mi | i ∈ I} where mi = ι(i) is implied. With this notation, it is possible that
mi = mj while i 6= j for i, j ∈ I. We use the standard symbols for set theoretic
operations also for multisets. However, on multisets, union is disjoint union and
both intersection and difference take multiplicities into account. Formally this can
be handled by appropriate operations on the index sets.

Multisets as defined above are also called families in the literature. The usual
definition of a multiset as a set {(s, mult(s)) | s ∈ S} of pairs is adequate only when
all multiplicities are finite.

By N and N0 we denote the sets of positive integers and of non-negative integers,
respectively. The set B = {0, 1} represents the set of Boolean values. For n ∈ N0,
the ordinal number n is represented by the set n = {i | i ∈ N0, i < n}. Thus, for
example, 0 = ∅, 1 = {0} and, in general, n = {0, 1, . . . , n − 1}. By R we denote the
set of real numbers, and R+ = {r | r ∈ R, r ≥ 0}.
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An alphabet is a non-empty set. Let X be an alphabet. Then X∗ is the set of all
words over X including the empty word λ, and X+ = X∗ \{λ}. For a word w ∈ X∗,
|w| is its length. Any word u ∈ X∗ with w ∈ uX∗ is a prefix of w; let Pref(w) be the
set of prefixes of w; the words in Pref+(w) = {u | u ∈ X+, w ∈ uX+} are the proper
prefixes of w. Similarly, a word u ∈ X∗ with w ∈ X∗uX∗ is an infix of w, Inf(w) is
the set of infixes of w and Inf+(w) = {u | u ∈ X+, u ∈ Inf(w), u 6= w} is the set of
proper infixes of w. A language over X is a subset of X∗. For a language L over X
and Y ∈ {Pref, Pref+, Inf, Inf+}, Y (L) =

⋃

w∈L Y (w).
Let L be a language over X and w ∈ X∗. An L-decomposition of w is a pair of

sequences (u0, u1, . . . , uk), (v0, v1, . . . , vk−1) of words in X∗ such that u0v0u1v1 · · ·
vk−1uk = w, v0, v1, . . . , vk−1 ∈ L and u0, u1, . . . , uk /∈ X∗LX∗. A language in X+

such that every word has a unique L-decomposition is called a solid code [8]. Consider
w ∈ X+ of length n, say w = x0x1 · · · xn−1 with xi ∈ X for i = 0, 1, . . . , n − 1. An
L-decomposition of w as above can be specified by a set of pairs {(il, jl) | l =
0, 1, . . . , k − 1} such that, for l = 0, 1, . . . , k − 1, vl = xilxil+1 · · · xjl

. Let ∂L(w) be
the set of L-decompositions when represented in this way. Let D(L) = {(w, d) | w ∈
X∗, d ∈ ∂L(w)} be the set of words together with all their L-decompositions.

Now we give a brief description of peptide computer presented in [2].

Definition 1 A peptide computer is a quintuple P = (X,E,A,α, β) where X is
a finite alphabet (to represent basic building units like molecules), E ⊆ X+ is a
language (to represent epitopes), A is a countable alphabet with A ∩ X∗ = ∅ (to
represent antibodies), α ⊆ E × A is a relation (such that a ∈ α(e) means that
antibody a can be attached to epitope e), β : E × A → R+ is a mapping such that
β(e, a) > 0 if and only if (e, a) ∈ α (denoting the affinity between epitope e and
antibody a).

Consider a word w ∈ X+ and d ∈ ∂E(w). An A-attachment is a partial mapping

τ : d
◦
→ A. Suppose w = x0x1 · · · xn and d = {(il, jl) | l = 0, 1, . . . , k − 1}. Then

τ defines a word wτ ∈ (X ∪ (E × A))∗ as follows: For all l = 0, 1, . . . , k − 1, if
(il, jl) ∈ dom τ replace e = xilxil+1 · · · xjl

by (e, τ(il, jl)) in w. Such a mapping τ is
legal if (e, τ(il, jl)) ∈ α for all l. When τ is legal then wτ ∈ (X∪α)∗ and τ is called an
A-attachment to w. For a language L ⊆ X+, let T (L) be the set of A-attachments
to words in L. Conversely, a word z ∈ (X ∪ α)∗ defines a word w ∈ X∗ and a set
of A-attachments τ , such that wτ = z. Note that w is uniquely defined, but that τ
may apply to several d ∈ ∂Ew.

Consider a word z ∈ (X ∪ α)+ and a symbol a ∈ A. Let w and τ be such
that wτ = z. Moreover, let w = x0x1 · · · xn with x0, x1, . . . , xn ∈ X. Consider any
d ∈ ∂Ew with dom τ ⊆ d and any d′ ∈ ∂Ew. For (i, j) ∈ d′ let ei,j = xixi+1 · · · xj.
We say that a dominates (i, j) in z when the following condition is satisfied: For all
(i′, j′) ∈ d such that {i′, i′ + 1, . . . , j′} ∩ {i, i + 1, . . . , j} 6= ∅ and (i′, j′) ∈ dom τ ,

β(ei,j , a) > β(xi′xi′+1 · · · xj′ , τ(i′, j′)).

In such a case, all pairs (i′, j′) ∈ d with {i′, i′ + 1, . . . , j′} ∩ {i, i + 1, . . . , j} 6= ∅
are said to be affected. If a dominates (i, j) in z, the following basic reaction will
happen forming a multiset R(z, a): For each affected pair (i′, j′), a copy of τ(i′j′) is
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put into R(z, a); let Y ⊆ dom τ be the set of pairs which are not affected and let

d′′ ∈ ∂Ew be such that Y ∪ (i, j) ⊆ d′′. Define the A-attachment τ̄ : d′′
◦
→ A by

τ̄(p) = τ(p) for p ∈ Y and τ̄ (i, j) = a. Put a copy of wτ̄ into R(z, a). The multiset
R(z, a) is the result of a basic reaction between z and a. If a is binding with z and
some symbols are released from z when R(z, a) is formed then we denote the set of
released symbols by Out(z, a). If nothing is released when a binds then Out(z, a)
will be {λ}.

We also need to consider basic reactions between words z, z′ ∈ (x∪α)+, where z
and z′ need not be different. Again we want to define the resulting multiset R(z, z′).

We use w, d and τ as above. Now z′ = w′

τ ′ where τ ′ : d′
◦
→ A for some d′ ∈ ∂Ew′.

Consider (i′, j′) ∈ dom τ ′ and let a = τ ′(i′j′). Moreover, let e′i′,j′ be the infix of w′

which starts at i′ and ends at j′. Suppose a dominates (i, j) in z for some (i, j) ∈
d̄ ∈ ∂Ew and β(ei,j , a) > β(e′i′,j′ , a), then the reaction is as follows.

Since the basic reactions between two words z and z′ are with respect to a, we
represent these by Ra(z, z′). They take place in two steps:

1. The reaction SepRa(z, z′) produces a multiset containing z, z′′ and a, where
z′′ is defined as follows: let τ ′′ be the restriction of τ ′ to dom τ ′ \ (i′j′); then
z′′ = w′

τ ′′ .

2. Next is the reaction leading to R(z, a).

As before Out(z1, z2) denotes the set of symbols released from z1 when a binds
with z1. When z and z′ are the same occurrence of a word then SepRa(z, z′) consists
only of z′′ and a.

The basic reactions resulting in R(z, a) and Ra(z, z′) take place only when there
is instability. Instability between z and a occurs when a dominates (i, j) ∈ ∂Ew
where z = wτ . Likewise instability between two words z and z′ occurs when there is
a symbol a = τ ′(i′, j′) where (i′, j′) ∈ dom τ ′ and τ ′ : d′

◦
→ A for some d′ ∈ ∂E(w′).

A basic reaction can trigger a sequence of reactions; this might even lead to a
cycle which in turn will not result in a stable configuration. In the sequel we refer
to R(z, a) and Ra(z1, z2) as the results of a basic reaction or as multisets, whichever
is more appropriate in the context.

Definition 2 Let P be a peptide computer. A peptide configuration is a finite mul-
tiset of words in (X ∪ α)+ ∪A.

To a peptide configuration P a basic reaction may apply when instability exists in the
configuration, that is, there may be z, z′ ∈ (X ∪α)+ or a ∈ A which occur in P such
that R(z, a) differs from the multiset consisting of z and a or R(z, z′) differs from the
multiset consisting of z and z′. In either case a basic reaction non-deterministically
removes (z, a) or (z, z′) from P and adds R(z, a) or R(z, z′), respectively. Let R(P )
be the set of peptide configurations which result from P through one basic reaction.
For n ∈ N0, let Rn be the n-fold iteration of R.

Definition 3 A peptide configuration P is said to be stable if R(P ) = {P}.

Non-determinism in peptide computer
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If Rn(P ) consists of stable configurations only, for some n, define R∗(P ) = Rn(P )
for this n. Otherwise, R∗(P ) = ∅. Let Γ be the class of stable peptide configurations.

To define peptide computations, we also need the following objects:

Definition 4 A peptide instruction has the form +P or −P where P is a peptide
configuration.

When P ′ is a peptide configuration and I is a peptide instruction then

I(P ′) =

{

P ′ ∪ P, if I = +P ,
P ′ \ P, if I = −P ,

with union and difference taken as multiset operations.

The instruction −P is called a flushing instruction if P = P ′ ∩ A; hence in this
case all the symbols in A which are not binding to any sequence in X+ are removed
from the configuration.

Definition 5 A peptide program is a pair (P, χ) where P is a mapping from Γ∗

into the set of peptide instructions and χ is a (halting) function χ : Γ → B.

Definition 6 Let P be a peptide computing model and let (P, χ) be a peptide pro-
gram for P. A peptide computation is a word c = c0c1 · · · ct ∈ Γ∗ with c0, c1, . . . , ct ∈
Γ such that

ci ∈ R∗(P(c0c1 · · · ci−1)(ci−1))

for i = 0, 1, . . . , ct.

A computation as above starts with c0 ∈ R∗(P(λ)) and ends when χ(ci) = 1 for
the first time.

To encode inputs we need a mapping γ from inputs to Γ, an input encoding; we also
need an output decoding, that is, a mapping δ from Γ to outputs.

Definition 7 A function f from inputs to outputs is peptide computable if there
is a peptide program P, a computable input encoding γ of inputs into P(λ) and
a computable decoding of Γ into outputs such that, for every x ∈ dom f , there is
a peptide computation c0c1 · · · ct with c0, c1, . . . , ct ∈ Γ and γ(x) = c0 satisfying
χ(ct) = 1 and δ(ct) = f(x).

3 Non-Determinism in Peptide Computer

As mentioned briefly in the introduction non-determinism comes into picture in
peptide computer in two ways. First one is, many-to-many interactions between
symbols and sequences and the other is, due to multiplicities of the sequences and
symbols. But when we look upon a multiset as a pair M = (I, ι) we can visualize
both the non-determinism as a single one since M can be virtually thought of as a
set but holding all the original properties of multiset. With this important note we
proceed to define non-determinism in peptide computer.
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We define non-determinism in peptide computer in three levels: global, locally-
global and local. We first describe all three of them very informally in the sequel.

Informally speaking there are two ways a non-determinism can occur in a peptide
computer: one, when there are more than one epitopes defined for a symbol and
two, when there are more than one symbols in competition to bind to their epitopes
which overlap with each other. The global definition is similar to the definition of
non-determinism in accepting devices like finite state automata, pushdown automata
and so on. It is defined in a more generic way on the system as a whole.

The other two local definitions are more interesting ones. Basically when reac-
tion take place we have a peptide configuration that contains all the sequences and
symbols participating in the reaction. The locally-global non-determinism is defined
by restricting the global definition of non-determinism to the sequences and the
symbols present in the configuration.

The third one is defined on the reactions taking place between symbols and
a sequence or between two sequences. As defined earlier, these reactions happen
only when there is an instability in the medium. When instability is present in the
medium and either of the following conditions are satisfied: there is a possibility of
more than one epitopes for a symbol to bind or there are more than one symbol that
can attach to an epitope, then we say that it is locally non-deterministic.

All the above definitions will be explained more in detail when we define them
formally.

It can be seen that the local definitions are more restrictive versions of the global
definition. We prove it formally in the next section. There can be many instances
that even though the definition might be non-deterministic globally it might not be
non-deterministic when reaction occurs. We will present under what conditions this
happens.

The reason behind defining non-determinism in three levels is explained in the se-
quel. The peptide computer is a generic system used to solve a set of problems. Hence
it can be defined as a non-deterministic or deterministic one. To solve a problem by
peptide computer we write a peptide program to work with the available sequences
and symbols. Even when the generic system is a non-deterministic one, when writing
a program for a problem there might not be a need for non-determinism. Hence we
have separated out the non-determinism as global and locally-global ones. Similarly
even when a program uses non-determinism when actual processing take place due to
the structure of the sequence and the binding properties of the symbols there might
not be any non-determinism present when reactions take place. These arguments
show that we have to separate non-determinism into three levels.

Before defining non-determinism formally, we define few technical terms which
we use in the paper later.

Definition 8 For a peptide configuration P we say a sequence z ∈ (X ∪ α)+ as a
participating sequence if z ∈ P . Likewise a symbol a is a participating symbol if
a ∈ P .

The set of all participating sequences is denoted by Pseq and the set of all partic-
ipating symbols is denoted by Psym. A participating sequence is denoted by pseq
and a participating symbol by psym.
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Definition 9 For a peptide configuration P , an epitope e ∈ E is said to be a par-
ticipating epitope if e ∈ Sub(w) where wτ = z is a pseq and τ is an arbitrary
A− attachment.

The set of all participating epitopes is denoted by Pepi. A participating epitope is
denoted by pepi.

We recall that only when the configuration attains stability the next peptide in-
struction is applied. When a peptide instruction is carried out by peptide computer,
the configuration becomes instable and reactions occur to attain stability. Now we
have the following definition:

Definition 10 The time period between applying a peptide instruction and attaining
stability is defined as the instability period. The series of reactions happening in the
instability period are collectively called as a step.

Definition 11 For a sequence x ∈ V + represented as x = x1x2 · · · xn where xi ∈ V ,
any epitope e in x is of the form xi · · · xj where i ≤ j ≤ n.

For any two epitopes e, e′ in x with e = xi · · · xj and e′ = yk · · · yl where i ≤ j ≤ n
and k ≤ l ≤ n we say e and e′ overlap when either i ≤ k ≤ j or k ≤ i ≤ l.

Now we present formal definitions for three types of non-determinism in peptide
computer.

Definition 12 A peptide computer P = (X,E,A,α, β) is said to be globally non-
deterministic if either of the following conditions are satisfied:

• there exists a symbol a ∈ A and epitopes e1, e2, · · · , en, n ≥ 2 such that {(e1, a),
(e2, a), · · · , (en, a)} ⊆ α

• there are symbols a1, a2, · · · , am,m ≥ 2 and there exists epitopes e1, e2, · · · , ep,
p ≥ 1 such that

– each ej overlaps with each other ei where 1 ≤ i 6= j ≤ p, and

– for each ai there exists at least one j such that (ej , ai) ∈ α where 1 ≤ i ≤
m and 1 ≤ j ≤ p.

Definition 13 A peptide computer P = (X,E,A,α, β) is said to be locally-global
non-deterministic if either of the following conditions are true for all peptide config-
uration P :

• there exists a symbol a ∈ Psym and epitopes e1, e2, · · · , en, n ≥ 2, ei ∈ Pepi,
1 ≤ i ≤ n such that {(e1, a), (e2, a), · · · , (en, a)} ⊆ α

• there are symbols a1, a2, · · · , am,m ≥ 2, ai ∈ Psym, 1 ≤ i ≤ m and there exists
epitopes e1, e2, · · · , ep, p ≥ 1, ej ∈ Pepi, 1 ≤ j ≤ p such that

– each ej overlaps with each other ek where 1 ≤ j 6= k ≤ p, and

– for each ai there exists at least one l such that (el, ai) ∈ α where 1 ≤ l ≤ p
and 1 ≤ i ≤ m.
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Before defining locally non-deterministic we recall that a step in peptide computer
consists of a sequence of set of reactions R1(P ), R2(P ), · · · · · · where P is the con-
figuration of the peptide computer. At each i, Ri(P ) consists of reactions between
z and a and reactions between two sequences z1 and z2. Now we define local non-
determinism:

Definition 14 A step in peptide computer is said to be non-deterministic if there
exists a m ≥ 1 such that Rm(P ) satisfies either of the following conditions:

• if a ∈ Psym dominates more than one pair, say the set of pairs {(i1, j1), (i2, j2),
· · · , (in, jn)}

• if there are symbols a1, a2, · · · , am,m ≥ 2, ai ∈ Psym, 1 ≤ i ≤ m and there
exists epitopes e1, e2, · · · , ep, ei ∈ Pepi, 1 ≤ i ≤ p such that

– for each ai there exists at least one j such that (ej , ai) ∈ α and ai domi-
nates ej , and

– each ej overlaps with each other ei.

In all the three definitions presented above we note that there are two different views
of non-determinism – one, with respect to a symbol which can non-deterministically
bind to one of its epitopes and the other one with respect to epitopes, where non-
deterministically one of many symbols can bind to it. We note here that epitopes for
those symbols need not be the same epitope but a set of epitopes with the property
that epitopes overlap with each other.

Definition 15 A symbol a ∈ A is a non-deterministic symbol if | α(a) |> 1.

The set of all non-deterministic symbols in A is denoted by And. In the following
definitions we classify the set of epitopes as non-deterministic and deterministic
epitopes.

Definition 16 A set F ⊆ E is said to be overlapping set if every two epitopes
ei, ej ∈ F overlap.

By definition it should be obvious to note that every singleton set of E is an over-
lapping set. For any sequence x over V ∗ if any epitope in x is associated with the
overlapping set F then we denote it as xF .

Definition 17 An overlapping set F = {f1, f2, · · · , fm},m ≥ 1 is said to be a non-
deterministic epitope-set if there is a set A′ ⊆ A, say A′ = {a1, a2, · · · , an} where
n ≥ 2 such that for all ai ∈ A′ there is at least one j satisfying the condition that
(ej , ai) ∈ α.

The set of all non-deterministic epitope set is denoted by End. If End = {E1, E2, · · · ,
En} and F ⊆ E then we define EF

nd as the family of set {E1 ∩F,E2 ∩F, · · ·En ∩F}.

Definition 18 Let F be an overlapping set and e ∈ F . The weight of F is defined
as β(e, a) where (e, a) is a subsequence of xF .
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We note that the above definition is not ambiguous since all epitopes in F overlap
and so at any instance only one epitope will be bounded by a symbol. We denote
weight of F as w(F ).

Definition 19 Let e ∈ E. We say e is closed if any overlapping set F containing
e has a non-zero weight. If all overlapping sets containing E are zero weight then it
is said to be open.

Using the definitions closed and open we define a characteristic function χ :
E −→ {0, 1} with χ(e) = 0 if e is closed and χ(e) = 1 if e is open.

Definition 20 Let X = {x1, x2, · · · , xn}, n ≥ 1 be a set. We define tuple(X) as a n-
tuple (xi1 , xi2 , · · · , xin) where (i1, i2, · · · , in) is any permutation of the set {1, 2, · · · , n}.
We extend the definition of χ to tuples over any subset of E, say (e1, e2, · · · , ek), as
(χ(e1), χ(e2), · · · , χ(en)).

Definition 21 A peptide computer is said to be strictly globally non-deterministic
if it is globally non-deterministic but not locally-global non-deterministic. Likewise a
peptide computer is said to be strictly locally-global non-deterministic if it is locally-
global non-deterministic but not locally non-deterministic.

We use the following notations in our paper. The set of all peptide computer P is de-
noted by PC. The set of all peptide computers which are globally non-deterministic
is denoted by PCgnd. Likewise peptide computers which are locally-global non-
deterministic (locally non-deterministic) is denoted by PClgnd (PClgd).

4 Results on Non-Determinism

Theorem 1

1. PClgnd ⊆ PCgnd,

2. PClnd ⊆ PClgnd.

Proof. Let P ∈ PClgnd. We prove P is also a globally non-deterministic one. This
simply follows from definition. Since Psym ⊆ A and Pepi ⊆ E, it directly follows
that if condition (1) of Definition 13 is true then condition (1) of Definition 12 is
true, or if the condition (2) of Definition 13 is true then condition (2) of Definition 12
is true. This shows that P ∈ PCgnd.

Let P ′ ∈ PClnd. We will show that P ′ ∈ PClgnd. Our assumption implies that
either the condition (1) or condition (2) of Definition 14 is satisfied. If condition
(1) is true then a ∈ Psym dominates more than one pair, i.e., the set of pairs
{(i1, j1), (i2, j2), · · · (in, jn)} where n ≥ 2. By the definition of a symbol dominating
a sequence it implies that for the symbol a ∈ Psym, {(e1, a), (e2, a), · · · , (en, a)} ⊆ α
where if (ik, jk) is a pair from the sequence xk ∈ Pseq then ek = xk

ik
xk

ik+1 · · · x
k
jk

, 1 ≤
k ≤ n. This proves condition (1) of Definition 13 is true.

If condition (2) of Definition 14 is satisfied, then there are symbols a1, a2, · · · , am,
m ≥ 2, ai ∈ Psym, 1 ≤ i ≤ m and there exists epitopes e1, e2, · · · , ep, p ≥ 1, ei ∈
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Pepi, 1 ≤ i ≤ p such that for each ai there exists at least one j such that (ej , ai) ∈ α.
This shows condition (2) of Definition 13 is satisfied.

Hence in either case we have P ∈ PClgnd. �

Now we study some properties of peptide computer which will help us to exhibit the
conditions for a peptide computer to be strictly globally-non-deterministic. Similarly
we also examine under what conditions peptide computer is strictly locally-global
non-deterministic one.

Theorem 2 A peptide computer P is strictly globally non-deterministic if it satisfies
either of the following conditions: for all i,

• Pi contains no symbols from And and no epitopes from End.

• For all a ∈ And∩Piseq, | α
−1(a)∩Piepi |= 1, and for all E ∈ EPiepi

nd
, | α(E) |=

1.

Proof. If Pi contains no symbols from And and no epitopes from End then it is trivial
that P is strictly globally non-deterministic since no other symbols and epitopes will
contribute to non-determinism.

We assume that Pi contain symbols from And. Let a ∈ And ∩ Piseq. Suppose a
satisfies the condition | α−1(a)∩Piepi |= 1 then it signifies that there is exactly one
e ∈ Piepi such that (e, a) ∈ α. Hence the configuration Pi has only one epitope for
all non-deterministic symbols in the configuration. This implies the condition (1) is
not satisfied in the Definition 13.

If there is a non-deterministic epitope set E in the configuration Pi and satisfies
the condition | α(E) |= 1 then it shows that there is only one a ∈ Pisym such
that (e, a) ∈ α where e ∈ E. The possibility of more than one e is ruled out by our
first assumption that | α−1(a) ∩ Piepi |= 1. This shows that P is not locally-global
non-deterministic.

Hence P is strictly globally non-deterministic. �

Theorem 3 A peptide computer P is strictly locally-global non-deterministic if it
satisfies either of the following conditions: for all i,

• For all a ∈ And ∩ Piseq, if χ(tuple(α−1(a) ∩ Piepi) is a zero vector or an unit
vector.

• For all E ∈ EPi

nd, | α(E) |≤ 1 if w(E) = 0 and | α(E) |≥ 0 if w(E) = 1.

Proof. Let P be locally-global non-deterministic satisfying the above conditions we
will show that it is not locally non-deterministic. Since P is locally-global non-
deterministic either of the conditions in Definition 13 is true. Suppose the condition
(1) is true for the configuration Pi. Let a ∈ Pisym∩And. Then there exists epitopes
e1, e2, · · · , en, n ≥ 2 such that ej ∈ Piepi and (ej , a) ∈ α. Hence a has n choices
of epitopes to bind. But since we are looking for a locally deterministic one, these
choices should not exist when reaction take place, i.e., there should be at most one
choice for the symbol a. For this to happen except at most one epitope, say ei,
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a should not dominate any other epitope. This implies all epitopes ej(j 6= i) are
bounded by a symbol – if some of them are not bounded by symbols any one of
the epitope overlapping with it is bounded by a symbol. This implies that if we
consider (e1, e2, · · · , en) as an n-dimensional vector then χ((e1, e2, · · · , en)) is a unit
vector or zero vector. Hence if χ((e1, e2, · · · , en)) is a unit vector or zero vector for
all a ∈ Pisym ∩And, then condition (1) of Definition 14 is not satisfied.

Now suppose there is a non-deterministic epitope set E in the configuration.
Since we look for a peptide computer that is not locally deterministic there should
not be n(n ≥ 2) possibilities of symbols binding with epitopes in E. There are only
two choices for that: (1) w(E) > 0 and (2) w(E) = 0 and n = 1. If w(E) > 0
then there are no open epitopes and hence n can be arbitrary. In other case since
w(E) = 0 all epitopes in E are open. Hence there should be at most one symbol in
competition for an epitope in E.

The discussion shows that P is strictly locally-global non-deterministic. �

5 Conclusion

We defined three levels of non-determinism in peptide computer: global, locally-
global and local. We showed global is a more general definition, locally-global is a
restrictive version of global and local is further restrictive version of locally-global.
We also characterized conditions for a global system to not to be a locally-global
one and locally-global to not to be a local one.

The three levels of non-determinism defined in peptide computer is helpful in the
following way: once a (locally-global) global non-deterministic peptide computer is
given we can either select the system to be (locally) locally-global non-deterministic
or strictly (locally-global) globally-non-deterministic. More interesting question is
to study how dynamically under some contextual conditions the system can pick a
step to be a locally non-deterministic one or a locally deterministic one. This will
control the use of non-determinism to a greater extent.
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