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Abstract: In the paper different architectures with partly self-developed simulation 
packages are described illustrating the benefits of combining simulation and machine 
learning (ML) techniques in manufacturingintelligence (AI) and ML side, artificial 
neural networks, heuristic search, simulated annealing, and agent-based techniques are 
put into action. The applicability of the proposed solutions is illustrated by the results 
of experimental runs. Copyright © 1999 IFAC 
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1. INTRODUCTION 

Simulation is usually an efficient technique to make 
difficult problems more tractable. It can contribute to 
elaborating new algorithms, supporting decision 
makers, decreasing the risk in investments, and 
running the systems exposed to changes and 
disturbances more efficiently. 
 
From simulation point of view, one can speak about 
knowledge-based hybrid systems (KBHSs) if 
simulation and some kind of intelligent techniques, 
e.g. expert systems (ESs), artificial neural networks 
(ANNs), fuzzy systems or their combination are used 
together. Without aiming at completeness, four main 
architectural categories of this special group of hybrid 
systems can be distinguished (Fig. 1): 
• Embedded: The simulation model is embedded in 

a KBS, which can use simulation (SIM) in 
decision making (A), or the simulation model 
contains a KBS (B), (e.g. for simulating 
uncertain processes). 

• Parallel: The simulation communicates with the 
user and can access the results of the decisions 

made by the KBS (C), or the KBS communicates 
with the user, and controls the simulation (D), 
which can be replaced later by the real system. 

• Co-operative: The KBS contains some 
knowledge about the simulation model as well as 
about the field of application (E). This form of 
combination is very useful for users non-
experienced in simulation, by helping them 
building or modifying the model.  

• Intelligent front-end: The KBSs generate the 
necessary instructions for the user from different 
aspects, interpret and explain the results from the 
simulation package (F). 

 
Learning denotes changes in the system that is 
adaptive in the sense that they enable the system to do 
the same or similar task more effectively next time 
(Simon, 1983). Obviously, ML techniques can 
enhance the performance of any KBHS architecture 
of Fig. 1, and at the same time, simulation can be 
used for generating training examples for learning. 
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Fig. 1. Possible combinations of simulation and KBSs 

The paper illustrates the benefits of combining 
simulation and machine learning techniques in three 
fields: 
• modelling, simulation and optimisation of 

production processes and process chains, 
• design, control and reconfiguration of flexible 

manufacturing systems (FMSs), 
• design and control of holonic manufacturing 

systems (HMSs). 

2. SIMULATION AND OPTIMIZATION OF 
PRODUCTION PROCESSES AND PROCESS 

CHAINS 
 
Difficulties in modelling production processes are 
manifold: the great number of different machining 
operations, multidimensional, non-linear, stochastic 
nature of machining, partially understood relations 
between parameters, lack of reliable data, etc. A 
number of reasons back the required models: design, 
optimisation, control and simulation of processes and 
design of equipment (Van Luttervelt, et al., 1998, 
Merchant, 1998). 
 
An approach based on back propagation ANN-
learning and heuristic search for generating 
multipurpose models of production processes which 
are applicable for a set of assignments and can satisfy 
the various accuracy requirements was described in 
(Monostori and Viharos, 1999). As to the application 
phase, a novel technique based on simulated 
annealing search was developed to find the unknown 
parameters of the model in certain situations.  
 
In the following space a block-oriented software 
named ‘ProcessManager’ for optimising operations 
and/or production chains form various points of view 
at the same time, will be introduced. The simulation 
technique is based on multipurpose ANN-models 
trained by using measured data. Multiple objectives 
are handled with the usual weighting technique.  
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Fig. 2. Parameters resulted by the threefold optimisation of the plate turning operation (normalised values)  

Fig. 2 illustrates the application of ProcessManager 
for the threefold optimisation of the viewpoints of the 
customer (minimisation of the surface roughness, Ra), 
owner of the company (q, profit/productivity 

maximisation) and the production engineer 
(maximisation of process stability through the a/f 
ratio). Parameters resulted from the optimisation of 
the plate turning operation are illustrated by 3D-plots. 



 

Ratios of the weighting factors of the three variables 
to be optimised are represented along the axes. The 
‘surfaces’ are to be used together, i.e. the movement 
on the plane marked by Ra and a/f occurs on each of 
the diagrams at the same time. The corner marked by 
q indicates the position where the viewpoint of the 
company owner is the most important and the 
movement along the axes Ra and a/f represents that 
the corresponding criteria become more and more 
important with respect to q. The results can be 
directly used for supporting business decisions and 
compromises.  
 
 
2.1 Simulation and optimisation of process chains 

 
The sequence of production operations can be 
modelled by a chain of models connected by their 

input-output parameters (Westkämper, 1995). In 
addition to process optimisation, ProcessManager 
supports the modelling and optimisation of process 
chains as well. 
 
ProcessManager incorporates (Fig. 3. ): 
• Definition of the elements of the chain.. 
• Determination of the process models in a hybrid 

way, by integrating analytical equations, expert 
knowledge and example-based learning. 

• Connection of the single models into a process 
chain by coupling input-output model parameters 
not limited to models of successive processes in 
the chain. 

• Definition of eligible intervals or limits for the 
process parameters and monitoring indices. 

• Definition of a cost function to be optimised, etc. 
 

Operation p
Parameter 1
Parameter 2

Parameter nq

...
Evaluation 1

Parameter 1
Parameter 2

Parameter np

...

Evaluation N
Parameter 1
Parameter 2

Parameter nn

...

Operation 1
Parameter 1
Parameter 2

Parameter n1
... ...

...

...

Model 1,1
Parameter 1
Parameter 2

Parameter o1,1

...

Model 1,m1
Parameter 1
Parameter 2

Parameter o1,m1

...
Model N,1
Parameter 1
Parameter 2

Parameter oN,1

...

Model N,mn
Parameter 1
Parameter 2

Parameter oN,mn

...
...

Parameter 1
Parameter 2

Parameter n1

...

Parameter 1
Parameter 2

Parameter nn

......

PROGRAM - PROCESSMANAGER

Evaluation, optimisationProduction chain

External
connections

Chain
building

External
Models

Targets of
optimisation

 

Fig. 3. Hybrid modelling and optimisation of process chains by ProcessManager 

3. DESIGN, CONTROL AND 
RECONFIGURATION OF FMSs 

 
An FMS design methodology which combines 
design of experiments (DoE) technology, Taguchi 
method, and knowledge based simulation techniques 
was described in (Mezgár et al., 1997). The design of 
new FMSs is not a daily assignment, but their re-
design, reconfiguration for a new product, or in case 
of different disturbances is a very frequent task. The 
application of simulation techniques is usually time 
consuming, which is tolerable in the design phase, 
but it is hardly acceptable in real manufacturing 
situations. As a reasonable solution, the substitution 
of the simulator by ANNs for mapping between 

design factors and system performance is proposed. 
The applicability of the approach is demonstrated by 
• the estimation of the throughput time of FMSs, 
• and the determination of the appropriate speed 

of the AGV in the analysed system. 
 
 
3.1 Simulation and ANN-based learning and 

estimation of the throughput time 
 
During the described investigations three-layer back 
propagation (BP) neural networks were applied for 
the FMS at the TU Budapest (Mezgár et al., 1997). 
Sufficient number of pattern-target pairs were 
generated by simulation to cover an appropriate 
broad combination of design, indicative and noise 



 

factors. The number of machine tools and the place 
of measurement were considered as design factors. 
The speed of the robots, and the AGV have been 
defined as indicative factors. The number of scrap in 
a batch, the machine set-up and maintenance time, 
furthermore, the frequency and duration of tool-
change were selected as noise factors. 
 
The networks were set up as shown in Fig. 4. Design, 
indicative and noise factors constituted the 9 
elements of input patterns for three-layer networks 
with the variable number of hidden neurons (9-X-1 
structure). During learning 104 simulated values 
were used as targets.The best estimation results for 
test patterns were reached by the network of 9-5-1 
structure (7,3% maximum, and 3,2% average relative 
error). These results projected success in applying 
neural networks trained by simulation results for 
throughput time estimation. 
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Fig. 4. Artificial neural network for throughput time 

estimation 
 
 
3.2 Combined use of DoE and ANN techniques in 

the reconfiguration of manufacturing systems 
 
The goal in the reconfiguration phase is to develop a 
new version of the basic configuration, while 
maintaining the original basic characteristics of the 
system as much as possible. Motivations of 
reconfiguration are manifold: introduction of a new 
product within the family, machine brake-down, the 
modification of the process plan or the deadline of 
shipping, etc.  
 
Reconfiguration usually leads to an iterative 
simulation-evaluation procedure. Generation of a 
network which, in some sense, realises the inverse of 
the simulation function is of significant importance 
(Chryssolouris et al., 1987). Fig. 5 illustrates a 
simplified problem setting. The speed of the AGV in 
the system is to be determined on the base of the 
other (design, indicative and noise) factors kept 
constant, and the required throughput time of the 
system. 

 
Fig. 5. Artificial neural network for determining the 

speed of the AGV in the reconfiguration 
process 

Through the appropriate use of the training patterns 
the weights of the 9-8-1 network in Fig. 5 were 
generated by BP learning. The estimation of the 
AGV speed for test pattern resulted in a 5,2% 
maximum, and a 2,1% average relative error. 
 
The result indicates the applicability of this 
procedure (i.e. realisation, in some sense, of the 
inverse of the simulation function by ANNs) for 
reconfiguring manufacturing systems, substituting 
the highly iterative, time consuming process. 
 
 

4. DESIGN AND CONTROL OF HMSs 
 
Management of complexity, changes and 
disturbances is one of the key issues in production 
today (Wiendahl and Scholtissek, 1994). Holonic 
manufacturing systems (HMSs), as one of the new 
paradigms in manufacturing, consist of autonomous, 
intelligent, flexible, distributed, co-operative agents 
or holons (Van Brussel et al., 1996). They represent 
viable alternatives to hierarchical and heterarchical 
structures and the corresponding reactive scheduling 
approaches. The industrial acceptance of holonics, 
however, is relatively low among others things by 
reasons of 
• the relative crudeness of the agent theory and its 

manufacturing applications, 
• the insufficient communication and decision 

making capabilities of present NCs, 
• the high investment costs of a production system 

working according to the agent principles, 
• the seemingly insurmountable difficulties in 

their stepwise integration into existing 
production systems (Kádár and Monostori, 
1998). 

 
Several approaches ere introduced and treated in 
(Kádár and Monostori, 1998). to overcome the above 
difficulties: 



 

• the use of simulation technique for developing 
agent-based control architectures, 

• the holonification of existing resources, 
• the holonification of traditional systems by using 

the virtual manufacturing (VM) concept. 
 
Here, we concentrate on the first and the third 
approach where simulation is a key issue. 
 
 
4.1 Development of agent-based architectures by 

simulation 
 
There are a number of open questions in holonics 
(Kádár et al., 1997) which can be answered by 
extensive simulation only. The object-oriented 
simulation framework for the development and 
evaluation of distributed manufacturing architectures 
described in (Kádár et al., 1997) provides a root 
model that represents a plant and can contain 
different agents. The object library incorporates two 
main agent types: resource agent and order agent. A 
plant in the model will contain only one order agent 
which is responsible for order processing, job 
announcements and job dispatching between 
different resources or groups (Fig. 6).  
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Fig. 6. Structure of a resource agent (Kádár et al., 

1997) 
 
A model may incorporate several resource objects 
which can be initialised during construction (giving 
the name of the resource, process-capabilities of the 
resource, etc.). Only one information provider, i.e. 
the registration book, is treated centrally in the 
system. 
 
The simulation framework is intensively used for 
research purposes. A new approach to agent-based 
scheduling developed and tested by the framework is 
described in (Monostori et al. 1998). 
 
 

4.2 Holonic control of traditional systems by using 
simulation 

 
In this Section a novel approach to holonification of 
whole manufacturing systems is introduced based on 
an extension of the Virtual Manufacturing (VM) 
concept (Onosato and Iwata, 1993). Manufacturing 
sub-systems can be classified into four categories: 
Real Physical System (RPS), Real Informational 
System (RIS), Virtual Physical System (VPS), 
Virtual Informational System (VIS). VM makes it 
possible to simulate manufacturing processes in 
advance, without using real facilities, and by this 
way to accelerate the design and re-design of real 
manufacturing systems. 
 
A fundamental feature of the VM concept is that it 
realises a one-to-one mapping between the real and 
virtual systems, i.e. VIS and VPS try to simulate RIS 
and RPS, respectively, as exactly as possible. In this 
section an extension of VM concept is suggested and 
illustrated. The main novelty of the approach is the 
break with the above one-to-one mapping, more 
exactly the use of the VM concept to control a 
traditional (centralised / hierarchical) manufacturing 
system in a holonic way. 
 
Supposing that there is a central control unit in the 
traditional system, the fundamental requirements for 
the holonification of this system by the approach 
suggested here are as follows. The capabilities to 
communicate with the outside world, transfer control 
information to the resources, catch state information 
and to transfer them to the central unit, interrupt the 
functioning of the resources at given periods, stop or 
modify the processes started previously. 
 
The virtual part of the system runs in a holonic way 
and incorporates order management, scheduling and 
control issues. For the realisation of the virtual part, 
simulation systems such as the framework described 
earlier in this Section can be advantageously used. 
Resource agents which, from technological point of 
view, correspond to the real resources of the 
traditional system can be easily constructed by using 
the object library of the simulation framework 
(Kádár et al., 1997). Order management proceeds 
fully in the virtual system. 
 
Decisions are made in the virtual, holonic system and 
conveyed to the VIS of the traditional system. The 
real production situation is sensed by the RPS and 
forwarded to the VIS, which initiates appropriate 
measures in a holonic way. As a summary, the 
traditional system shows a holonic behaviour.  
 
The holonic information system tested in a virtual 
environment has the potential of being used in real 
holonic systems. 



 

5. CONCLUSIONS 
 
Some examples were described in the paper for 
applying simulation and AI/ML techniques for 
different fields of manufacturing: 
(a) modelling, simulation and optimisation of 

production processes and process chains, 
(b) design, control and reconfiguration of flexible 

manufacturing systems (FMSs), 
(c) design and control of holonic manufacturing 

systems (HMSs). 
 
In (a) simulation incorporated trainable process 
models realised by ANNs was introduced. In respect 
to the notions of Figure 1, this integration approach 
belongs to category E, however, depending on the 
way of realisation, it can belong to category B or C. 
In (b) the usual simulation technique was substituted 
by an ANN trained by the simulator. This approach 
can be ordered to category D. 
 
The case (c) addressed the application of simulation 
for the design and control of HMSs. The later 
approach was especially interesting: agent based 
control of centrally or hierarchically structured 
systems by using simulation techniques was 
proposed. The solution can be put in category B (or 
C or E, depending on the given 
realisation/application). 
 
Taking, on the one hand, the availability of the 
rapidly growing computing power, and on the other 
hand, the new achievements in AI/ML (e.g. 
reinforcement learning), into account, a versatile and 
rapidly increasing application of this type of KBHSs 
is expected in nearly every field of manufacturing. 
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