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Abstract: The application of pattern recognition techniques, 
expert systems, artificial neural networks, fuzzy systems and 
nowadays hybrid artificial intelligence techniques in manu-
facturing can be regarded as consecutive elements of a proc-
ess started two decades ago. The paper outlines the most 
important steps of this process. Agent-based systems are 
highlighted as promising tools for managing complexity, 
changes and disturbances in production. Further integration 
of approaches is predicted. 
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1. INTRODUCTION 

Manufacturing systems of our days work in a fast chang-
ing environment full of uncertainties. Increasing complexity 
is another feature showing up in production processes and 
systems, furthermore, in enterprise structures as well [1]. 
One of the recent areas of research is related to the global-
ization of production. Production networks (PNs) are 
formed from independent companies collaborating by 
shared information, skills, resources, driven by the common 
goal of exploiting market opportunities. 

The concept of the digital enterprise [2], i.e., the map-
ping of the key processes of an enterprise to digital struc-
tures by means of information and communication tech-
nologies (ICT) gives a unique way of managing the above 
problems. By using recent advances of ICT, theoretically, all 
the important production-related information is available 
and manageable in a controlled, user-dependent way [3]. 

However, the management, the optimal or near to opti-
mal exploitation of this huge amount of information cannot 
be imagined without the effective application of the methods 
and tools of artificial intelligence (AI), sometimes, more 
specifically, machine learning (ML) techniques [4]. 

1.1. The Manufuture Initiative 

On December 1-2, 2003 - upon the initiation of 
F. Jovane [5], and after an appropriate preparatory work of 
an Expert Group - the conference Manufuture was held in 
Milan, Italy, with the goal of calling the attention of the 

main stakeholders on the importance of manufacturing, the 
“general transformation of all resources to meet human 
needs” in the society. In the accompanying Working Docu-
ment [6], five driving forces were identified for Manufuture: 
• Increased research and technological development with 

longer term research-industry relationships and clearer 
support to industrial research.  

• International cooperation in manufacturing research.  
• The key role of education and training (attractiveness for 

the young, multi-disciplinarity, education-research-
innovation, “training factories”.  

• Stimulating operating environment for industrial innova-
tion (innovating SMEs, intellectual property rights, 
Euro-patent, etc.).  

• Increased competitiveness of European research (new 
funding instruments, increased networking to reduce 
fragmentation, long-term vision).  

Four main directions were further emphasized at the 
Manufuture Workshop, July 1, 2004, Dortmund, Germany: 
adaptive manufacturing, digital manufacturing, knowledge-
based manufacturing, networked manufacturing. 

The above areas were also outlined at the Manufuture 
2004 Conference, Enschede, The Netherlands, December 6-
7, 2004 (http://www.manufuture.utwente.nl/) and in the 
material Manufuture: A Vision for 2020, Assuring the Fu-
ture of Manufacturing in Europe [7]. 

However, it must be pointed out that the four important 
areas emphasized above represent overlapping domains and 
can be considered in a holistic way only. At least two impor-
tant requirements, i.e., the real-timeness and cooperative-
ness of the whole system, have to be added as issues of high 
and increasing importance. 

The first one refers to the ability of recognising and act-
ing on internal and external changes and disturbances within 
the time frameworks required by the given level of the 
manufacturing-production hierarchy. Obviously, on the one 
hand, technical monitoring and diagnostics (TMD) is an 
indispensable in the manufacturing structures with the abili-
ties required above, and, on the other, the techniques devel-
oped and applied within TMD, can be applied in other kinds 
of change / situation recognition and management, as well. 
The second issue underlines the fact that the complex pro-
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duction structures – from machine tools, robots, etc. to pro-
duction networks, including human beings involved – are 
more and more considered and built up as autonomous, but 
cooperative entities. 

The detection of changes and uncertainties is one of the 
most important requirements of today’s manufacturing. In 
the paper – partly based on [8] - pattern recognition (PR) 
techniques, expert systems (ESs), artificial neural networks 
(ANNs), fuzzy systems (FSs) and hybrid AI techniques in 
manufacturing are outlined as consecutive elements of a 
process started two decades ago. Further integration of ap-
proaches - also with agent-based systems - is predicted. 

The also illustrates how the above R&D directions out-
lined within the Manufuture initiative are manifested in two 
(one just completed, one just started) large-scale national 
R&D projects, i.e., one on Digital Enterprises, Production 
Networks, the other on Real-time, Cooperative Enterprises, 
by illustrating the results achieved and future research direc-
tions, as well. 

2. MANAGING UNCERTAINTIES AND CHANGES 
IN PROCESS / MACHINE LEVEL 

The PR - ANNs - hybrid AI systems evolution in appli-
cations can be found in this section where the overlapping 
fields of tool condition monitoring, process modelling and 
adaptive control issues will be treated. Special emphasis is 
laid on learning abilities, admitting that learning cannot be 
treated separately from the other important issues (self-
calibration, signal processing, decision making, fusion abil-
ity, etc., [9]). 

2.1. Tool condition monitoring (TCM) 

The application of numerical PR techniques for monitor-
ing purposes started with linear decision functions trained 
iteratively [10], [11]. Fuzzy PR techniques proved to be 
efficient tools for dealing with the uncertain nature of cut-
ting processes [12]. A number of multipurpose monitoring 
systems were developed on the basis of PR, multisensor 
integration and parallel processing through multiprocessor 
systems [13], [14], [15].  

PR is the field, where ANNs seem to have the most 
potential benefits for practical applications. Taking into 
account other favourable features of neural networks (e.g. 
parallelism, robustness and compactness), it was expected that 
this technique can be advantageously used in different fields of 
manufacturing. 

Dornfeld applies ANNs for TCM [16]. The applicability 
of ANNs for multisensor integration (acoustic emission 
(AE) and cutting force) was demonstrated. The comparison 
of results gained by linear classifiers and ANNs’ trained by 
the back propagation (BP) technique, outlined their better 
noise suppression and classification abilities. 

One of the main - but often neglected - problems in 
monitoring of machining processes is how to treat the vary-
ing process parameters. Possibilities for incorporating proc-
ess parameter information into the learning and classifica-
tion phases were demonstrated in [17]: 

• networks trained under constant process parameters, 
• networks trained under varying process parameters, 
• networks incorporating process parameters as inputs. 

Combined structure and parameter learning technique 
through a neuro-fuzzy (NF) system for the classification of 
the wear states of milling tools in four categories was de-
scribed in [18]. A four-step learning algorithm integrating 
self-organised clustering, competitive learning, and super-
vised BP learning techniques was applied for determining 
the fuzzy rules and the parameters of the membership func-
tions. The NF technique with structure and parameter learn-
ing showed superior performance to the BP solution and 
previous investigations with a commercial NF system. Fur-
ther improvements have been reached by using genetic algo-
rithms for rule set generation [19]. 

2.2. Process modelling 

Reliable process models are extremely important in dif-
ferent fields of computer integrated manufacturing, such as 
design, optimisation, control and simulation of processes 
and design of equipment [20]. Difficulties in modelling 
manufacturing processes are manifold: the great number of 
different machining operations, multidimensional, non-
linear, stochastic nature of machining, partially understood 
relations between parameters, lack of reliable data, etc. In 
the CIRP survey on developments and trends in control and 
monitoring of machining processes, the necessity of sensor 
integration, sophisticated models, multimodel systems and 
learning ability was outlined [20].  

ANNs as learning structures for the lower level of an in-
telligent controller were suggested in [21]. A learning proc-
ess enables the controller to understand how input variables 
(such as feed rate, depth of cut, and cutting velocity) affect 
output variables (such as cutting force, power, temperature 
and workpiece surface finish) in the case of a turning opera-
tion. 

The decision-making approach of [22] incorporates sev-
eral process models that correlate process state variables 
such as surface roughness or chip merit mark to process 
parameters such as feed rate, cutting speed and tool rake 
angle. In [17] inverse models of the milling process, i.e. 
separate models for three process parameters (axial depth of 
cut, cutting speed, and tooth feed) were generated always 
using the other two process parameters and force and vibra-
tion features as networks' inputs.  

In [23] a novel approach for generating multipurpose 
models of machining operations combining machine learn-
ing and search techniques is described. Simulated annealing 
search is used for finding the unknown parameters of the 
multipurpose model in certain applications including model-
ling of process chains.  

2.3. Adaptive Control (AC) 

The above described investigations for determining suit-
able process models for machining operations aimed at 
realising powerful adaptive control schemes.  

The task to be fulfilled can be formulated as follows. 
There exist some limitations on input variables (e.g. ma-



chine limitations), some output variables are to be kept suf-
ficiently close to the desired values and others can have 
upper limits (e.g. vibration). The algorithm suggested in [21] 
is based on an augmented Lagrangian method to minimise a 
properly selected combined performance index, which takes 
into consideration the above requirements.  

Two hybrid AI systems for control and monitoring of 
manufacturing processes on different hardware and software 
bases were described in [24]. In these hybrid systems, net-
works outputs are conveyed to an expert system that pro-
vides process control information. On the base of accumu-
lated knowledge the hybrid systems influence the function-
ing of the subsymbolic levels, generate optimal process 
parameters and inform the user about the actual state of the 
process.  

In the HYBEXP system [25], an artificial neural network 
simulator called NEURECA constitutes the lower, subsym-
bolic level. The higher, symbolic level is based on the com-
mercially available AI expert system shell. The results of the 
lower level are conveyed to the symbolic part, where using 
additional stored knowledge (e.g. the type and number of 
cutting tools available, actual cutting parameters, the parts to 
be machined, etc.) different decisions can be made. HY-
BEXP can initiate e.g. machine stop, tool change, modifica-
tion of cutting parameters (AC control) or change of parts to 
be machined. HYBEXP can work also as a decision support 
system. 

2.4. Modelling and management of process chains 

In order to realise adaptive control of a production chain, 
models have to be ordered to every stage of the production 
and connected by their input-output parameters. In [26] a 
software package ProcessManager is described, which sup-
ports the modelling and adaptive control of processes and 
process chains as well. It incorporates: 
• definition of the elements of the chain, 
• determination of the process models in a hybrid way, by 

integrating analytical equations, expert knowledge and 
example-based learning, 

• connection of the single models into a process chain by 
coupling input-output model parameters not limited to 
models of successive processes in the chain, 

• definition of eligible intervals or limits for the process 
parameters and monitoring indices, 

• definition of a cost function to be optimised, etc. 

3. MANAGEMENT OF COMPLEXITY, CHANGES 
AND DISTURBANCES IN SYSTEM LEVEL 

In today's manufacturing systems, difficulties arise from 
unexpected tasks and events, non-linearities, and a multitude 
of interactions while attempting to control various activities 
in dynamic shop floors. Complexity and uncertainty seri-
ously limit the effectiveness of conventional control and 
(off-line, predictive) scheduling approaches [27].  

The performance of manufacturing companies ultimately 
hinges on their ability to rapidly adapt their production to 
current internal and external circumstances. Two main kinds 
of approaches to dealing with the enumerated problems are: 

to enhance the reactivity of traditionally structured (mostly 
hierarchical) systems by sophisticated new control tech-
niques, and to construct decentralised, distributed systems. 
Another - also overlapping - way of dealing with changes 
and disturbances is to develop adaptive systems, which are 
able to learn from past history.  

A survey of reactive scheduling approaches can be found 
in a recently published book chapter [28]. Here we concen-
trate on distributed, agent-based approaches. 

3.1. Multi-agent manufacturing control 

In order to overcome inflexibility, rigidity associated 
with the traditional hierarchical control of manufacturing 
systems, the heterarchical approach has been proposed. This 
approach represents a highly distributed form of control, 
implemented by a system of independent co-operating proc-
esses or agents without centralised or explicit direct control.  

Agent technology [29] is considered an important ap-
proach for developing distributed manufacturing systems  
[30]. Holonic manufacturing systems (HMSs) consist of 
autonomous, intelligent, flexible, distributed, co-operative 
agents or holons. The PROSA reference architecture for 
HMSs [31] identifies three types of basic holons, i.e., re-
source, product, and order holons. Staff holons are also 
foreseen to assist the basic holons in performing their work. 
Other authors refer only to two types of basic building 
blocks, e.g., order and machine agents, job and resource 
agents, or order and machine (resource) holons [32]. One of 
the most promising features of the holonic approach is that it 
represents a transition between fully hierarchical and heter-
archical systems [33]. 

3.2. Market-based resource allocation 

Co-operation and conflict resolution are the main issues 
in agent-based systems. Negotiation-based algorithms are 
mostly used where schedule generation is a recursive, itera-
tive process with announce-bid-award cycles based on mar-
ket mechanisms [34]. 

In the simulation described in [35] the objective in the 
bid evaluation procedure can be the minimisation of produc-
tion costs, job tardiness, makespan or weighted combination 
of the above or similar factors. The weights of the objective 
functions can be dynamically adjusted on the basis of the 
system state and external conditions resulting in different 
control strategies and system performance.  

Naturally, there exist different variations of the above 
simplified procedure. Order (or part) driven and resource 
(machine, cell) driven techniques can be distinguished based 
on who makes the announcements. More advanced systems 
support also look ahead scheduling with a longer, sometimes 
varying horizon [8]. 

3.3. Stigmergy-based co-ordination and control 

A relative novel approach for co-ordination in multi-
agent systems is stigmergy which belongs to mechanisms 
which mimic animal-animal interactions [36]. Stigmergy is 
an indirect co-ordination tool within an insect society where 
parts of global information is made available locally by 



pheromones, e.g., in the case of ant colonies. This way, 
individual ants are not exposed to the complexity and dy-
namics of the situation, and the communication burden in 
the computer realisation is significantly lower, compared to 
market-based solutions. 

As to the realisation of stigmergy-based systems, virtual 
ants can be realised by mobile software agents or even mes-
sage-based realisation can be conceived, as well. It may not 
be stated that market- and stigmergy-based approaches rep-
resent two totally different ways of multi-agent co-
ordination and control, they can be nicely combined in com-
plex societies.  

3.4. Adaptation and learning in multi-agent production 
control 

Learning and other forms of adaptation are essential in 
multi-agent systems [4], [32]and can be categorised as: 
• Centralised learning (or isolated learning) refers to learn-

ing approaches which are entirely executed by single 
agents, completely independent and exclude the interac-
tion with other agents.  

• Decentralised learning (or interactive learning) involves 
several agents which require a joint and co-ordinated in-
teraction among them. 

Adaptive market-based resource allocation 

The adaptation procedure described in [32] is a central-
ised approach in which each resource agent locally adapts its 
behaviour to achieve a more profitable position in the agent 
society. The feedbacks are represented by changes in local 
utilisation parameters and bid awarding and/or rejection 
reactions issued by the order agent. Each resource agent 
incorporates a rule base by which it can locally decide on 
the cost factor to be applied for an announced task. The 
preconditions of these rules are the utilisation of the re-
source and the ratio between the won and lost bids which are 
stored locally for each agent in the table of machine abilities 
and history. 

Simulation results demonstrate that the major advantage 
of the proposed solution is a more equilibrated usage of 
resources. Moreover, several performance measures such as 
maximum tardiness and makespan proved to be better with 
cost factor adaptation.  

Neurodynamic programming and simulated annealing in 
multi-agent-based scheduling 

The main aim of the work reported on in [37] was to de-
crease the cost of computing in scheduling by  
• decreasing the communication load of the order agents 

by partly assigning their tasks to the resource agents, in 
this way, further parallelising the process of scheduling 
and resource allocation, 

• decreasing the number of mobile agents (virtual ants) to 
be sent to other resources, 

• improving agents’ actions in given situations/states by 
artificial neural network (ANN) based learning, 

• estimating the remaining processing times of jobs to-
gether with their most appropriate routes through the re-
sources by reinforcement learning, 

• balancing between exploration and exploitation in the 
system by using simulated annealing; and, as a result, of 
the above sub-goals, to 

• lay down an approach for multi-agent control, which can 
manage internal and external changes and disturbances, 
offers any-time solutions which can be improved if 
longer time is available, and finally, is feasible from 
computational point of view, as well. 

The system resulted represents a three-level decentral-
ised learning scheme combining neurodynamic program-
ming (reinforcement learning + neural network) and simu-
lated annealing [37]. 

4. CONCEPTS AND MAIN RESULTS OF HUNGAR-
IAN R&D PROJECTS TOWARDS MANUFUTURE 

4.1. Digital enterprises, production networks 

The results presented here have been conceived and de-
veloped in the framework of a project run in Hungary on 
Digital Enterprises, Production Networks [3]. The main 
intention of the partners was to develop solutions which are 
based on novel fundamental research, but, at the same time, 
applicable in the industry. The integrative endeavour of the 
partners was to make all the production-related information 
available and manageable in a controlled, user-dependent 
way by the efficient use of information and communication 
technologies, i.e., to develop decision support systems, in 
order to help enterprises to cope with the problems of uncer-
tainty and complexity, increase their efficiency, join in pro-
duction networks and to improve the scope and quality of 
their customer relationship management. 

The partners wanted to make progress in the following – 
partly overlapping – directions, project clusters: 
• management and scheduling of large-scale projects, 
• tele-presence and interactive multimedia, 
• monitoring of complex production structures [38]. 

4.2. Concept of VITAL, the national project on real-time, 
cooperative enterprises 

One of the most important trends in manufacturing is 
manifested in the paradigm of customised mass production, 
which means difficult to accomplish the task of producing 
customised products at a price near to the level in mass 
production.  

The national research project VITAL: Real-time Co-
operative Enterprises incorporating a big multinational 
enterprise, its three suppliers, two Hungarian universities, 
Fraunhofer IPA, Stuttgart, and SZTAKI as the project 
leader, intends to develop IT-solutions for enterprises pro-
ducing mass customized products and working in networks. 
In addition to customised mass production, issues are to be 
handled, like  
• globalisation, increasing competition, frequently chang-

ing, uncertain environment, 
• growing complexity of production processes, manufac-

turing systems and enterprise structures, 
• autonomous, partly competing, partly cooperating pro-

duction structures. 



The goal of the project is to research and develop new 
methods for the real-time management of complex technical 
and economic systems that work in changing, uncertain 
environments. Since the methods come from various, novel 
areas of informatics, operational research and knowledge-
based systems, their integration will balance the aspects of 
optimisation, autonomy, and cooperation. 

Fig. 1 summarizes the main endeavours: the research and 
development of solutions from the level of production net-
works through single enterprises to production lines, which 
can ensure the optimal / near to optimal behaviour of the 
whole system, and moreover, in a real-time fashion required 
by the given level of production.  

 
Fig. 1. General concept of the VITAL project. 

The orders are to be fulfilled in good quality, on the 
agreed price and on time. The customers do not necessarily 
realize that they usually face a conglomerate of firms, i.e., 
production networks. The importance of the time is illus-
trated by the watches in the figure, which incorporates the 
different levels (network, enterprise, production line) of the 
production expected to react on the external and internal 
changes and disturbances (indicated by thunderbolts) with a 
reaction time characterising the level in question. 

The problems to be solved are as follows (referring to 
the notations of Fig. 1): 

• integrated production planning and scheduling (B), 
• real-time production control (C), 
• management of distributed, cooperative systems (A). 

The reason for the above sequence is that the high-level 
resource-management and scheduling of enterprises can give 
the basis, on the one hand, for the reliable, optimal or near to 
optimal management of supply chains and production net-
works, and, on the other, for handling changes and distur-
bances in shop floors or production lines. 

5. CONCLUSIONS 

Learning process models, cause-effect relations, auto-
matically recognising different process changes and degra-
dation and intervening in the process in order to ensure 
economic and safe processes and product qualities are so-
phisticated approaches with high potential. They are the 
subjects of intensive research and development work world-
wide. The complexity of the problem and the associated 
uncertainties necessitate the application of learning tech-
niques to get closer to the realisation of intelligent manufac-
turing systems. Further integration of different techniques, 

such as AI, machine learning and agent-based approaches 
can be predicted.  
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