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Abstract

This paper recapitulates the results of a long research on a family of artificial intelligence (AI) methods—relying on, e.g., artificial

neural networks and search techniques—for handling systems with high complexity, high number of parameters whose input or output

nature is partly unknown, high number of dependencies, as well as uncertainty and incomplete measurement data. Aside from classical

modelling, basic problem solving and optimization techniques are presented. Finally, a novel submodel decomposition method is shown

with an extended feature selection algorithm highlighted, along with possibilities of further development. Examples of practical

application are shown to illustrate the viability of the methods.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays, many areas of practical science and technol-
ogy face systems with high complexity and notable
uncertainty whose handling requires efficient methods for
learning the system’s properties and dependencies and
depositing this knowledge in a flexible, reusable form which
can be easily reconfigured for various interpretations.
While these tasks are already demanding themselves, even
the systems to be handled impose many challenges.

A high number of parameters: For complex systems
consisting of many—more or less identifiable—compo-
nents, such as production lines, biochemical processes etc.,
e front matter r 2006 Elsevier Ltd. All rights reserved.
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it is quite natural that a large number of parameters
are required for their adequate description. While some
of these systems or phenomena allow simple and
uniform handling of some groups of parameters (it is
enough to think of finite element methods), this cannot be
easily done in a significant number of other problems (see
Fig. 1).

A high number of dependencies: For several components
integrated into one system, the number of dependencies to
be modelled quickly increases, as numerous new relations
are added to those inherent to the subsystems (see Fig. 1).
However, not only the high number of actually existing
dependencies would require vast resources, but also the
even higher number of potential dependencies, i.e., assump-
tions which have to be either verified or rejected during
modelling, calling for an efficient way of pruning super-
fluous relations.

Uncertainty of measurement data: The first step of
gathering knowledge about physical systems is mea-
surement which also introduces noise and data un-
certainty. Aside from the measurement data themselves,
it is thus important to know the expected tolerances for
both measurement and reproduction in a subsequent
simulation.
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Fig. 1. A practical example for complexity: key interdependencies for a

cutting process (Peklenik and Jerele, 1992). Each basic node may contain

numerous parameters—the total number of variables can easily go into the

hundreds for such industrial processes.
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Incomplete information: Somewhat related to measure-
ment data uncertainty is the partial availability of
information which practically means that some vectors of
measured data are obtained with some of their elements
missing (either due to sensor malfunction or because at the
given point of the measuring process, the given data
element would have no sensible meaning, (Zhang and
Rong, 2005) or totally invalid. In some cases, discarding
these incomplete vectors would be unpracticable as they
make up a substantial part of all measured data. Therefore,
a method is needed which can handle incomplete data sets.

Unknown input/output character of parameters: For data
collected at various measurement points and labelled as
relevant parameters, it is, in many cases, still not clear
whether they are to be regarded as an input or an output in
some relation. The input/output nature of a parameter may
either be determined by the given problem to be solved or
the given point of view of modelling (and may thus be
different for another problem), or it may be entirely
unknown if a priori knowledge about the system is sparse.

To overcome these difficulties, a flexible approach is
needed which can reuse knowledge already acquired for a
given input/output arrangement. Also, since complex

systems show notable similarity with respect to the above

mentioned properties, one may be encouraged to reuse

methods—elaborated for one type of complex systems—for

various other cases after performing reworking or fine-tuning

as needed.

The range of problems stated above is a natural terrain
for various artificial intelligence (AI) approaches. In this
paper, a family of methods based on artificial neural
networks (ANNs) is presented which was successfully
applied in several industrial examples. First, classical
modelling is addressed, including handling missing data,
uncertainties and unknown input/output arrangement.
Hereafter, basic problem solving and optimization techni-
ques are presented, and finally, a novel submodel decom-
position method is shown, along with possibilities of
further development.

2. Classical modelling

If sufficient measurement information is available, the
first step toward handling a system is the creation of an
adequate model. This is essential for setting up planning,
control or prediction methods, as well as for testing and
validating them in a simulation environment before
practical application. In numerous cases, one faces non-
linear relations which may contain significant uncertainty
and may even change over a longer time. In these cases, the
limits of conventional methods—as differential equations
or simple function fitting and interpolation—are quickly
reached while AI techniques, as demonstrated by many
cases over the past decade, are still able to deal with these
modelling tasks.
In a number of cases, ANNs are used for modelling

complex nonlinear relations, as they can easily handle strong
nonlinearities, a large number of parameters and missing
data, furthermore, they can adapt to changes occurring in
the modelled system or process (Cholewa, 2005). In its

classical way of application, the layout of an ANN is largely
predetermined by the fixed classification of variables as
inputs or outputs, yet aside from this, no assumptions about
the approximated function are taken into consideration.
Having set up a network topology, learning and test
patterns compiled from measurement data are presented
to the network and finally, the knowledge stored in the
ANN can be recalled using only predetermined inputs as
inputs and obtaining the results at the predetermined
outputs. There are, however, four requirements which
appear in modelling large and complex systems and render
the conventional use of ANNs inefficient:
1.
 Non-invertible functions are not guaranteed to be
successfully modelled with ANNs in their conventional
layout. Most often, this is due to the fact that the input/
output assignment of variables was done in advance of
training, with insufficient knowledge about the given
relation’s nature. This may become a trap, since ANNs
are typically applied exactly when there is little known
about the function and its general type as well.
2.
 If several ANN models are concatenated to obtain a
given result, approximation errors may increase beyond
acceptable bounds at the last output layer. Coupling
conventional ANNs may only be safe if their accuracy is
guaranteed to lie within specified limits. (Note that a
useful approach was proposed by Ghiassi and Saidane
(2005), where an initial neural network is augmented by
further nonlinearities and additional layers if accuracy
deteriorates beyond a given bound.)
3.
 Even for the same system, a wide scope of problems may
exist. These are related to the same system—which
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suggests that their solution can rely on the same
knowledge—but in the classical approach, each of them
would require separate ANNs, each having its own
specific input/output configuration.
4.
 Since obtaining knowledge about a complex system is
cumbersome and demands large computational efforts,
therefore, such knowledge should be stored in a reusable
form—this is, however, hardly possible with the rigid
configuration of a classical ANN.

These difficulties can be overcome if a generic, reusable
ANN-based model is compiled—exactly this strategy is
followed by the approach of Viharos et al. (2002). Prior to
applying this method, a sufficiently large set of training
patterns must be given, with allowable estimation toler-
ances assigned to each component of the learning vectors.
At this stage, it is not necessary to know the input/output
assignment of the components, as the algorithm will find
the best configuration automatically. Performing a com-
plete search of all possible configurations would be too
slow, therefore, a heuristic method, sequential forward

selection is used (Viharos et al., 1999a). Here, a possible
output candidate is selected and the learning performance
(learning speed and accuracy) of the ANN is monitored,
keeping allowable tolerances of the given parameter in
mind. Should the training of the ANN for a given input/
output arrangement succeed, the selected variable becomes
eligible for being an output. Once a variable is validated as
an output, further output candidates are selected and
checked until the highest number of outputs is found. This

automatic search can also detect non-invertible relations, as
in their case, training the input/output arrangement
corresponding to their inverse fails. An important char-
acteristic of the method is the unchanging topology of the
network where, as shown in Fig. 2, unused neurons and
links are not deleted but only protected from being altered
during learning.
. 2. Protected (dotted) and unprotected (solid) states of different

rons and corresponding weights.
A similar treatment is applied when incomplete data sets

are encountered. While numerous methods paste up
missing components in training and test data by interpola-
tion, the concept of Viharos et al. does not make this
necessary. Here, weights corresponding to missing data are

protected and remain omitted by the given learning step. As a
result (see Viharos et al., 2002), this is suitable for handling
incomplete data. Interestingly, ‘‘impaired’’ training vectors

often bring better learning results if data vectors to be

learned contain redundant information.
3. Problem solving

Having once assembled the general, multi-purpose
ANN-based model as described above, it can be used to
solve a wide variety of problems, independent of the input/

output arrangement which may vary from task to task. The
key to the model’s versatility arises, aside from the fact that
it is among the best models attainable with an ANN of a
given size and topology, from the possibility of both direct
and indirect use. In any application of the general model,
unknown parameters are estimated using known ones,
three cases being possible (Fig. 3):
�
 Classical approach—Here, exactly those parameters are
unknown which are outputs of the ANN containing the
general model. In this case, the use is straightforward;
known parameters are fed into the ANN whose outputs
directly deliver the unknown ones.

�
 Inverse approach—Here, unknown parameters coincide
with the input variables of the ANN. In this case, an
iterative search finds a set of inputs approaching the
desired (known) output to a prescribed degree. This
method is also suitable for non-invertible relations.

�
 General use—A some of the unknown parameters are
outputs of the ANN while others are inputs. In this case,
known inputs are fed straight into the ANN while the
rest of the task is again performed via iterative search.
Should an indirect, iterative search be needed, the solution
is sought in compliance with the following three constraints
(the fourth one being the relations of the model itself):
�
 Condition regarding known output parameters—comply-
ing with this constraint ensures that a valid solution
estimates known output parameters by forward calcula-
tion within specified bounds of estimation error.

�
 Condition regarding unknown input parameters—this is
determined by the valid domain of inputs of the ANN
model which is assumed to be covered by the set of
training data.

�
 Condition regarding unknown output parameters—deter-
mined by the valid range of the ANN’s output, a
prospective solution is only accepted if the unknown
output remains in this acceptable range.
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Fig. 3. Steps of problem statement, modelling and problem solving for the classical use of ANNs (left) and the task-independent generic ANN model

(right).
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In Monostori and Viharos (2000), examples from industrial
production show the role of a proper input–output search
in picking out non-invertible relations to learn them the
correct way. Should a non-invertible relation be encoun-
tered, learning it imposes no hindrance to a correctly
configured ANN; however, the non-invertible nature does
show in the high number of solutions found in an indirect
problem solution process.
4. Optimization

If the solution to the problem, e.g., due to non-invertible
dependencies, is not unique, an additional criterion can be
used to pick an optimal solution from the set of possible
ones. In this case, it would be straightforward to let the
aforementioned requirements still act as constraints and
the secondary preference act as a criterion to be optimized
during search. Experience, however, has shown that it is
more advantageous to loosen the constraints and handle
them as criteria with weights varying during subsequent
optimization steps. The solution found this way is then
expected to optimize the secondary preferences to the best
possible degree while it is still in keeping with the
constraints within an agreeable distance.

An application example of iterative optimization with
such constraints is shown by Viharos et al. (1999b) where
simulated annealing is used to obtain a set of valid solutions
to manufacturing problems. Also, the technique initially
applied to only one production step is extended in Viharos
et al. (1999b) to a higher level of production: the block-
oriented ProcessManager framework presented in Viharos
et al. (1999b) can deal with an entire process chain
where the result of an earlier step may influence all
subsequent steps.
5. Submodel decomposition

Highly complex systems imply models which—due to the
high number of parameters and the dense network of
interrelations—can be handled as a whole only at stagger-
ing computational costs. It is thus advantageous to
decompose these complex models to several smaller
interconnected submodels which can be easily handled
one by one (moreover, we can always select the set of
submodels relevant to the given problem, so that submodel
decomposition results in subtask decomposition as well).
For this purpose, a submodel finding approach combining
feature selection and artificial neural networks—a culmi-
nation of the ANN-based techniques presented before—
was developed by Viharos et al. (2003) and Viharos
(2005). The application of the algorithm has two main
prerequisites:
�
 A data set of sufficient size has to be supplied, e.g., in
form of a database table where columns represent the
variables to describe the system and each row stands for
these variables recorded at a given time.

�
 Since in subsequent parts of the algorithm, an ANN is
employed to test whether a given variable can be
estimated using other parameters, a maximal tolerable
error has to be assigned to each variable when
estimating it with an ANN model.

Having fulfilled these requirements, an algorithm can be
run which uses ANNs to validate proposed submodels. In
the most ‘‘conventional’’ case, the assignment of potential
inputs and outputs as well as the isolation of proposed
submodel structures is done in a separate block, prior to
any ANN training, as proposed by earlier approaches (e.g.,
Caelli et al., 1999). Departing from this rigid setup, one can
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allow the structure of the interconnected submodels to be
determined dynamically during learning.

The novel method presented in Viharos (2005) allows the
flexible configuration of submodels, as well as free assign-
ment of a given variable for input or output. As shown
before, the highest number of outputs is selected in an
input/output search based on ANN-learning performance.
However, attempting to learn a potential output by an
ANN can only signalize that there is a dependency
‘‘somewhere within the set of selected variables’’ but
cannot weed out parameters totally independent of the
given subsystem. This would result in a single ANN
struggling to learn the entire structure in question, there-
fore, the reduction to smaller, easy-to-handle submodels
must be cared for by other means. While the vast majority
of such approaches determines the submodel structures
before any ANN training takes place, this new method
identifies the submodel structures dynamically, leaning on
the results of earlier ANN training periods.

This is accomplished by an extended feature selection
algorithm—developed by Viharos et al.—running on the
complete set of variables and setting up a decision tree for
submodel selection.

The extended feature selection algorithm applied here
assumes a pure classification task, onto which even
continuous parameters can be mapped with an appropriate
heuristics. In the first step, a given parameter is selected
and its values encountered in the training data set are
grouped into clusters (i.e., intervals of equal length), so that
at least one element is contained in each interval (this, in
itself, being the first heuristic decision). Next, the algorithm
checks how ‘‘distinct’’ these clusters are, i.e., how far apart
the weight centers of the clusters are and how large the
distances of the cluster weight center and the cluster’s
discrete points are. This test is performed for all parameters
that can come in question, then, the one exhibiting the
most ‘‘distinct’’ clustering of values is chosen.

Having selected the first parameter of interest, all
remaining variables are tested again, each of them together

with the already highlighted parameter, for the same
measure of class distinctness, using Euclidean distances.
Again, the parameter chosen to form a potential submodel
together with the first preferred variable will be the one
exhibiting the best class separability together with the

parameter already selected in the first run. In every
subsequent step, yet another unselected variable is tested
the same way, and in every case, the one corresponding to
best class separation is chosen (note that this incremental

selection, as opposed to a combinatorically exhaustive test,
is the second heuristic decision in the algorithm’s layout).

Adding new parameters to the ones already selected, a
deterioration of class separability can be observed which is
guaranteed to be worst when all variables are taken for
classification. However, since our goal is the creation of
submodels, each containing only a relevant part of the
model’s entire parameter set, a suitable heuristics (the third
such case in the algorithm) should be used to decide when
adding new parameters should be stopped. By selecting
only a part of the model’s entire parameter set as the best
performing variable group for one given clustering, we
have created a candidate for a submodel.
Since three heuristic decision steps were taken to obtain

the candidate submodel, this can be considered only an
assumption which is to be either verified or rejected by the
ANN algorithm. The latter begins validating a given part of
the submodel structure—at a given point in the decision
tree—and delivers first training results. Examining these and
removing the successfully learned submodel from the ‘‘pool’’
of unclassified variables, feature selection is run again on the
remaining data set and the decision tree is reconfigured if
needed. Hereafter, ANN training takes place again. Thus,
the method does not separate preselection and ANN
training into disjoint tasks—in fact, feature selection and

training complement each other with their alternate execution

until all submodels are identified and learned.
Having completed the decomposition, the following

results are obtained (see also Fig. 4):
�
 A set of valid submodels, each containing a minimal set
of the system’s parameters with as many of them
labelled as output as the ANN algorithm could find.

�
 A set of rejected submodels. These were originally
proposed as submodels by the feature selection proce-
dure but were judged invalid by the ANN algorithm.
Storing these discarded patterns is useful for an early
pruning of submodel candidates bound to fail.

�
 Since the valid submodels were spotted while ANNs
were learning their parameter dependencies, this knowl-
edge is readily accessible and applicable for problem
solving as a network separate neural nets, each of them
representing one submodel.

Fig. 4 shows a screenshot of an actual industrial applica-
tion in a rather low level of manufacturing where a
production line is modelled using more than 60 parameters.
In Viharos et al. (2003), another industrial application is
shown for an intermediate level of production.

6. Further research

Currently ongoing research activities are aimed at
extending submodel decomposition toward the framework
of a multi-agent system (MAS) where knowledge specific to
an agent is mapped onto a given submodel. The feasibility
of this generalization is assumed because of remarkable
analogies between ANN-based submodels and agents:
1.
 Autonomy—(a) Decomposition is present in a network of
submodels, as well as in MAS. (b) Both submodels and
agents represent localized knowledge with direct infor-
mation exchange links only leading to its connective
neighborhood.
2.
 Architecture—Composite models and MAS both have a
network architecture.
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Fig. 4. Two cases of submodel decomposition. In the example to the left, the net of accepted submodels consists of five main relations (in brackets),

partitioning a system containing 11 description parameters. The fourth row in the window, e.g., shows that the algorithm identified a submodel with

parameters 2, 3 and 6 as inputs for the estimation of output 5. The four identified submodels have common parameters, e.g., parameter 6 is estimated by

the submodel shown in the second row, but it is to be found among the input variables of the next two submodels, too. Thus, a structure of interconnected

submodels can be recognized additionally to the identification of its individual parts. To the right, the result of submodel decomposition in an industrial

example with a large number of system parameters is shown.
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3.
 Adaptivity and proactivity—(a) An elementary property
of ANNs is their learning ability, also required for
autonomous agents in a time-varying environment. (b)
Estimation using locally available information, an
inherent feature of submodel ANNs, is analogous to
agents judging the expected outcome of their own actions,
as well as the anticipated changes in the near future.

It can be thus assumed that submodel decomposition can
be a basis for automatic agent formation in a MAS,
submodel groups being the specific knowledge of the
agents. An important goal of such an initial agent formation

is to break—at least partly—with the traditional practice of

a rigid agent structure and allow free agent formation

according to a given criterion.

Prior to specific research activities, following crucial
questions must be examined:
1.
 What criteria should lead one when taking groups of
relations for an agent’s specific knowledge? The key
concerns are maximal foreseeing and learning abilities of
agents. The requirement of acceptable global operating
costs will later need further criteria, though this was so
far only treated as a side effect in MAS (e.g., in
Pěchouček et al., 2000).
2.
 How should learning data be grouped to express time-
dependency correctly? Experiments may provide hints,
but specific technical knowledge (changeover time or
timing for one given workpiece) is expected to provide
the first starting point.

While this initial agent formation may bring interesting
results, the most important advantage expected is the run-
time adaptation of the system’s composition, the agents
being reconfigured by the reorganization of the underlying
submodels. To this end, each agent is constantly monitoring

its own performance (the ratio of right and wrong decisions,
the gain of bids won, etc.). Difficulties can be handled by
the following steps:
1.
 First, the agent attempts to re-learn the deficient task,
using recent training data, while inter-agent activities
remain the same as in a conventional setup (Fig. 5).
2.
 Upon failure of re-training, the agent shares the
unsolved problem with its neighbors and monitors them
until it shows best (or agreeable) performance again
(Fig. 6).
3.
 Should a neighboring agent constantly perform better,
the problem submodel in question can be relocated to it,
along with the associated decision rights. This may
increase communication, yet the quality of decisions
improves (possibly due to the new host of the task
having better access to vital information). Relocation
cost metrics can show if reassigning a given task
improves total system performance (Fig. 7).

Two AI paradigms can be recognized here: reinforcement
learning and distributed AI, several local blackboards
being pivot points for reconfiguration. Experience in these
domains provides hints, yet only actual tests can show how
much—if any—supervision is needed to keep certain
bounds, e.g., human understandability or stability. Dy-
namic reconfiguration introduces a new facet of agent
communication: in addition to communicating decisions,
bids, possibilities or parameters, agents would now transfer

decision rights and the corresponding knowledge, as well as

protocols and knowledge topics, requiring a new mode of
communication, new protocols and new contents.

7. Conclusion

The first part of this paper highlighted fundamental
phenomena encountered in highly complex physical
systems (high number of parameters, high number of
dependencies, uncertainty of measured data, incomplete
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Fig. 5. Elements of conventional agent communication.

Fig. 6. Sharing an unsolved problem with other agents of the neighborhood.

e

Fig. 7. Transferring knowledge and decision rights.
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information and unknown input/output arrangement of
parameters). To handle these in various types of problems,
a family of ANN-based methods was presented (classical
modelling, problem solving, optimization and submodel
decomposition) which can be equally applied in lower and
higher hierarchical levels of production. Their versatile
applicability was demonstrated by examples of practical
use in manufacturing systems. Finally, plans for future
research were proposed where submodel decomposition
will be used as a starting point for a flexible, reconfigurable
multi-agent system.
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