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This paper presents two main groups of results in the field of process model-
ing; first, highlighting complexity-related properties shared by several, if not all,
levels of production; second, a family of methods set up to handle the aforemen-
tioned problems. The presented algorithms lead up to a submodel decomposi-
tion method combining generalized feature selection and artificial neural net-
works which further research may extend to an automatic determination of agent
boundaries in complex systems. Aside from theoretical presentation, practical re-
sults in various levels of actual industrial production demonstrate the feasibility
of the methods, suggesting that they can cope with complexity-related problems
of different production levels in a uniform way.

1. INTRODUCTION

Reliable process models are of key importance in computer integrated manufactur-
ing (see Merchant 1998) as model-based solutions can make difficult problems of
production control tractable. Models facilitate elaborating new algorithms, supporting
decisions, decreasing investment risks and coping with changes and disturbances.

However, modeling manufacturing processes may bear difficulties: the diversity
of operations, their multidimensional, nonlinear and stochastic nature, partially un-
derstood relations, unreliable or incomplete data sets etc. Often, the only feasi-
ble approach is the decomposition of the model to several smaller interconnected
submodels—though not equal to problem decomposition but a first step towards it.

In modeling complex systems, it is common practice to highlight relevant variables
in measurement data, e. g. as through feature selection. From the selected parame-
ters, process models are often obtained and maintained through learning (see Viharos
and Monostori 2001). This can be achieved e. g. through artificial neural networks
(ANNs)—general, multivariable, nonlinear estimators which can be trained to repre-
sent a given model.

In the first part of this paper (section 2), common characteristics of various pro-
duction levels are addressed, along with the idea of applying a method elaborated for
one production level to other layers of the hierarchy. Section 3 presents a submodel
decomposition method combining feature selection and ANN training, meant to han-
dle complexity-related problems of various production levels. Finally, section 4 gives
practical application examples in various levels of production.
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2. SIMILARITIES BETWEEN PRODUCTION CONTROL
LEVELS WITH RESPECT TO MODELING AND
ASSIGNMENT TASKS

2.1 Hierarchic levels of production systems

No single prevailing scheme identifying production levels exists, yet all share some
fundamental principles. A general overview of noteworthy stratification schemes can
be found e. g. in Horváth and Markos (1995), Tóth (1998), Luttervelt et al. (1998) and
T. Tóth (1989). The figure below shows the comparison of the MAP/TOP model for
communication in production, and the layers as addressed throughout this paper.

The examination of production levels, independently from the specific scheme used,
shows one general phenomenon: various forms of complexity, as detailed in the next
subsection, appear throughout all layers of the hierarchy.

Figure 1. Classification of production levels according to the scheme used in MAP/TOP (left), and the
convention used by Viharos et al.(right)

2.2 Similarities between levels of production systems

As many other domains, all levels of production systems exhibit high complexity and
uncertainty, requiring efficient methods for learning the system’s properties and de-
pendencies and depositing them in a reconfigurable form to suit various interpreta-
tions. Though all levels of production bear specific inherent difficulties, the following
characteristics are shared by all systems and levels in general:
A high number of parameters. For systems consisting of many components, such as
production lines, biochemical processes etc., a large number of parameters is required
for description, and the control and modeling experts’ efforts to work with simpli-
fied models may fail. For manufacturing processes, a variety of approaches exists for
simplification (see Tóth 1998), but even using those leave a large number of variables.
A high number of dependencies. Production systems are composed of several com-
ponents, each of which may have its own complex set of relations. Combining these
components in a large system, the number of relevant dependencies quickly increases,
even if some of the less relevant inherent relations of the components are omitted.
Nonlinear dependencies. Though some “conventional” methods can also handle non-
linear models, in most cases their success depends on a-priori information about the
general nature of the nonlinearity— which is rarely given to a proper degree in un-
known complex systems, especially in the field of production.
Uncertainty of measurement data. Gathering knowledge about physical systems
through measurement introduces noise and data uncertainty. This calls for robust
methods to handle uncertain parameters within the corresponding tolerance limits.
Incomplete information. Related to uncertainty is the partial availability of informa-
tion, meaning that some elements of measurement data vectors are missing (either due
to sensor malfunction or because at the given point of the process, the data element
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has no sensible meaning) or invalid. Discarding these incomplete vectors can often be
unpracticable as they are a substantial part of all data. Therefore, a method is needed
to handle incomplete data sets (see Viharos et al. 2002, Zhang and Rong 2005).
Unknown input/output character of parameters. The input/output nature of rele-
vant parameters may change—either depending of the problem to be solved or the
given point of view of modeling (and may thus be different for another problem), or
it may be entirely unknown if a-priori knowledge about the system is sparse—this is
typical for ANN application cases (see Viharos and Monostori 1999c).

Numerous methods can master one or a few of the above challenges, yet few can
address all of them simultaneously—this may give the latter approaches an outstand-
ing role in future production control. It is of key importance to develop methods that
address generic system properties in the fundamental structure of the methodology,
while the algorithms applied can be exchanged for others in a “plugin-like” manner.
This—just as the fact that all production levels share the above features—encourages
researchers to apply one method, elaborated for one given level of production, to solve
problems of other layers of the hierarchy as well, promising a versatile problem-
solving technology. This paper presents such a method, submodel decomposition,
which is able to cope with the aforementioned challenges and was, in a number of
industrial application and test cases, successfully used in various levels of production.

3. INTRODUCTION TO SUBMODEL DECOMPOSITION

3.1 Description of the submodel decomposition method

Now, let us present the submodel decomposition method in detail. The procedure we
propose combines generalized feature selection and improved ANN training in a dy-
namic way. Generalized feature selection proposes a set of assumed submodels which
are individually validated by ANN training, either to be accepted or to be rejected.

3.1.1 Generalized feature selection. Let us assume that submodels have to be ex-
tracted from a list of n parameters whose input/output nature is not known in advance.
Feature selection proposes n possible submodels, each having another output variable,
and a list of further parameters in the order of their potential impact on the output.

The original feature selection algorithm by Devijver and Kittler (1982) assumes a
pure classification task with the goal of reducing the number of inputs needed for one
single output. As a generalization, continuous output parameters can be mapped onto
the discrete classification scheme with an appropriate heuristics. The first step selects
the output and its values encountered in the training data set are grouped into the
highest possible number of clusters (i. e. intervals of equal length), so that at least one
element is contained in each interval (this, in itself, being the first heuristic decision).

Ranking remaining variables using suitable heuristics (see Devijver and Kittler
1982) with respect to a given “measure of distinction” delivers a list of variables and
corresponding measure values. Taking more and more of them for input, the separabil-
ity measure of the corresponding output deteriorates, and a further heuristic decision
can determine how many of the best-ranked variables should be taken. These variables,
together with the selected output, form one possible submodel, ignoring whether they
were selected for input or output during feature selection. This is repeated with all pa-
rameters of the system selected as outputs, resulting in as many proposed submodels
as the total number of parameters. Continuing the same with recursive partitioning of
all submodels already created, the possible submodels form a multilevel decision tree.
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Figure 2. Two cases of submodel decomposition. In the example to the left, the net of accepted
submodels consists of five main relations (in brackets), partitioning a system containing eleven description

parameters. The fourth row in the window, e. g. shows that the algorithm identified a submodel with
parameters 2, 3 and 6 as inputs for the estimation of output 5. The four identified submodels have common
parameters, e. g. parameter 6 is estimated by the submodel shown in the second row, but it is to be found
among the input variables of the next two submodels, too. Thus, a structure of interconnected submodels

can be recognized additionally to the identification of its individual parts. To the right, the result of
submodel decomposition in an industrial example with a large number of system parameters is shown.

3.1.2 ANN training. The three heuristic decision steps taken to obtain the can-
didate submodels makes them only assumptions, to be either verified or rejected by
ANN training. To overcome difficulties of “classical” ANN application, a generic,
reusable ANN-based model should compiled—such a strategy is introduced in the ap-
proach of Viharos and Monostori (1999c). Supplying the algorithm with a sufficiently
large set of training patterns and corresponding tolerances, the best input/output con-
figuration for learning the dependencies of the training vectors will be found auto-
matically. The successful completion of the latter is equal to a proof of the assumed
submodel as it is practically realized by the ANN. Does this not succeed, the model is
rejected and will be avoided in subsequent steps.

3.1.3 Dynamic submodel decomposition. While the separate application of
preparing training data by feature selection and subsequent ANN learning already
reduces the computational costs of modeling the entire system, the flexibility of the
method is most exploited if feature selection and ANN training are executed as com-
plements in alternating steps. Here, feature selection first selects only one submodel
candidate for validation by ANN training involving only the variables of the proposed
submodel. Is the ANN training successful, the submodel is accepted and removed
from the free pool of unidentified submodels, and the rest of the learning parameters
is processed again by a feature selection procedure, delivering a modified submodel
candidate set which is again tested by a corresponding ANN training.

3.1.4 The user’s perspective. For practical application, by non-expert users as
well, a software package was developed which, upon supplying measurement data in a
suitable form, automatically determines and learns the net of submodels of a complex
system. As a prerequisite, the user has to provide the following:

(i) A sufficiently large data set, e. g. a database table, columns meaning the system
variables and each row standing for these variables recorded at a given time.

(ii) Since in subsequent parts of the algorithm, an ANN is employed to test whether
a given variable can be estimated using other parameters, a maximal tolerable
error has to be assigned to each variable when estimating it with an ANN model.

Is a data set supplied in the above form, the submodel decomposition algorithm can
be started, which delivers the following results:
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(i) A set of valid submodels, with as many of the parameters labeled as output as the
ANN algorithm could find.

(ii) A set of rejected submodels judged invalid by the ANN algorithm. Storing these
is useful for an early pruning of submodel candidates bound to fail. Also, this list
can be used to reject hypotheses concerning the analysed system.

(iii) Since valid submodels were spotted as ANN’s were learning their dependencies,
this knowledge is readily accessible as a network separate neural nets, each of
them representing one submodel.

Figure 2 shows a screenshot of an actual industrial application in a rather low level
of manufacturing where a part of a production line is modeled using more than sixty
parameters.

3.2 The place of submodel decomposition among related and preceding
methods

Having presented our proposed submodel decomposition technique, let us examine
which classes it belongs to and which are some of its forerunners and related methods.

• As for modeling, submodel decomposition relies on ANNs, more specifically, mul-
tilayer perceptrons (MLPs). A modified form of the accelerated backpropagation
method SuperSAB (see Tollenare 1990) is used for training the MLPs.

• The model building method can be looked upon as a special case of learning algo-
rithms as well. The fact that no predetermined layout of input and output parameters
is required, classifies it as an unsupervised learning algorithm. This is a noteworthy
achievement as here, feed-forward ANN structures are created with unsupervised
learning. Moreover, the resulting networks can be tuned with both supervised and
unsupervised learning later on.

• Modeling of many-valued mapping is solved by the introduced algorithm as well.
Brouwer and Pedrycz (2003) addressed a similar problem with a totally different
approach before aiming at handling incomplete data sets—similarly, by coinci-
dence, to the authors of the submodel finding method presented here (see Viharos
et al. 2002).

• Several approaches are known in literature which, also for the case of MLPs, can
alter the structure of the networks to improve them, usually adding or deleting neu-
rons whenever needed for further training (see Yasui 1997). The network of (inter-
connected) networks arrangement built in submodel decomposition is actually the
result of a process of this kind, and can be considered a special result of a struc-
ture determination process of ANNs, as well as the product of a specific class of
combined pruning-learning methods.

• The application of ANNs is often preceded by some kind of preprocessing of raw
learning data. This consists, especially in manufacturing (see Viharos and Monos-
tori 1999c, Erdélyi and Hornyák 2003), in picking out parameters that “are worth
learning,” i. e. in feature selection. This is also practiced in our submodel decompo-
sition method, however, as opposed to the traditional separation of feature selection
and subsequent ANN training (see Egmont-Petersen et al. 1998), the submodel
identification approach presented here combines feature selection and ANN train-
ing in alternating steps, resulting in a hybrid technique.
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4. APPLICATION IN HIGH AND LOW LEVELS OF
PRODUCTION CONTROL

Submodel decomposition, as well as the fixed-topology ANNs applied therein, found
application in various levels of industrial production. The following examples show
application cases of the techniques that led up to submodel decomposition—ranging
from feed-forward ANN application over ANN-model-based problem solving and op-
timization to submodel decomposition. These cases show the versatile applicability of
the techniques in various levels of manufacturing which may open a broad scope of
research to transfer these—and related—techniques to other levels of production.

4.1 Low level application examples

Classical modeling. Application of “plain” modeling with fixed-topology ANNs in
lower levels of production is shown by Viharos et al. (2003) for simulating chip for-
mation in turning and milling processes and for modeling surface quality properties
of a cutting process depending on various technical parameters whose choice may
change from task to task.
Problem solving. The ANNs obtained through input/output search, without the de-
composition to submodels, can be used to solve a variety of estimation problems.
Numerous practical application examples for low levels of production (metal cut-
ting again, as in the examples mentioned before) are given by Viharos and Monostori
(1999c). Another application example for lower levels of manufacturing, Viharos et
al. (2002b) shows another case for multiple solutions of a non-invertible relation. In
Viharos et al. (2002b), the influence of the simultaneous selection of several require-
ments is examined from the point of view of estimation accuracy.
Optimization. With the help of the ANNs, a solution can also be found using iterative
optimization. An application example of multipurpose optimization with constraints is
shown by Viharos and Monostori (2001) where simulated annealing is used to obtain
a set of valid solutions to manufacturing problems.
Submodel decomposition. Figure 2 shows a screenshot of an actual industrial appli-
cation in a rather low level of manufacturing where a production line is modeled using
more than sixty parameters.

4.2 High level application examples

Classical modeling. Application of ANNs for modeling higher levels of production
was proposed by Monostori et al. (2001), where an improved ANN modeling concept
is extended to process chains and entire production plants.
Problem solving. An example for the use of the generic ANN model in higher lev-
els of production is given by Viharos and Monostori (2001) where various problems
related to efficiency improvement had to be solved in manufacturing processes of mul-
tilayer printed circuit boards.
Optimization. Constrained optimization techniques initially applied to only one pro-
duction step are extended by Viharos and Monostori (2001) to a higher level of pro-
duction: The block-oriented ProcessManager framework presented by Viharos and
Monostori (2001) can deal with an entire process chain where the result of an earlier
step may influence all subsequent steps. Even higher levels of production are handled
by Monostori et al. (2001) where a hybrid optimization technique (supported by AI,
machine learning (ML) and simulation) is used to optimize the arrangement of manu-
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facturing processes within a production plant. A substantial gain in optimization time
(acceleration by a factor of 6000) is reached by substituting discrete event simulation
with ANNs trained by results of earlier simulation runs.
Submodel decomposition. The identification of submodels in a complex system was
also applied in an intermediate level of production (see Viharos et al. 2003b).

5. FURTHER RESEARCH

Currently ongoing research activities are aimed at extending submodel decomposition
towards an agent-based framework where knowledge specific to an agent is mapped
onto a given submodel. The feasibility of this generalization is assumed because of re-
markable analogies between ANN-based submodels and agents: the fact of decompos-
ability, the existence of localized knowledge with strongly limited connections beyond
a given neighborhood, a network architecture, learning or adaptive behavior and esti-
mation or prediction abilities. Additionally to the submodel principle, the automatic
decomposition approach itself is expected to be applicable to autonomous agents as
well, moreover, agents could be dynamically set up, grouped or split up according
to various efficiency criteria, such as learning ability or skills of predicting relevant
events. It is envisaged that such a multi-agent system can be erected as a higher level
envelope for lower level production control to determine an efficient initial layout of
entire production plants or provide decision support for their reorganization.

6. CONCLUSION

The first part of this paper highlighted fundamental phenomena equally shared by
higher and lower levels of manufacturing (complexity due to a dense network of in-
terdependencies, and a large number of relevant system parameters).

To handle these, a submodel decomposition method, integrating generalized feature
selection and ANN training, was presented in the second part of the paper. The versa-
tility of the method was demonstrated by examples of practical use for various levels
of manufacturing systems. The results obtained so far suggest that the approach, if
proven successful for one production level, can be modified for use in other levels,
such new experience possibly bringing mutual improvement in all domains of appli-
cation.

Finally, as a concluding remark to the method, future research plans of combining
submodel decomposition with a flexible multi-agent system were outlined.
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