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1. INTRODUCTION 

The paper introduces a methodology to define production 
trend classes and also the results to serve with a trend prognosis 
in a given manufacturing situation. 

The overview on production trend forecast methods in the 
next paragraph concludes that the identification and forecast of 
production trends are key issues on the shop-floor of 
manufacturing plants; moreover, many artificial intelligence 
techniques are applied in this field [1][2]. Trend types can be 
formulated to define a classification model for the prognosis; 
Control Chart Pattern (CCP) is the mostly used keyword for 
these classes [3], [4],  however the definition of the existence  or  

 
absence of a trend situation is not specified in the literature, so 
the current paper proposes a novel methodology for that issue 
described in Section 4. 

Section 3 gives an overview of the usually applied 
production databases and emphasizes the typical difficulty of 
their connections and integration. 

The integration of quality, manufacturing execution, alarm 
handling and machine log information and the availability of 
developed machine learning techniques allowed building up 
production trend identification learning models as reported in 
the fifths section. 

The sixth section describes the Markov process and time 
series analysis of the collected production data. 
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Conclusions on all the results, acknowledgement and 
referred literature close the paper. 

2. PRODUCTION TREND FORECAST METHODS 

Production forecasting has received significant attention in 
the last decades [5][6][7]. There are many approaches for trend 
identification and forecasting in time domain to ensure with the 
required level of production quantity and quality. This is one of 
the important assignments of the Industry 4.0, direction, too 
[8], that is mentioned in USA as Industrial Internet or in more 
general as Cyber-Physical Production Systems (CPPSs) [9][10]. 

El-Midany et al. used ANNs to recognize a set of sub-classes 
of multivariate abnormal patterns [11] in machining of a crank 
case as one of the main components of a compressor. They 
used a simulated and a real world data set as well; furthermore 
they can identify the responsible variable(s) on the occurrence 
of the abnormal pattern. Ranaee and Ebrahimzadeh used a 
hybrid intelligent method [3] to recognize whether a process 
runs in its planned mode or it has unnatural patterns. This 
method includes three modules: a feature extraction module, a 
multi-class SVM-based classifier module (MCSVM) and an 
optimization module using a genetic algorithm. They tested the 
algorithm on synthetically generated control charts. Control 
Chart Patterns (CCPs) with different levels of noise were 
analysed by Lavangnananda and Khamchai [4]. They 
implemented and compared three different classifiers: Decision 
Tree, ANN, and the Self-adjusting Association Rules Generator 
(SARG) for process CCPs that were generated by predefined 
equations of GARH (Generalized Autoregressive Conditional 
Heteroskedasticity) Model for X ̅ chart. Pelegrina et al. used 
different Blind Source Separation (BSS) methods in the task of 
unmixing concurrent control charts to achieve high 
classification rates [12]. Gutierrez and Pham presented a new 
scheme to generate training patterns for ML algorithms: 
Support Vector Machine (SVM) and Probabilistic Neural 
Network (PNN) [13]. Yang et al. proposed a hybrid approach 
that integrates extreme-point symmetric mode decomposition 
(ESMD) with extreme learning machine (ELM) to identify 
typical concurrent CCPs [14]. Motorcu and Güllü constructed 
X-R control charts for each production line on the data 
obtained from the shop-floor to provide high quality 
production by eliminating key problems: undesirable tolerance 
limits, poor surface finish or circularity of spheroidal cast iron 
parts during machining [15]. 

Huybrechts et al. applied standardization, trend modelling, 
and an autoregressive moving average (ARMA) model to 
determine short-term correlation between subsequent 
measurements. The out-of-control observations can be 
determined precisely with the Dijkstra model and cumulative 
sum chart of the corrected residuals between the measured and 
predicted values. Milk yield data from two Automatic Milking 
System (AMS) farms and one farm with a conventional milking 
system were used for the case study [16]. 

Köksal et al. in 2011 reviewed the quality management 
related applications of various data mining techniques in 
manufacturing industry published between 1997-2007 [1]. They 
grouped the quality related assignments into four groups: 
product/process quality description, predicting quality, 
classification of quality, and parameter optimization. They 
proved the increasing importance of such research and 
application techniques and their relevance in industry. Their 
analysis on the literature also indicated that data mining 

applications were mostly encountered in the metal, computer 
and electronic products manufacturing industries, and relatively 
less observed in plastics, glass, paper, food processing and 
chemical manufacturing industries. The importance of 
integrating production and quality data was highlighted in their 
paper, too. Applications involving classification of quality were 
not as many as those in the predicting quality category. 

Viharos and Monostori presented an approach, already in 
1997 [17] for optimization of process chains by artificial neural 
networks and genetic algorithms using quality control charts. It 
was shown that the control of “internal” parameters (temporal 
parameters along the production chain) is a necessity, by this 
way, early decisions can be made whether to continue the 
production of a given part or not. Also continuous optimization 
of the production system is possible using the proposed 
solution. 

Concerning the applied techniques, the most prevalent 
approaches are based on statistical methods, such as 
autoregression, moving average and their combinations: 
autoregressive integrated moving average model (ARIMA) [18] 
with use of linear regression analysis, quasi-linear autoregressive 
model [19] or Markov chain models (MCM) [20]. These 
methods based on historical production or time series data for 
modelling and prediction. 

Another approach has appeared with the evolution of 
artificial intelligence, such us modelling with artificial neural 
networks (ANN), support vector machines (SVM) or nearest 
neighbour approaches based on pattern sequence similarity [21]. 
There are several curve-fitting methods in this field for small 
sample data, such as genetic algorithms [22]. The use of 
artificial neural networks combined with statistical methods to 
compensate drawbacks of the separate approaches in trend 
forecasting leads to better classification and approximation 
results. 

A mixed, physical model integrating real process 
measurements was presented by R. Paggi et. al. for computing 
process uncertainties beyond their prognosis values [23]. 
Various physical modelling techniques, like finite element 
methods, analytical equations can represent the known 
dependencies. Francesco et. al. [24] used effective 
measurements derived from the conformity tests to improve 
the accuracy of the Remaining Useful Life (RUL) evaluation. 

3. MANUFACTURING ASSIGMENT & INFORMATION 
SOURCES 

Many different IT systems are running on the shop-floor, all 
of them have their main functionality they are supporting. In a 
business intelligence approach these data can be linked together 
to result more knowledge about the details of the production 
system. Without the appropriate linkage a significant part of 
this knowledge is hidden from the operators and the 
production engineers. Vogel-Heuser et al. reported that the 
appropriate integration of IT systems in production 
environment is still a challenge for the industry, since “on the 
software side, a typical problem is the consistency between 
interfaces of components both on the syntactical as well as 
semantic levels” [23], so, the continuous maintenance of 
overlapping information is a key question. Figure 1 shows the 
systems related to the published analysis, as a typical example of 
shop-floor IT environment. 

Physically, information is inherited from different sensors 
and controllers (PLCs and CNCs), measuring machines or 
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sometimes the operators; the figure represents the logical 
sources that are relevant in a business intelligence point of view: 
the machines, the operators and the workpieces. One of the 
main scopes of the paper is to collect and link all the 
information about individual workpieces, and to detect possible 
trends and relations in the production based on the 
measurement series of the workpieces. 

The quality control systems check the geometry and other 
features of the workpieces. Measuring machines process the 
products independently and the correlations among the 
measure sets of different machines are typically unknown. It is 
often simple to link the given measured data to the workpiece, 
e.g. using a serial code, the time of the measure. One of the 
main difficulties is the frequency of the measures, because in 
the most cases only every ‘nth’ are measured, according to a 
certain sampling frequency. 

The Manufacturing Execution System (MES, Product 
Tracking in Figure 1) logs all the operations and the production 
time of the individual workpieces. This is the main information 
source to link the manufacturing machines/operations to the 
individual workpieces. On the basic level the production 
monitoring system provides measurement information with the 
related timestamps about the status of the manufacturing 
machines and the possible reasons when they are not in 
production. Other reports are mainly created by the human 
operators (e.g. daily working reports, special test results).  
During ETL process, an important feature of a business 
intelligence system is to correct inconsistency among manually 
recorded data.  

The machine logs are typically not stored in the factory 
central IT systems and the data they have are deleted after a 
certain time period. On the other hand many machines have 
internal measuring systems, moreover, they store internally the 
measured data and e.g. the machining parameter corrections 
performed on the basis of these measurement. To solve this 
synchronization/mapping problem an algorithm was developed 
to find the best fitting delta time between the two independent 
time series provided by the two independent IT systems 
(machine logs and MES). 

The appropriately connected data set can be used as an 
integrated data source of the comprehensive shop-floor 
business intelligence system. 

4. PRODUCTION TREND DEFINITION 

The preliminary results of the shop-floor business 
intelligence applications allowed analysing/reporting special 

manufacturing related problems using connected data sets. The 
overview on production trend forecasting proved the 
importance of identifying and estimating the production trends 
already before the process is going outside the tolerance limits, 
e.g. to ensure the requested process capability and stability 
indexes. The review concluded and also the experiences are 
mirroring that it is far not an easy task to define and formulate 
production trends. A decision is needed about a time sequence 
(time series) of some measurement points whether they form a 
trend or not. Some aspects of this decision is e.g. what trend 
length is expected/required, what is the minimum and 
maximum value, what is the minimum frequency of the 
measurement points, in what direction the trend is going, what 
form it has (e.g. linear, exponential), where it starts, etc. Even 
so if a production process that can be described with equations, 
or by any other form of knowledge representation method, the 
answers for these questions are not easy, moreover it is also 
dependent on the engineering aspects of the given 
manufacturing assignment. In a majority of industrial cases: 
• the plant engineers do not have a fix definition what time 

sequence they consider as trend, 
• usually, there exists a hypotheses that there are trends in the 

processes, 
• many and various ideas arise how to use trend forecasts if 

they are recognized. 
Consequently, the identification and forecast of “any” trends 

have significant manufacturing potentials and benefits. The 
next illustration gives a novel methodology to automatically 
determine “What is a production trend?”. 

In the next analysis, a critical product feature (e.g. a measure) 
was selected that is manufactured in an operation step in the 
linear production line. It was assumed that the measurements at 
the end of line (EOL) show significant correlations of the 
circumstances of this operation. 

The prepared, linked database allowed working with the 
EOL values ordered by the machining sequence according to 
the time of the second operation; consequently, in general, with 
this approach it is possible to analyse an operation through the 
measured data collected at another operation. This is an 
important advantage of the presented approach, e.g. analyses 
based on varying, available data frequencies and measurement 
time points are possible. Four different time-window periods 
were selected for the examination but results of one, having the 
highest industrial relevance (according to the engineers’ 
opinions working in the analysed production plant) is presented 
in the paper.  

Figure 2 shows one example where the average and the 
deviation on a certain time-window of the individual 

 
Figure 1. Data sources on the shop-floor. 

 
Figure 2. Measurement points, averages (lines’ vertical positions) and 
deviation values (lines’ thickness) in the investigated data set. 
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measurements are also visualized. 
The figure shows also that sudden average jumps can be 

recognized in the given production process. Based on these 
visual investigations a systematic algorithm was defined to 
explore trends in the given data sets. Average values and also 
linear regression and average jumps were sought after. The 
average jumps were defined at a given time point of one 
workpiece machining as difference between the average of its 
previous values and the average of its following values for a 
certain time window. Average deviation on these time windows 
was also calculated. 

It was clear that the trend exploration is not possible during 
the time periods when the production is running with moderate 
speed, consequently, only those periods were accepted 
(presented and used) when the production (data) reached a 
certain, minimum frequency level. 

Figure 3 shows all the average jump levels up or down 
(vertical axis) and their calculated deviations (horizontal axis) in 
the analysed (long) production horizon. 

This representation (jumps in the averages versus 
distribution in the data) has motivated the definition of the 
trend cases. Trend means a special sequence of data in time and 
in the value domain together, otherwise no trend is given. 
Figure 4 shows typical production trends on the left side, while 
the same production data are shown on the right side, but with 

random mixing the time points of the same measured data (so 
no trend is given). 

This implication (Figure 4) leads to the approach taking the 
measured real production values that are pairs of values & time 
points from the shop-floor but the mixing of their time points 
(“fully”) randomly results such a measurement series that have 
the same distribution than the original production sequences 
but for sure all time domain trends are eliminated. The 
preparation of such a “trendless” dataset and its representation 
in the same method as in Figure 4, together with the original 
production dataset having trends formulates clearly those non-
overlapping zones where production trends are given (Figure 
5).  

The data points of the original production trend are on the 
left side of the figure, representing much lower distribution 
than the mixed, trendless data points on the right side, while the 
trend jumps are similar or slightly larger in the original 
production measurements. This experience indicates the 
existence of real trends since: 
• the trend “sizes” (jump levels, vertically) are slightly larger, 

moreover  
• the distribution of the related measurement values are 

significantly smaller (horizontally) than in case of the mixed 
dataset and 
the two areas are mainly separated with only slightly 

overlapping zones. 
 

A range could be specified between the two datasets, 
defining the border between trend and not trend situations 
(Figure 6). The experienced near to ellipsoidal characteristics of 
the trendless point zone implicated fitting an ellipsoid around 

these values (around the black values in Figure 6). Principal 
component analysis with e.g. 95 % confidence interval can be 

 
Figure 3. Jump level (vertical axis) and deviation (horizontal axis) values in 
the investigated data set. 

 
Figure 4. The same measured production/workpiece values (real case) with their identical distributions, having trends in the left and without any trend in the 
right (horizontal axis: time, vertical axis: production quality measure values). 

 
Figure 5. Data sets with trends (left size) and without trends (right side). 
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applied to determine an exact border between the two datasets 
(Figure 6). An interesting experience arose that the largest 
principal vector was almost parallel to the horizontal axis and 
almost crossing at the zero vertical value, but not exactly. The 
jump level is a statistical characteristic of the analysed 
production time series and the classical statistical deviation, too. 
However this differentiation of trend and not trend cases can 
be based on many other calculated statistical parameters, e.g. 
the 3rd or 4th momentum with the assumption that the point set 
of these two classes will be separated. It is a challenging topic of 
further research. 

Having an exact border between the trend and not trend 
cases allows defining a classification problem for trend 
identification (Figure 7). When the distribution values of the 
production points are horizontally above the middle point of 
the ellipsoid they are considered as no trend situations. 
Consequently, three classes can be formulated: 
• Trend up: production measures of the analysed workpieces 

in the considered interval form a trend up class through the 
points in Figure 7 above the zero vertical axis and 
horizontally less than the ellipsoid centre when they are 
outside the identified ellipsoid.  

• Trend down: these situations can be defined similarly to the 
trend up cases but the values are below the zero horizontal 
axis. 

• No trend: points inside the ellipsoid and also that have a 
distribution higher than the centre of the identified 
ellipsoid. 
Each point in Figure 7 represents a trend class and can be 

ordered to one individual workpiece, consequently, for each 
workpiece a trend class can be ordered representing the trend in 
its future. Consequently, it is a classification assignment where 
trend classes define the outputs while past values of many 
other, related measurements collected typically on the shop-
floor form the available input information. 

Naturally, the relationship between past production 
measurements and the trend classes is unknown, consequently, 
it is impossible to form a closed form, or any equation based 
model for this task. However given measurements at each 
workpiece (even with sampling) lead to the possibility to use 
any learning model based on available shop-floor data. The 
probably non-linear and clearly multidimensional relationship 
among input and output data indicated the application of an 
artificial neural network model for the formulated classification 
assignment [26], where the model is able to forecast the trend in 
form of trend class specification at each manufactured and 
measured workpiece. 

5. PRODUCTION TREND FORECAST RESULTS 

The previously defined trend class specification can be 
applied dynamically to the production data resulting in a large 
labelled dataset which can be used for model building and 
testing. 

The precision of the forecast model can be measured by the 
amount of data points correctly labelled by the model which 
can be expressed as a percentage of the whole dataset (Figure 
8). 

Figure 8 shows the classification results of the applied 
forecast model by measuring the percentage of data points 
falling into the nine possible recognition categories. As there 
are three real and three prognosis classes (F: trend up, L: trend 
down, N: no trend) the number of different model recognition 
evaluation cases is nine (real classes are formed from real 
measured values, prognosis classes are the neural model 
estimates). On the diagram the blue, middle columns show the 
amount of correct recognition and remaining, red columns 
show the incorrect recognitions. One can see that the ratio of 
correct trend classification is around 60-70 %. 

Figure 9 shows the trend sections on a small part of the 

 
Figure 8. Classification results: Target represents the real measurements 
while Output means the model classification decision. 

 
Figure 7. Identified fields and borders of trend classes (F: trend goes 
upwards, L: trend goes downwards, N: no trend is given). 

 
Figure 6. The exact border between trend and trendless production 
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whole year time series. The upper points are production 
measurements and its moving average while on the point series 
below the black (on the upper side) denotes the correctly 
diagnosed F (trend up) trends; blue (on the lower side) denotes 
the correctly diagnosed L (trend down) trends, red (mainly in 
the middle) denotes any form of misclassification and yellow 
indicates that no reliable forecast is available. It can be seen that 
the incorrectly diagnosed data points are concentrated in the 
middle, transition area e.g. when changing from upward trend 
to downward trend. It is natural in time series forecast; so, 
results are applicable in the given plant. Consequently, it is 
proven that the production trends can be recognized with fair 
accuracy with the proposed approach. 

As the classes are connected to the individual elements of a 
time series (manufactured workpieces) the recognition 
categories can be arranged in continuous trend sections (Figure 
9). 

6. CONCLUSIONS 

The paper presents a methodology to define production 
trend classes and also the results to serve with trend prognosis 
in a given manufacturing situation. The solution may be useful 
in batch or (customized) mass production environments 
because it continuously collects and analyses data from the 
shop-floor sensors and may be applicable to realize production 
control inside the tolerance limits to proactively avoid the 
production process going outside from the given upper and 
lower tolerance limits.  

The review of the production trend forecast methods 
concluded and also the experiences are mirroring that it is far 
not an easy task to define and formulate production trend 
classes. The developed solution for solving this issue collects 
shop-floor data and based on the concrete manufacturing 
values it is able to define three trend classes: i) trend goes up, ii) 
trend goes down and iii) no trend is given. This decision can be 
an automatized process, consequently, for this decision no 
prescriptions are needed from the plant engineers or shop-floor 
operators. However, the resulted classes can be modified by 
them when any hypothesis or experiences are given in this field. 

The described method for production trend prognosis 
considers past values from any related (e.g. physically previous) 
operations e.g. measurements, alarms, etc. Using historical data 

the applied artificial neural network model determines the 
prognosis at each produced workpiece. This model is built up 
also on shop-floor data of the process analysed, consequently, it 
is valid for that concrete process under the given, prompt 
situations. Furthermore, autoregressive and Markov process 
analysis highlighted the most relevant operations along the 
whole production line. 

The solution was developed and validated on real data 
collected on the shop-floor; the paper summarizes the validated 
application results of the proposed methodology, too. 
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