
Optimization of Timing Parameters for
Vision-Based Monitoring of Automated Production Lines

ZSOLT KEMÉNY, BALÁZS CSANÁD CSÁJI, ZSOLT JÁNOS VIHAROS
Computer and Automation Research Institute

Hungarian Academy of Sciences
H-1111 Budapest, Kende u. 13–17.

HUNGARY
{kemeny,csaji,zsolt.viharos}@sztaki.hu

Abstract: The key advantage of camera-based moni-
toring in automated production lines is its extended
functionality combined with reduced costs, owing
to the possibility of replacing several classical sen-
sors with one vision-based system. While appropri-
ate image processing parameters are, usually, easy
to find, the same cannot be said about timing pa-
rameters of the logical network which detects events
in the raw binary output of visual preprocessing.
The paper proposes a possible transformation of the
manual tuning problem to an optimization task, al-
lowing to find suitable timing parameters in an auto-
matic or semi-automatic way. Finally, solutions and
test results using Greedy Tabu Search are presented.

Key-Words: multisensor systems, image sensors,
logic design, production systems, process monitor-
ing, optimization methods

1. INTRODUCTION

Automated production lines have to run within defined
tolerance limits. To this end, appropriate control must
be thus applied to the processes, mostly in closed-loop
control to handle uncertainties and unpredictable dis-
turbances. The use of feedback necessitates sensors
whose introduction, however, is associated with higher
costs and higher setup time. This is why the justifi-
cation of applying a given sensor depends on the ra-
tio of the estimated gain or quality of control vs. the
costs and time demand of installation and use. Apply-
ing a cheaper sensor while providing the same relia-
bility can either i) decrease costs of control solutions
which require feedback anyway, or ii) allow the place-
ment of sensors (and, thus, possibly improve control
or surveillance) where this did not pay before. The
use of cameras to replace several sensors, for exam-
ple, would be in accordance with the aforementioned
goal, and its feasibility was successfully demonstrated

by the recently completed 6th Framework EU project
MultiSens (Cameras as Multifunctional Sensors for Au-
tomated Processes) [1].

Production systems and processes are usually super-
vised using process or product level signals, followed
by signal processing and decision-making modules [10,
8]. In contrast, the MultiSens vision system directly re-
places sensors feeding PLCs (programmable logic con-
trollers) with binary signals, aside from providing an
additional visual aid for setup and surveillance of the
given process. The range of possible approaches was
quickly narrowed down by the well-defined structure of
industrial environments and the finding that most of the
targeted applications reveal process complexity over an
entire sequence of images and not in a single snapshot.
This calls for simple but fast and robust, rather local,
image processing (referred to as VBLS, vision-based
logical sensors), as opposed to sophisticated feature
identification [11] or tracking [7], often in calibrated
images of a single camera or an entire network [3], gen-
eration and verification of image hypotheses [12], or
handling of global image properties [2], the latter pre-
vailing in quality check and not direct process control.

Since a one-to-one mapping is not always given for
“conventional” sensors and their vision-based counter-
parts, additional sequential logical processing is needed
to generate the binary outputs. For the cases examined,
the required logical network remained fairly simple, but
related event generation problems can also be addressed
on a more elaborate level in the complex event process-
ing (CEP) paradigm which is, as for manufacturing, fo-
cusing on higher levels of production [6]. CEP is con-
sidered one of several sub-domains of event stream pro-
cessing (ESP) [5], all of these dealing with extracting
and processing events under real-time conditions.

In our case, the processing tasks remain simple and the
number of sensor inputs is usually small. Therefore,
the logical structure for the processing network can be
usually found either immediately in an intuitive way, or

Zsolt
Szövegdoboz
Kemény, Zs.; Csáji, B. Cs.; Viharos, Zs.: Optimization of Timing Parameters for Vision-Based Monitoring of Automated Production Lines, International Journal of Factory Automation, Robotics and Soft Computing, ISSN 1828-6984, Vol. 4, Nr. 1, 2009, pp. 30-38.

relying on a set of basic design rules. While this means
that the first design phase is not too difficult, initial re-
sults highlighted the determination of correct timing pa-
rameters as a more demanding and crucial issue in set-
ting up the sequential evaluation apparatus. Since this
can be a potential problem for less experienced mainte-
nance staff as well, the timing problem calls for a tool
automatically finding the correct parameters or provid-
ing guidance for a manual setup.

2. PROBLEM STATEMENT

2.1 Vision-based feedback in MultiSens

As mentioned before, the goal of MultiSens was the re-
placement of one or more “conventional” sensors with
a single camera, providing the same binary signals for
the PLC controlling the process as the original sensors.
For this purpose, vision-based logical sensors (VBLS)
are applied, each of them processing the image proper-
ties within its own region of interest (ROI) and perform-
ing an adequate mathematical operation on this ROI to
compute a binary output. The VBLSs of a given evalu-
ation network are referred to as the VBLS level.
Next—if needed—the VBLS signals are processed by
compound logical sensors (CLS) which realize logical
functions (NOT, AND, OR etc.) and provide the op-
tion of temporal aggregation (TA), i. e., thresholded sta-
tistical filtering of a given time window. CLSs form
directed trees (with data flowing from the “leaves” to-
wards the “root”) and comprise the so-called CLS level.
The final layer declares a so-called scenario (SC),
where leading edges of the root CLSs in the CLS level
generate events which are checked against a timing ta-
ble describing when and with what accuracy the given
events should occur. The scenario is successfully com-
pleted if all prescribed events are detected and are in ac-
cordance with nominal occurrence times and tolerances.
All three levels working together form a complete
VBLS—CLS—SC graph (Fig. 1). To succeed in setting
up an adequate VBLS—CLS—SC network (i. e., which
recognizes a process within tolerance limits as success-
ful and discards every other case as a failure), following
steps should be completed:

1. Define the area to be observed, provide a suitable
camera, and set proper lighting conditions.

2. Select regions of interest (ROIs) in the picture of the
camera from which the same information can be ex-
tracted as from the sensors meant to be replaced.

3. Assign each ROI to a VBLS, select the mathematical
operation and adequate parameters for each.

4. Set up the logical structure of the CLS tree and the
events of the scenario.

Figure 1: Simple example of a VBLS—CLS—SC net-
work with a single event on the scenario level

5. Find the timing parameters for the TA operators and
the SC events, so that process classification of suc-
cess vs. failure is as required.

The first three tasks can be easily solved relying on
knowledge of the automated process, some image pro-
cessing practice and common sense. The fourth step
may already require specific experience but a collection
of design cases could still facilitate the setup. Lack of
practical skills may also cause problems in completing
the last step, as it is not always straightforward to find
the right timing parameters. The latter shortcoming led
to the formulation of the problem discussed in this pa-
per, namely, of the need of:

• a benchmarking method expressing the qualities of
the given timing configuration numerically, and

• an optimization method which can automatically
find the timing parameters best fit for the given pur-
pose (and using the aforementioned measure as an
objective function).

2.2 Properties of the timing problem

Naming conventions, basic assumptions. Before ex-
amining the timing behavior of the VBLS—CLS—SC
network, let us take a look at some fundamental defi-
nitions. As cameras deliver sequences of frames, these
can be taken as basic time units, obtaining a discrete-
time network. Here, some basic notations are intro-
duced that are used through the paper (see also Fig. 2):

Number of a given frame t
Current frame tNOW

Leading and trailing edges
· of a signal, resp. ts, te
· of a negated signal, resp. t′e, t′s
· of the ith input’s signal, resp. ts in i, te in i

· of an output signal, resp. ts out, te out

Number of last frame
(constant for a given sequence) . . . tLF

Also, it is assumed that all evaluation and event trigger-
ing activities are finished by the last frame of an image
sequence:

Figure 2: Leading and trailing edge definition of a sig-
nal (top), and its negation (bottom)

∀t : 0 ≤ t ≤ tLF (1)

Simple logical operators. Using the simplifying as-
sumption of a logical variable behaving bounce-free
over time (i. e., only the first leading edge and the last
trailing edge are taken into consideration), let us exam-
ine the timing-related properties of the logical operators
used in a VBLS—CLS—SC network. For logical AND
with n inputs, one obtains for the leading edge:

ts out = max
n

ts in n n = 1 . . . N , (2)
which can be rewritten to the following set of N in-
equalities:∧

n

ts out ≥ ts in n n = 1 . . . N , (3)

while for the trailing edge, one obtains
te out = min

n
te in n n = 1 . . . N (4)

∧
n

te out ≤ te in n n = 1 . . . N . (5)

A nonzero output is generated if all inputs overlap in at
least one frame (see also Fig. 3):

ts out < te out (6)

For logical OR, XOR, and negation, one would obtain
similar sets of equations and inequalities.
Temporal aggregation. Resembling a statistical low-
pass filter with a time delay, temporal aggregation (TA)
was introduced to allow i) time delay as required for the
processing network, ii) filling of short signal bounces,
and iii) issuing trigger signals for comparison with sce-
nario event specifications.
As shown in Fig. 4a, the TA operator looks back in
time, beginning with a lag of T1 frames and ending with
a lag of T2 frames, and counts the number of frames
within this observation window where the input is ac-
tive. Encountering Amin active frames or more, the cur-
rent output of the TA operator becomes active (referred
to, more generally, as “Level 1”), while going beyond
the next threshold Amax, “Level 2” is entered which, in
the current implementation of TA, means that the out-
put becomes false again. A reasonable choice of Amin

and Amax is suggested by:

0 ≤ Amin < T2 − T1 + 1 (7)

0 < Amax ≤ T2 − T1 + 1 (8)

Amin ≤ Amax, (9)

Figure 3: Timing diagram for logical AND with two
overlapping inputs

including the cases of the TA always being at least in
“Level 1”, and the TA never reaching “Level 2”.
Passing a signal through a TA element, the earliest
occurrence of “Level 1” and “Level 2” states (see also
Fig. 4b,c) are encountered at

ts out 1 ≥ ts in + T1 + Amin − 1, (10)

ts out 2 > ts in + T1 + Amax − 1. (11)

respectively, while leaving “Level 2” (i. e., re-entering
“Level 1”) and leaving “Level 1” occur, respectively, in
accordance with

te out 2 < te in + T2 −Amax, (12)

te out 1 ≤ te in + T2 −Amin. (13)

Cascading several TA operators introduces a series of
subsequent delays into the evaluation process whose
sum is subject to an upper limit tlim either given by
TLF , or some expected event of the scenario by which
all corresponding evaluation has to succeed:∑

i∈I

T2 i < tlim (14)

All inequalities of the form (14) must simultaneously
hold for all evaluation chains containing TA operators,
in addition to the following fundamental inequalities:

0 ≤ T1 i ≤ tLF ∀i (15)

0 ≤ T2 i ≤ tLF ∀i (16)

T1 i ≤ T2 i ∀i (17)

0 ≤ Amin i ≤ Amax i < T2 i − T1 i ∀i (18)

(TA operators assume that all VBLS outputs before
frame 0 are uniformly zero.)
Scenario evaluation. As already mentioned before, the
root of each CLS tree triggers an event, which is an el-
ement of a scenario. Triggering occurs when a leading
edge (either the first one, or all) occurs on the output of
the corresponding root CLS. A given SC event is con-
sidered successful if

|tSI i − TSI i| ≤ ∆TSI i, (19)

where tSI i is the frame where event i is triggered, TSI i

is where it should nominally occur, and ∆TSI i is the ra-
dius of a tolerance interval around TSI i. If the trigger-
ing of an event within this interval is a sufficient condi-
tion, the SC event is called relaxed, while in the neces-
sary case, it is a strict scenario event. For all prescribed

Figure 4: Properties of a TA operator: a) time window
parameters, b) leading edge behavior, and c) trailing
edge behavior.

SC events, the following fundamental inequalities must
hold:

0 ≤ TSI i ≤ tLF ∀i (20)

0 ≤ TSI i + ∆TSI i ≤ tLF ∀i (21)

0 ≤ TSI i −∆TSI i ≤ tLF ∀i (22)

2.3 Problem formulation

The original tasks—i) providing a benchmarking tool
for assistance of manual setup, and ii) elaborat-
ing a method for finding suitable timing parameters
automatically—can now be refined. It is assumed that
the aforementioned range of problems can be solved by
finding adequate objective functions and an optimiza-
tion method, resulting in the following steps to proceed:

1. Prepare the environment including camera settings,
ROIs etc., design and implement evaluation network,
set VBLS parameters (optionally SC events as well).

2. Take a number of video sequences of various runs of
the observed process, and label them whether they
are successful sequences or failures.

3. Find an objective function expressing how well the
VBLS—CLS—SC network can tell success from
failure with the given timing parameters. This will
directly deliver a benchmarking tool for manual
setup.

4. Find an optimization method which can deliver a set
of timing parameter settings (T1, T2, Amin, Amax

for all TA operators, and, optionally, TSI , ∆TSI for

scenario events) that allow the given VBLS—CLS—
SC network to identify successful process runs and
failures. This will deliver a tool for finding the cor-
rect timing parameters automatically.

3. SOLVING PARAMETER OPTIMIZATION

As mentioned before, the fundamental working as-
sumption of the paper is that it is possible to set the
timing parameters of the VBLS—CLS—SC network
by optimization. A closer examination revealed that
it is most convenient if the video sequences were pre-
recorded and pre-processed by the already installed
VBLS layer of the VBLS—CLS—SC network, so that
the optimization runs would rely on mere binary signal
sequences.
It is largely left to engineering decisions taken in the
given application environment whether timing param-
eters are set sequentially, event by event (as usual in
automation practice), or for the whole network at once.
Nevertheless, the solution proposed here was elaborated
for the latter case, still allowing a—computationally
less demanding—sequential treatment as well.

3.1 Optimization cases

VBLS-processed binary signal series obtained from
pre-recorded image sequences serve as “learning sam-
ples” which can realize three different cases:

1. One recording of a successful run—allowing a
search for a set of timing parameters which best fits
the recognition of the given sequence as successful;

2. Several recordings of successful runs—allowing ad-
ditional statistical examination of the runs (estima-
tion of tolerances), especially for the timing of sce-
nario events;

3. Several recordings of successful runs as well as fail-
ures—foregoing false classification.

The specification of the optimization tasks is also sub-
divided into several task groups, depending on which
parameters are tuned automatically or preset manually
by the installation staff:

1. Scenario fully specified (FS)—with all SC parame-
ters preset, leaving only T1 i, T2 i ∀i, and Amin i,
Amax i ∀i of the TA operators (with index i) to be
sought by optimization;

2. Scenario partially specified (PS)—with only the
nominal occurrence frames of SC events being pre-
set, adding ∆TSI j ∀j (j being the SC event index)
to the list of unknowns defined by FS;

3. Scenario least specified (LS)—with the full set of
T1 i, T2 i ∀i, Amax i ∀i, TSI j ∀j, and ∆TSI j ∀j
parameters being subject to optimization.

While the latter case implies a large number of possible
TSI j with corresponding T1 i and T2 i in the appropri-
ate CLS trees bringing essentially the same results, one
can still rely on engineering “common sense” suggest-
ing that, mostly, at least the order of events is fixed, rep-
resenting “stages” of a production process (resulting in
adequate inequalities to be enforced as constraints). As-
suming this, two redundancy resolution heuristics may
be taken: i) generate the event as soon as possible to
facilitate timely intervention if needed, or ii) generate
the event as late as feasible, allowing to gather as much
information as possible.

3.2 Building an objective function

As explained before, the VBLS—CLS—SC network
performs, in fact, a classification task as it decides
whether a given image sequence represents success or
failure of the process observed. An objective func-
tion expressing the properties of timing settings—thus
fulfilling the requirement of a benchmarking/decision
support tool as well—should therefore express the
classification-related properties Decision ability (recog-
nition rate), i. e., the number of correct decisions vs. all
evaluation runs taken, Decision quality, a function with
its maximum being at the nominal occurrence frame
and reaching zero at the decision boundary, and De-
cision safety, expressing how well separated the suc-
cessful and unsuccessful runs are in the event space. it
is recommended to rank these properties according to
their estimated importance and compose a hierarchical
expression where the gradient of a measure does not
largely interfere with another one of higher rank.
For examining the objective functions in detail, let us
first consider the following definitions:

Number of
· all successful sequences processed Ns

· all unsuccessful sequences processed Nu

· successful runs recognized as such ns

· unsuccessful runs recognized as such nu

· events within the scenario E
· events correctly recognized as
successful for sequence i es i

· events correctly recognized
as unsuccessful for sequence i eu i

“Success measure” function for event j in
run i which is in the set of the Ns

successful sequences . o(i, j)
“Success/failure measure” function for
event j in run i which is in the set of the Nu

unsuccessful sequences, and is computed
depending on whether the event itself is
labeled successful or unsuccessful. ō(i, j)

Keeping these definitions in mind, the components of
the objective function are as follows.
Decision ability (recognition rate). On the sequence
level, i. e., how many successful runs were recognized
as such and how many failures were deemed unsuccess-
ful according to the current timing parameters, we have:

Q1 =
ns + nu

Ns + Nu
, (23)

which is a discrete function with a single step being

∆1 =
1

Ns + Nu
. (24)

For the introduction of a secondary criterion Q2 which
becomes important if Q1 does not change anymore dur-
ing search, Q2 may be scaled so that max |Q2| ≤ ∆1.
This allows us to add a secondary measure expressing
decision ability, i. e., how many scenario items were
recognized correctly. Successful sequences require a
successful predicate for all scenario items as well, mak-
ing the event recognition rate for successful sequences
is equal to

Q2s =
∑Ns

i=1 es i

ENs
·∆1 . (25)

Its counterpart for unsuccessful sequences is more com-
plicated, as here, not all scenario items are required to
fail, requiring further distinction:

Q2u =
∑Nu

i=1 eu i +
∑Nu

i=1 es i

ENu
·∆1 . (26)

If correct success/failure labeling is not provided on the
event level, one can set Q2 = Q2s. The secondary cri-
terion is discrete as well; with both Q2s and Q2u being
used, the related single step size is

∆2s+u =
1

E max{Ns, Nu} ·∆1 , (27)

while for using Q2s alone, it is

∆2s =
1

ENs
·∆1 . (28)

Decision quality. Further detailing the objective func-
tion is achieved if a decision quality measure is intro-
duced, expressing how well a given evaluation instance
lies between the decision boundaries. A function o(i, j)
for a given ti j , i. e., an occurrence of event i in se-
quence j should have following properties:

o(i, j) = 1 for ti j = TSI i (29)

o(i, j) > 0 for |ti j − TSI i| < ∆TSI i (30)

o(i, j) = 0 for |ti j − TSI i| = ∆TSI i (31)

In case of a strict scenario, we have furthermore
o(i, j) < 0 for |ti j − TSI i| > ∆TSI i, while for a
relaxed scenario, we may set o(i, j) = 0 for |ti j −
TSI i| > ∆TSI i. If we would like to set a limit for
|o(i, j)|, we may also prescribe |o(i, j)| ≤ 1. The most
simple piecewise linear function complying with the
above requirements would thus be

o(i, j) = max

{
1− |tSI i j − TSI i|

∆TSI i
; − 1

}
(32)

for a strict scenario item and

o(i, j) = max

{
1− |tSI i j − TSI i|

∆TSI i
; 0

}
(33)

for a relaxed one. As this linear function is evaluated
only for integer values of tSI i, we may, for a given set
of {∆TSI i}, determine a smallest step (excluding in-
tervals where o(i, j) is saturated):

∆3 =
1

maxE
i=1 ∆TSI i

·∆2 . (34)

Unfortunately, this means that ∆3 could change if any
∆TSI i is subject to search, however, practical limits of
∆TSI values could still give a rough estimate of ∆3.
Though a smallest possible step may not exist for other
cases, the hint for ∆3 in the linear example may still be
useful if, for any reason, a quaternary criterion would be
introduced. A possible candidate for a nonlinear o(i, j)
could be:

o(i, j) = 2 exp

(
−

(
tSI i j − TSI i

∆TSI i

)2

· ln 2

)
− 1 (35)

for the strict case, which can be modified as

o(i, j) = max

{
2 exp

(
−

(
tSI i j − TSI i

∆TSI i

)2

· ln 2

)
− 1; 0

}
(36)

for relaxed SC items. Thus, one could assemble the
tertiary criterion as follows:

Q3s+u =

(∑E
i=1

∑Ns
j=1 o(i, j)

ENs
+

+

∑E
i=1

∑Nu
j=1 ō(i, j)

ENu

)
∆2s+u (37)

where the function ō(i, j) is

ō(i, j) =
{

o(i, j)if SIi labeled successful in seq. j

−o(i, j)if SIi labeled unsuccessful in seq. j

(38)

If single events cannot be labeled for success or failure,
one can rely on the substitute

Q3s+û =

(∑Ns
i=1

∑E
j=1 o(i, j)

ENs

+

∑E
j=Nu

maxE
j=1 ō(i, j)

ENu

)
∆2s , (39)

using ō(i, j) = −o(i, j) and the heuristics that in an
unsuccessful sequence, the event with the worst evalua-
tion results is most likely to be the most decisive source
of scenario failure.
Decision safety. This would express how far away the
most unfitting element of the set is from the decision
boundary. For this purpose, a linear difference is used
again:

Q4 =

(
E∑

i=1

min
j

q(i, j)

)
· λQ3 (40)

with
q(i, j) = 1− |tSI i j − TSI i|

∆TSI i
, (41)

and λ being a scaling component ensuring |Q4| <
Q3. Incorrect decisions result in min q(i, j) < 0,
min q(i, j) > 0 implies that all decisions were right.
Now, assembling the criterion function is fairly simple:

Q = − (Q1 + Q2s+u + Q3s+u) , (42)

while without event-level labeling, we may use

Q = − (Q1 + Q2s + Q3s+û) . (43)

3.3 Finding a search algorithm

Optimization space. The discrete optimization space
can be narrowed down to tractable size by the inequali-
ties of Section 2, with (1), (15)–(18), and (20)–(22) be-
ing most fundamental, and knowledge of the given logi-
cal structure refining them further at the cost of a higher
computational demand. While choosing the level of re-
striction detail, it must be noted that cascading several
time lags may alter search space boundaries in each it-
eration (as would TSI of SC events subject to search
effect this, too). Also, the valid space may not always
be convex or it may consist of disjoint regions.
Behavior of the objective function. Owing to the “de-
cision ability” measures, the objective function contains
discrete steps: for linear “decision quality” and “deci-
sion safety” measures, it is piecewise linear, while in the
general case, it is at best piecewise continuous. Multiple
scenario events may result in local extrema, calling—
along with the piecewise continuous properties—for a
robust iterative search algorithm.
Optimization algorithms. The routines suitable for
our purposes assume an objective function f : Zn → R

to be minimized for a solution in C ⊆ Zn. Even if lin-
ear constraints of the form Ax ≤ b (where x ∈ Rn,
A ∈ Rm×n and b ∈ Rm) are given, f is not granted to
be linear, preferring thus more elaborate methods than
linear programming. Also, sophisticated techniques
requiring a differentiable f , such as the Levenberg-
Marquardt Method, are excluded due to the discrete
steps in our objective function.
While initial tests also included the Nelder-Mead Sim-
plex Algorithm [9], the volume of the paper only pro-
vides for presenting a more efficient alternative, greedy
tabu search, in detail. Greedy search (i. e., discrete
gradient-descent) examines a set of points within its sur-
rounding and selects the one with the smallest objec-
tive function [4]. Avoiding local extrema is possible by
maintaining a tabu list of points to be avoided in subse-
quent optimization steps. For the latter purpose, let us
consider the L1 norm

‖x‖1 =
n∑

i=1

|xi| . (44)

Using this, we can define the distance of two points as
d(x, y) = ‖x− y‖1, and a sphere with range ε around
point x as Kε(x) = { y ∈ Zn : d(x, y) ≤ ε } where ε >
0 (ε = 1 in our specific case). The algorithm updates
the tabu list Ti in each iteration i (starting with T0 = ∅),
restricting the sphere in iteration i to Ri(x) = (K1(x)∩
C)\(Ti∪{x}). Within this set, the tabu search proceeds
by:

xi+1 ∈ arg min
x∈Ri(xi)

(f(x) + δi), (45)

with the starting point x0 being given in advance or se-
lected randomly from C. Avoiding local minima can
optionally be helped with the random variable δi with
zero mean and δi → 0 as i → ∞ with probability
one. If δi 6= 0, a variant of the Metropolis (simu-
lated annealing) algorithm can be recognized. A ran-
dom restart is initiated if Ri(xi) = ∅, selecting a new x
from C \Ti. The tabu list is updated in each iteration by
Ti+1 = Ti ∪ {xi}, and further maintenance may keep
the number of tabu elements small, e. g., in a FIFO man-
ner. Convergence properties can be further improved by
step-size adaptation; in the experiments carried out, it
doubled the average speed of tabu search.

4. EXPERIMENTAL RESULTS

For the verification of the theoretical findings, video
sequences of several runs of the same process were
recorded and pre-processed to binary sequences us-
ing the MultiSens prototype application for building
VBLS—CLS—SC networks [1]. With these sequences,
two test groups were carried out:

Figure 5: Search of TSI i parameters with tabu search:
a) TSI i values, b) objective function f = −(Q1 +
Q2S + Q3s+û) during optimization.

1. In the first test series the TSI parameters of all sce-
nario items were subject to search, keeping the TA
values fixed. As it can be seen in Fig. 5a, all parame-
ters locked in on the area around the appropriate val-
ues which can also be noticed in Fig. 5b that shows
the behavior of the target function.

2. During the second test series all parameters of
both temporal aggregation operators in the VBLS—
CLS—SC network were subject to the search, but
the scenario event parameters were fixed. In Fig. 6b,
it can be observed that the objective function quickly
drops to a near-minimal value and remains there for
most of the remaining iteration steps. This hints at
large “plateaus” in the terrain of the target function,
implying that the recognition quality of the network
is robust against timing parameter changes. These
plateaus are, however, expected to shrink if more and
more video sequences are introduced for training.

5. CONCLUSION

While replacement of several “conventional” sensors
with a vision system has a great potential in the control
of automated processes, lack of initial experience in set-
ting the correct timing parameters for logical evaluation
networks may impair its practical applicability. This
problem can be overcome by a benchmarking and pa-
rameter search tool supporting the installation staff. The
paper proposed a multilevel set of possible measures for
the evaluation of recognition properties in such logical

Figure 6: Search of TA parameters with tabu search: a)
T1, T2, Amin, Amax values of a selected TA operator, b)
objective function f = −(Q1 + Q2S + Q3s+û) during
optimization.

networks, and argued that a search for correct timing
parameters can be formulated as a discrete multidimen-
sional optimization problem. During experiments car-
ried out on pre-processed video sequences of a sample
physical process, greedy tabu search was found suitable
for timing parameter optimization. Step-size adapta-
tion was found to improve convergence properties. Al-
together, the paper demonstrated that timing parameter
search for networks of vision-based sensors can be for-
mally modeled and effectively dealt with using multidi-
mensional optimization algorithms. Although not ad-
dressed directly in the paper, the results can be applied
to timing problems related to “conventional” sensors as
well.

Further research may improve the presented findings in
several directions. In our experiments, the output of
the vision-based sensors was pre-processed to binary
sequences, however, a continuous output signal could
convey additional information to enhance process mon-
itoring. In that case, fuzzy logic operators could be ap-
plied resulting in fuzzy CLSs. Also, practical applica-
tion may increase the number of learning sequences to
a computationally untractable degree. For such large
datasets, further pre-processing (e. g., data mining tech-
niques, as support vector classification or adaptive sam-
pling) could provide a feasible solution, so that the
optimization procedure is carried out on a smaller set
of learning samples already compacted by one of the
aforementioned methods.

REFERENCES

[1] A. Argyros, G. Bártfai, C. Eitzinger, Zs. Kemény,
B. Cs. Csáji, L. Kék, M. Lourakis, W. Reisner,
W. Sandrisser, T. Sarmis, G. Umgeher, and Zs. J.
Viharos. Smart Sensor Based Vision System for
Automated Processes, pages 24–29. International
Society for Advanced Research, June 2007.

[2] N. Bauer, editor. Guideline Industrial Image Pro-
cessing. Fraunhofer-Allianz Vision, 2003.

[3] R. B. Fisher. Self-organization of randomly placed
sensors. In Proc. of the Eur. Conf. on Computer
Vision, Copenhagen, pages 146–160, May 2002.

[4] F. Glover. Tabu search—part I. ORSA Journal on
Computing, 1(3):190–206, 1989.

[5] M. Li, M. Liu, L. Ding, E. A. Rundensteiner, and
M. Mani. Event stream processing with out-of-
order data arrival. In Proc. of the 27th Interna-
tional Conference on Distributed Computing Sys-
tems Workshops, 2007, ICDCSW’07., volume 983,
pages 67–67, September 2007.

[6] D. Luckham, editor. The Power of Events—An In-
troduction to Complex Event Processing in Dis-
tributed Enterprise Suystems. Addison-Wesley,
2002.

[7] É. Marchand and F. Chaumette. Feature tracking
for visual servoing purposes. Robotics and Au-
tonomous Systems, 52(1):53–70, June 2005.

[8] G. Meltzer and N. P. Dien. Fault diagnosis in gears
operating under non-stationary rotational speed us-
ing polar wavelet amplitude maps. Mechanical
Systems and Signal Processing, 18(5):985–992,
September 2004.

[9] J. Nelder and R. Mead. A simplex method for func-
tion minimization. Computer Journal, 7:308–311,
1965.

[10] P. Omenzetter, J. M. W. Brownjohn, and P. Moyo.
Identification of unusual events in multi-channel
bridge monitoring data. Mechanical Systems and
Signal Processing, 18(2):409–430, March 2004.

[11] C. Setchell and E. L. Dagless. Vision-based road-
traffic monitoring sensor. IEEE Proc. Vision, Im-
age, and Signal Processing, 148:78–84, February
2001.

[12] G. von Wichert. A probabilistic approach to si-
multaneous segmentation, object recognition, 3d
localization, and tracking using stereo. Lecture
Notes In Computer Science; Proceedings of the
23rd DAGM-Symposium on Pattern Recognition,
2191:100–107, 2001.

