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Abstract: Modelling of machining operations is a key issue in today’s manufacturing. 
Reliable and effective models are needed in order to plan and control machining processes. 
The paper gives a short overview of modelling approaches frequently used in manufacturing 
with emphasis on the workpiece quality. Classical, e.g. differential equation-based techniques 
focus on the special aspects of machining (e.g. cutting forces, temperature, tool wear) and 
cannot handle the whole complexity of the processes manifested in the great number of 
variables and their stochastic, non-linear relations. 
The paper introduces a concept for quality-oriented, comprehensive modelling of machining 
processes. It incorporates a large number of variables grouped into input, output and in-
process categories. Fundamental features of the concept are the ability to learn from 
experience, and the flexibility in realising various, task dependent mappings with their 
inherent model building capability. 
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1 INTRODUCTION 
Very intensive research activities are conducted all over the world for the modelling of machining processes. 

Process models are considered as abstract representations of processes linking causes and effects or transforming 
process inputs into outputs. They can be classified in two groups: fundamental or micro models and applied or 
macro models. Our goal is to develop a framework for applied modelling, which is able to manage the cutting 
processes in their whole complexity. 

Paragraph 2 outlines the complicated relations between some physical phenomena of the cutting process. In 
paragraph 3 classical models are reviewed. A large number of input and output parameters are listed in 
paragraph 4, which are needed to handle the multivariable character of the cutting process. In paragraphs 5 and 6 
three model types and the transformations of knowledge between them are reviewed and the ANN model is 
proposed as the basic element of the cutting model framework described in paragraph 7. 
 
2 PHYSICAL PHENOMENA AND THEIR INTERRELATIONSHIPS 

Because of the complicated relationships between the phenomena incorporated into the cutting model, the 
machining process is hard to be decomposed [1] (Figure 1). 
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Figure 1. Some physical phenomena and their interrelationships 
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Mathematical (informative) methods used in the applied model group can be enumerated as follows: 
• a set of  deterministic equations to describe the steady-state features (conditions) of the process 
• a set of  stochastic formulae to handle the deviations of the output parameters (process uncertainty) 
• complex models based on Artificial Intelligent (AI) methods. 
 
3 CLASSICAL CUTTING MODELS 

Fundamental cutting process models are based on the description of the chip removing phenomena by the 
classical physics, elastic-plastic deformation (fracture theory) or empirical measuring – curve fitting methods [2]. 
The first description of the machinability function (transformation) was introduced by Taylor and completed 
later establishing an empirical relationship between the tool life  “T” and cutting parameters: cutting speed “vc”, 
feed “f” and “a” depth of cut (turning operation). For the deterministic tool life model T= f(vc , f, a) empirically 
values of the exponents are necessary. 

The first shear plane model of the cutting process, (Fc=A*τc*[ctgφ+tg(φ+ω)]), which is based on pure 
theoretical aspects, was developed by Merchant. The generally used cutting force model (Fc=k1*h1-m*b) 
developed by Kinzle is based on stress theory and empirical work too. (“k1”, “h”, “b” denote the cutting force 
constant, the chip thickness and the width of chip, respectively).  

The models in the applied group may be structured as an exponential empirical formula: 
The formula: 

I = C · vc
z · fx · ap

y · ae
m, or after linearization with 

logarithm: I* = c* + z · vc* + x · f* + y · ae* + m · ap* 

where the process engagement conditions are: 
vc min < vc  < vc max, f min < f  < f max, ae min < ae  < ae max,  
ap min < ap  < ap max Imin < I < Imax 

(Cutting feature “I”, depth of cut “ap”, width of cut “ae”) The complex transformation matrix of the linearized 
model is demonstrated in Figure 3. Is must be emphasized that some cutting features (chip breaking, process 
stability, tool breaking) could not be characterised by this deterministic empirical model.  In general, these types 
of models have been inaccurate and of limited validity, due to the complexity of the object (for instance: tool 
wear depends on the independent input parameters and some output parameters such as cutting force variation, 
process stability etc.) and the limitation of the applied approximation. It must be emphasized, that although the 
deterministic approach helps to answer and understand the basic principles of metal cutting processes, it is 
important to develop other methods witch are able to handle the complexity of cutting, process uncertainty and 
are able to transform the information into knowledge [3]. 
 
4 INPUT-OUTPUT AND IN-PROCESS PARAMETERS 

To describe the complete machining system [1], one of the most important questions is to determine the 
input-output features.  

To determine all the important input and output parameters, first, the main groups (Figure 2.), the relevant 
parameters and their notations and units were 
determined. Among the parameters are 
continuous variables and logical “OR” 
decisions. The proposed model refers to the 
tool path length where the cutting parameters 
are not changed. If some parameters change 
the model is used appropriately. 

Some parameters can be used as input and 
as output variables, as well. This is the way to 
follow the changes of these variables along 
the process. If, e.g., I is one of these variables: 
Iinput means the state of the variable before and 
Ioutput after the cutting process.  

The next list shows the parameters 
incorporated in the investigations. 
 

The tool geometry group consists of: 
• Micro parameters: 
• Previous machining: 
• Grindid: Fine machined “OR” Not fine 

machined 
• “OR” Not grindid. 

• Edge radius (rβ)[µm] 
• Macro parameters: 
• Monolith: 

• Tool length to be used (lf)[mm] 
• Group: N “OR” H “OR” W 

• Throw away insert: 
• Positive “OR” Negative 
• Type of chip breaker: None “OR” “OR” 

PM “OR” PF “OR” PR “OR” MF “OR” 
MR “OR” QM “OR” QF “OR” QR 

• Inscribe circle diameter (d)[mm] 
• Edge length (lf)[mm] 
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Figure 2. Parameter groups of the operation model 



• Insert thickness (S)[mm] 
• Orthogonal rake angle (γo)[°] 
• Orthogonal clearance angle (α)[°] 
• Inclination angle (λ)[°] 
• Cutting edge angle (κ)[°] 
• Include angle (ε)[°] 
• Edge number: 
• Single edge: 
• Corner radius (rε)[mm] 

• “OR” Multiple edge: 
• Width of fuzette (rε)[mm] 
• Tool diameter (ds)[mm] 
• Cutter half cone angle (ϕs)[°] 
• Distance of the corner radius center 

from the rotation axis (Cr)[mm] 
• Distance of the corner radius center 

from the tool tip (Ca)[mm] 
• Number of cutting edges (Zs)[.] 
• Run out - radial - average (µr)[mm] 
• Run out - radial - deviation (σr)[mm] 
• Run out - axial - average (µa)[mm] 
• Run out - axial – deviation (σa)[mm] 

The workpiece material group consists of: 
• Surface layer: 
• Pre-produced: “OR” Casted “OR” Drawned 

“OR” Rolled “OR” Forged 
• “OR” Machined: Rough “OR” Fined “OR” 

Finished 
• Heat treatment: Normalised “OR” Tempered 

“OR” Quenched 
• Ingredients: 
• Impurities (S%)[%] 
• Carbonising: 
• Normal hardening (CN%)[%] 
• Precitipation hardening (CK%)[%] 

• Material parameters: 
• Maximum tensile strength (RM)[Pas] 
• 0.2 tensile strength (RM 0.2)[Pas] 
• Modulus of elasticity (E)[Pas] 
• µ (µ)[Pas] 
• Vickers hardness (HV100N)[HV] 
• Impact energy (KC)[KC] 

• Cutting speed constant (Cv)[] 
• Main cutting constant (k1)[] 
• Main cutting force exponents: 
• (XF)[] 
• (YF)[] 
• (ZF)[] 

The tool material group consist of: 
• Coating: 
• Not coated 
• “OR” Coated 
• Temperature of the coating: Very law 

“OR” Low “OR” High 
• Structure of christalographic: 
• Monochristal 
• “OR” Polichristal 

• Porosity (VP)[%] 
• Cutting ability: 
• Tool live constant (CT)[] 
• Tool live exponent (ZT)[] 

• Ingredients: 
• Impurities (S%)[%] 
• Carbonising: 
• Normal hardening (CN%)[%] 
• Precitipation hardening (CK%)[%] 

• Material parameters: 
• Maximum tensile strength (RM)[Pas] 
• 0.2 tensile strength (RM 0.2)[Pas] 
• Modulus of elasticity (E)[Pas] 
• µ (µ)[Pas] 
• Vickers hardness (HV100N)[HV] 
• Impact energy (KC)[KC] 

The relative setting group consists of: 
• tool path length (L)[mm] 
• Surface first curvature of the workpiece 

(ρ1)[1/mm] 
• Surface second curvature of the workpiece 

(ρ2)[1/mm] 
• Immersion (contact) angle (ϕ)[°] 
• Depth of cut (tool axis direction) (ap)[mm] 
• Depth of cut (perpendicular to the tool axis) 

(ae)[mm] 
• Velocity (cutting speed along the ρ1) 

(vc)[m/sec] 
• Velocity (cutting speed along the ρ2) 

(vf)[m/sec] 
• Velocity (cutting speed along ds) (vs)[m/sec] 
• Single edge: 
• Feed per workpiece revolution (f)[mm] 

• Multiple edge: 
• Feed per tool revolution (f)[mm] 

The accuracy/tolerances group consists of: 
• positioning accuracy projected to the first 

surface curvature (VP1)[mm] 
• positioning accuracy projected to the second 

surface curvature (VP2)[mm] 
• Main spindle run-out (radial) (erad)[µm] 
• Main spindle run-out (axial) (eax)[µm] 
• Average of the surface curvature ρ1 along 

machining length (µGM1)[1/mm] 
• Deviation of the surface curvature ρ1 along 

machining length (σGM1)[1/mm] 
• Average of the surface curvature ρ2 along 

machining length (µGM2)[1/mm] 
• Deviation of the surface curvature ρ2 along 

machining length (σGM2)[1/mm] 
• Surface roughness along ρ1 (Ra1)[µm] 
• Surface roughness along ρ2 (Ra2)[µm] 

The cooling/lubrication group consist of: 
• No cooling 
• “OR” Cooling 
• Solid 



• Graphite: There is “OR” There is no 
graphite 

• “OR” Sulphides: There is “OR” There is no 
sulphide 

• “OR” Plastic material: There is “OR” 
There is no plastic material 

• “OR” Fluid 
• Media – coolant: Water “OR” Oil “OR” 

Spirit “OR” Others 
• Ingredients - lubrication: “OR” Oils “OR” 

Petroleum “OR” Graphite “OR” Sulphite 
• Cooling method: 
• Mist 
• Pressure (Pl)[Pas] 
• Volume (Ve)[m3] 
• Volume rate (Ql)[m3/sec] 

• “OR” Flooding 
• Pressure (Pl)[Pas] 
• Volume rate (Ql)[m3/sec] 

• “OR” Inside 
• Pressure (Pl)[Pas] 
• Volume rate (Ql)[m3/sec] 

• Media volume divided by ingredient – ratio 
(V%)[%] 

• Gas 
• Media – coolant: Air “OR” Nitrogen 
• Ingredients - lubrication: “OR” Oils “OR” 

Petroleum 
• Media volume divided by ingredient – ratio 

(V%)[%] 
The chip group consists of: 
• Chip thickness: 
• Theoretical chip thickness (h)[mm] 
• Theoretical maximum of the chip thickness 

(hc max)[mm] 
• Measured chip thickness (h)[mm] 
• Measured maximum of the chip thickness (hc 

max)[mm] 

• Chip form: 
• chip ratio (space for chip/theoretical volume 

of the chip) (K)[] 
The tool-wearing group consists of: 
• Wearing: 
• Average flank wear (VB)[mm] 
• Maximum flank wear (VBmax)[mm] 
• Total removed volume by this tool (Vc)[mm3] 

• Tool breakage: Broken “OR” Not broken 
The monitoring group consist of: 
• Force: 
• Along ρ1: 
• Alteration (max-min) (∆Fc)[N] 
• Trend (inclination of the line) (m Fc)[] 
• Average (µFc)[N] 

• Along ρ2: 
• Alteration (max-min) (∆Ff)[N] 
• Trend (inclination of the line) (m Ff)[] 
• Average (µFf)[N] 

• Normal force: 
• Alteration (max-min) (∆Fp)[N] 
• Trend (inclination of the line) (m Fp)[] 
• Average (µFp)[N] 

• Cutting power: 
• Cutting power on the main spindle: 
• Alteration (max-min) (∆Pc)[W] 
• Trend (inclination of the line) (m Pc)[] 
• Average (µPc)[W] 

• Cutting power on the feed engine: 
• Alteration (max-min) (∆Pf)[W] 
• Trend (inclination of the line) (m Pf)[] 
• Average (µPf)[W] 

• Temperature: 
• Alteration (max-min) (∆T)[C°] 
• Trend (inclination of the line) (mT)[] 
• Average (µT)[ C°] 

 
5 COMPARISON AMONG CUTTING PROCESS MODELLING METHODS 

Three methods of cutting process modelling are investigated (Figure 3): 
Physical/empirical approach: Theoretical recognition and empirical experience determine this type of basic 

models. Their coefficients are defined with the help of multiple regression calculations. The model structure used 
can be regarded as input for the regression calculation as well as the basic experimental data. 

Neural network approach: In the field of neural networks various net structures and training methods are 
used. Neural networks possess most of the following characteristics [4]: 
• powerful parallel computing and mapping structure, 
• strong abilities of learning and self-organisation, 
• strong abilities to store and retrieve knowledge by content rather than by address, 
• feasibility for hardware implementation and real-time control, 
• few prior assumptions or specific requirements for modelling. 

Fuzzy set theory: Fuzzy sets allow a continuous flow of matching and unmatching. Model’s input and 
output parameters are associated with “linguistic variables” and with the help of these variables, the production 
rules for the actual modelling can be generated. Relaying on the rules an inference mechanism uses and 
determines the linguistic variables of the output parameters. Fuzzy models have the advantages that their rules 
can be generated from empirical knowledge [5]. The Fuzzy model as well as neural network models are able to 
accept a large number of input and output parameters, but learning is easier in the case of the neural network 
model.  



 
6 TRANSFORMATIONS OF 
THE CUTTING MODELS 

Learning capability is the reason why a 
neural network based cutting model is 
proposed in the paper. There are techniques 
as well to transform the knowledge of one 
of these models to the other model and 
vice-versa. One useful knowledge 
transformation method can be done with the 
help of input, output data pairs. If one of 
these models and the boundaries (min and 
max bounds of the parameters) of its use are 
given, a set of input-output data pairs can 
be calculated. Based on these data pairs: 
• Structure and weights of the ANNs can 

be learnt, 
• empirical function fitting can be 

calculated by minimal squares method, 
• rules can be determined by the 

neurofuzzy method [5]. 
 
7 FRAMEWORK OF AN ANN 
BASED CUTTING MODEL 

The proposed neural network based 
cutting model has input and output 
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parameters from the data set presented above. It is to be seen that there are two types of parameters: decision 
variables (e.g. whether there is or there is no cooling) and continuous variables (e.g. Young modulus). 

ANNs can successfully handle continuous 
variables. To handle the validity of an ANN model 
the possible intervals for each parameter have to be 
given. A set of min. and max. vector pairs can be 
used to determine the validity of an ANN. 

In the case of a single vector pair: one of the 
vectors consists of minimum and the other of 
maximum values of parameters. The ANN is useful 
when each variable of the input vector - given by the 
user - is above the related minimum and below the 
related maximum parameters of the given data pair. 

But one vector pair determines only one field of 
validity that’s why the storing of a set of min. and 
max. data pairs is needed to determine several fields 
of validity. 

To build up this model new data sets have to be 
given to be learnt by the ANN. The building up 
process consists of three steps: 
1 Determination of the related ANN, based on the 

decision variables of the new data set. 
2 ANN learning, based on the new data set, which consists of data from previous learning and the new data set 

given by the user. 
3 Storing of: 

3.1 the enlarged min. and max. limits of the cutting model validity 
3.2 the data pairs used for learning. 

The use of the proposed cutting model involves three steps (Figure 5.):  
1. Determination of the relevant input, output variables, the related ANN and the limit of the use of this ANN, 

based on the decision variables. This step is a selection of a leaf on a tree built by the decision variables. 
2. Information of the user if the model could be used on the parameter field requested by her/him. The model is 

valid if there is a single vector pair among the set of min. and max. vectors where the ANN is valid. 
3. The ANN estimation of the related output variables based on the given input variables. 

This model is large to manage the whole cutting process by a large number of decisions and continuous input 
and output variables, but at one factory, usually, only a part of this model is needed. 
 
9 CONCLUSION 

In the paper a new concept of comprehensive cutting modelling has been presented. To manage the whole 
cutting process the necessary input and output variables were determined. The most frequently used modelling 
methods and knowledge transformation techniques among them were reviewed. Because of its learning 
capability, an ANN based model is proposed. By this model decision variables are used to determine the ANN, 
the related input and output variables and the limits of the validity of the model. Also the building up and the use 
of this model were described. 
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